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Abstract

The basic framework of depth completion is to predict a

pixel-wise dense depth map using very sparse input data.

In this paper, we try to solve this problem in a more effec-

tive way, by reformulating the regression-based depth esti-

mation problem into a combination of depth plane classi-

fication and residual regression. Our proposed approach

is to initially densify sparse depth information by figuring

out which plane a pixel should lie among a number of dis-

cretized depth planes, and then calculate the final depth

value by predicting the distance from the specified plane.

This will help the network to lessen the burden of directly

regressing the absolute depth information from none, and

to effectively obtain more accurate depth prediction result

with less computation power and inference time. To do so,

we firstly introduce a novel way of interpreting depth in-

formation with the closest depth plane label p and a resid-

ual value r, as we call it, Plane-Residual (PR) representa-

tion. We also propose a depth completion network utilizing

PR representation consisting of a shared encoder and two

decoders, where one classifies the pixel’s depth plane la-

bel, while the other one regresses the normalized distance

from the classified depth plane. By interpreting depth in-

formation in PR representation and using our correspond-

ing depth completion network, we were able to acquire im-

proved depth completion performance with faster computa-

tion, compared to previous approaches.

1. Introduction

Many different computer vision algorithms are becom-

ing more reachable in our everyday life, starting from

a smartphone camera and augmented reality (AR) / vir-

tual reality (VR) applications to autonomous driving and

even more complicated robotics tasks. In order to solve

these problems efficiently, obtaining precise and reliable 3D

scene information is crucial. 3D reconstruction has been

studied for many years and certainly can be categorized as

one of the traditional computer vision tasks, but it is still a

core technology. There are various ways of obtaining 3D

information, such as monocular depth prediction, structure

from motion, and multi-view stereo. However, 3D recon-

struction using additional sensors alongside an RGB camera

like secondary camera, depth sensors, or radar will be more

effective, since it can utilize more accurate depth measure-

ments as prior information. Given that most of the recent

mobile devices have more than one camera and even a Li-

DAR sensor, it is widely acceptable that 3D reconstruction

by integrating multiple sensor inputs is a more efficient and

practical approach.

While stereo matching being one of the most conven-

tional and reliable ways in 3D reconstruction, it shows its

weakness in depth prediction on the farther area due to the

physical restriction for large baseline between stereo cam-

eras. Therefore, using a depth sensor to obtain more ac-

curate and absolute initial depth information is also pre-

ferred. However, one of the major downsides of commer-

cialized depth sensors, such as 3D LiDAR, Kinect, and Re-

alSense, is the sparsity of the measurement. Addressing this

problem, various approaches emerged trying to densify, i.e.,

‘complete’ the sparse depth measurement into a dense depth

map, namely, ‘depth completion’.

In recent years, there have been many different meth-

ods trying to solve depth completion using deep learn-

ing, starting from Ma and Karaman [18]. The challeng-

ing part of these algorithms is that regression-based ap-

proaches have difficulties in maintaining the information of

the object boundary and may show mixed depth results [14].

A few early works addressed these difficulties by maxi-

mizing the information from the RGB input and refining

the initial depth regression output to get better final re-

sults [3, 17, 16, 26, 4, 2, 21]. Other algorithms tried to

utilize additional information that can be inferred from the

depth map, such as surface normal, to give more geomet-

rical guidance to the training process [16, 28, 22]. While

these algorithms showed some promising outcomes, they

still lack in preserving edge information and often require

a large amount of computation power, as in heavy network

memory and longer inference time, which are not suitable
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for real-time applications.

To tackle these problems, we introduce a Plane-Residual

(PR) representation, a novel way of interpreting depth in-

formation, and an end-to-end depth completion deep learn-

ing network. PR representation expresses an absolute depth

value of a pixel with two parameters (p, r), where p refers

to the closest depth plane among a number of pre-defined

discretized depth planes, and r refers to the normalized dis-

tance from the selected plane. With Plane-Residual rep-

resentation, we can factorize the direct depth regression

problem into a combination of discrete depth plane clas-

sification and plane-by-plane residual regression. We also

propose an end-to-end depth completion network using PR

representation to execute this idea and present our results

with good performance and fast computation. We did ex-

tensive ablation studies and compared our algorithm with

some state-of-the-art methods, both quantitatively and qual-

itatively, to prove the effectiveness and the validity of our

design choices.

2. Related Work

2.1. Depth Completion

Ma and Karaman [18] proposed depth completion us-

ing convolutional neural network (CNN). They utilized the

overall network structure from Laina et al. [15] to solve

the depth completion problem using an RGB image and

a single-channeled sparse depth input. Their algorithm

showed that using only a fraction of additional input depth

information boosts a big margin of performance.

Cheng et al. [3] and Park et al. [21] addressed the blur-

riness of the result in depth regression using deep learning,

and tried to solve this problem by utilizing post-processing

refinement module called convolutional spatial propaga-

tion network (CSPN). CSPN learns affinity weights of each

pixel to its neighbor pixels, where those weights are used to

refine initial depth result iteratively. Park et al. [21] com-

pensated CSPN by proposing a non-local spatial propaga-

tion network (NLSPN), to learn non-local affinity weights

that are not restricted to a square-shaped propagation ker-

nel. There are more approaches using different versions of

CSPN [4, 2], but these works all suffer from slow inference

time.

Imran et al. [14] approached in a slightly different way,

by transforming the depth information into a series of depth

coefficient for multiple discrete depth basis. They tried to

address the problem that deep learning based depth regres-

sion using upsampling might lose the information of the

object boundaries. By doing so, they were able to pro-

pose relatively light-weighted depth completion network,

but lacked on the performance.

Chen et al. [1] introduced a way to maximize the 3D

information from the sparse depth input. They applied 2D

convolution on image pixels and continuous 3D convolution

on point cloud, so that each branch extracts useful features

from each side. They fused the features from both sides in a

multi-scaled manner, to get more accurate depth completion

result, with well-preserved object boundary information.

2.2. Depth Prediction using Multiple Planes

Imran et al. [14] used discretized multiple planes and

corresponding coefficients. They represented the depth

value of each pixel by a weighted summation of pre-defined

discretized depth planes, and learned those coefficients by

multi-label classification.

Fu et al. [6] proposed the ordinal regression to estimate

the depth from a monocular image. They compared multi-

label classification and ordinal regression with predefined

multiple depth planes. The proposed deep ordinal regres-

sion network (DORN) divided the depth estimation problem

into sub-problems of plane-wise binary classification, each

determining whether the true depth value is larger than the

discrete depth of each plane. However, they used the dis-

crete depth value itself in the final depth generation, there-

fore, the accuracy is limited.

Meanwhile, plane-sweeping algorithms are famous

stereo matching methods using multiple planes. [5, 12, 13]

They utilize cost-volume by stacking the photometric loss

of the warped image from every discrete plane. Im et

al. [13] integrated the process into the deep learning frame-

work and proposed an end-to-end plane-sweeping algo-

rithm. However, they need a new image from a different

viewpoint with known extrinsic parameters to calculate cost

volume. Therefore, they are usually used in a stereo setup

or with consecutive image sequences.

Other methods to represent an image with multiple

planes are Multi-Plane Image (MPI). Tucker et al. [24] and

Zhou et al. [29] represented a single RGB image as multi-

ple RGBA images. In this kind of representation method,

the final image is obtained by the cumulative multiplication

of the layers with additional transparency value. However,

these methods are not suitable to be directly used in depth

prediction, since they were designed for differentiable ren-

dering and view synthesis.

3. Methodology

In this section, we elaborate our new way of represent-

ing depth information, which we named Plane-Residual

(PR) Representation, with detailed network structure and

design choices for our end-to-end depth completion algo-

rithm. Overall pipeline of our approach is shown in Fig. 2.

3.1. Plane­Residual Representation

As mentioned in Sec. 1 and Sec. 2, directly estimating

depth information with deep learning using regression is
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Figure 1. PR representation. (a) 3D illustration of our PR representation. (b) 2D illustration and examples of how absolute depth values

are interpreted in PR representation. Equations inside the blue-lined and red-lined boxes notate the PR representations from the actual

depth values of the blue dot and the red dot, respectively.

challenging. Therefore, we try to solve depth estimation

by factorizing a challenging regression problem into a com-

bination of relatively simple classification and regression.

To enable this idea, first we introduce a Plane-Residual

(PR) representation, a novel way of interpreting depth infor-

mation. Our PR representation assumes a set of D fronto-

parallel planes to the camera, where each plane represents

a discrete depth value dp∈{1,2,··· ,D}. Depth plane 1 is the

closest plane from the camera, and depth plane D is the far-

thest. The values of d1, d2, · · · , dD and dstep, which is the

distance between two adjacent depth planes, can be deter-

mined arbitrarily.

Within a depth image, the depth value of each pixel is

then expressed as (p, r), where p refers to the closest depth

plane that the pixel lies. r is the normalized distance, i.e.,

residual from the plane depth to its actual value according to

dstep. Therefore, every r values are in range of [−0.5, 0.5),
except [0, 0.5) for depth plane 1 and [−0.5, 0] for depth

plane D. Given the values of the plane depths dps, the ab-

solute depth value of a pixel represented as (p, r) is,

D(p, r) = dp + r × dstep(p, r),

dstep(p, r) =

{

dp+1 − dp if r ≥ 0

dp − dp−1 if r < 0

(1)

More intuitive illustration of our PR representation is shown

in Fig. 1.

By using PR representation, we can seamlessly refor-

mulate the depth completion task into a combination of

depth plane classification and relative residual regression.

Depth plane classification simplifies the densification of the

given sparse depth information. Relative residual regression

makes the final depth result to be more accurate and reduces

discontinuity issue from the discretized depth planes.

3.2. Network Design

Our depth completion network using PR representation

consists of a single ResNet-based [10] encoder and two de-

coders, decoder P and decoder R. The overall pipeline of

our approach is shown in Fig. 2.

The encoder takes an RGB image and sparse depth infor-

mation as an input. Input sparse depth is pre-processed into

a PR representation. The P part of the PR representation is

expressed in a D-channeled valid mask, and the R part is

expressed in a single-channeled residual map. Each type of

input element is processed with a single convolution layer

and then concatenated all together before the ResNet-based

encoder [17, 2].

Two decoders are similar structure-wise while having

distinguished roles. Each decoder block in both decoders

consists of a deconvolution [20] layer. Skip connection [23]

from the encoder is given to every matching output of the

decoding blocks in decoder P , which is known to be effec-

tive for retaining object boundary information. Moreover,

in our proposed PR representation, residual value r is de-

termined in regard of the depth plane p. Therefore, some

kind of guidance from plane classification process should

be given when regressing residual map. To give this guid-

ance while maintaining the parameter-wise effectiveness of

the whole depth completion network, we chose to give addi-

tional skip connection from the decoded features of decoder

P into the decoded features of decoder R. More detailed

and intuitive architecture of our depth completion network

using PR representation is shown in Fig. 3. We chose fea-

ture summation rather than feature concatenation for our

skip connection, since encoded features are in the similar

domain as decoded features [22].

Decoder P outputs a D-channeled probability volume,
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Figure 2. Overall pipeline of our depth completion algorithm. With a single RGB image and a sparse depth input, we solve depth

completion with a combination of depth plane classification and residual regression. Please refer to Sec. 3 for detailed information.
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Figure 3. Illustration of the detailed network architecture and

our late feature fusion technique. Decoded feature maps from

decoder P are fused to the decoded feature maps in decoder R, to

guide residual regression with plane classification information.

using a softmax function. The output of the decoder R

is a single-channeled normalized residual map, rpred. Us-

ing Eq. (1), the final prediction of the network Dpred is ac-

quired by,

Dpred(x, y) =

D
∑

p=1

dp × σ(lp(x, y))

+ rpred(x, y)× dstep(p̂, rpred(x, y)).

(2)

Here, σ(·) is a softmax function, and lp(x, y) is the raw

classification logit at the coordinate (x, y) for depth plane

p. p̂ is the classified depth plane at the pixel (x, y) with the

highest probability of σ(lp(x, y)). Unlike Eq. (1), we used

weighted summation for the final depth estimation with the

probability volume σ(lp), to smoothen the depth result in

the boundary area of two discrete depth planes.

3.3. Probability Volume Filtering

In order to achieve more accurate depth plane classifi-

cation results, we apply channel-wise guided image filter-

ing. Guided image filtering [8, 9] uses content informa-

tion from the guidance image to perform edge-preserving

smoothing. Applying this technique to each channel of the

cost volume for correspondence matching was introduced

and was shown to be effective in [11]. Since our probability

volume for depth plane classification has similar structure

to the cost volume in plane-sweeping and stereo matching,

we believe that this kind of technique can be easily applied

to our approach as well.

To adopt this idea, we first apply two consecutive convo-

lution layers to the input RGB image to create D-channeled

guidance images Iguide, as in [27]. Then we perform

channel-wise guided image filtering to the initial depth

plane classification logit l, by

lirefined,p = Ak
pI

i
guide,p + bkp, ∀i ∈ wk, (3)

where i is a pixel location, wk is a window centered at the

pixel k, and lrefined,p is a refined classification logit at depth

plane p. Ak
p and bkp are determined using mean, variance and

covariance values of Iguide,p and lp in a window wk, where

we use an average pooling layer to utilize this equation in

the training process. Our final depth result will be modified

from Eq. (2) by substituting l to lrefined, as in,

Dpred(x, y) =
D
∑

p=1

dp × σ(lrefined,p(x, y))

+ rpred(x, y)× dstep(p̂, rpred(x, y)).

(4)
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3.4. Confidence­Based Regression

As described in Sec. 3.2, the residual value r depends

on the classified depth plane p of a pixel. Therefore, reli-

able depth plane classification performance is required for

robust residual learning. If the decoder R was trained with

supervision of the ground truth residual map while the de-

coder P gives false depth plane prediction, the final depth

map will result in poor depth map quality with discretizing

artifacts on the depth plane boundary region.

To address this problem, we measure depth plane clas-

sification confidence to use it as a training loss weight for

decoder R. The core idea is to give the network optimizer

some guidance on where to put heavier weight between

ground truth depth map Dgt, or ground truth residual map

rgt. For confidence measure, we use the channel-wise max-

imum value of the probability volume σ(l) on each pixel, as

in,

c(x, y) = max(σ(l1(x, y)), · · · , σ(lD(x, y))), (5)

where c(x, y) is the confidence value at the pixel coordinate

(x, y).
For a pixel with high depth plane classification confi-

dence, more supervision of the ground truth residual value

is given, and for a pixel with low depth plane classification

confidence, the decoder R will be trained with more guid-

ance from Dgt.

In the earlier stage of the training, the network can focus

more on the depth plane classification. In the latter stage

of the training, when the depth plane classification becomes

more reliable, the network can learn residual map more ef-

ficiently. Also, for the boundary area of two adjacent depth

planes, the decoder R will be trained adaptively between the

ground truth residual map and the ground truth depth map.

3.5. Loss Function

For accurate depth prediction and effective training, we

trained our depth completion network with three loss terms,

which are final depth loss, depth plane classification loss,

and residual loss.

Final depth loss. The first loss term is a simple L1 loss

between the final depth prediction Dpred from Eq. (4) and

the ground truth depth Dgt, as in,

LD = |Dgt −Dpred|. (6)

Depth plane classification loss. To maximize the benefits

of our PR representation, we apply cross-entropy loss for

the depth plane classification from decoder P . Therefore,

the cross-entropy loss H(Pgt, l) for our depth plane classi-

fication logit l can be described as,

H(Pgt, l) = −
D
∑

p=1

Pgt(p) log(σ(lp)). (7)

Pgt(p) is a ground truth depth plane classification binary

indicator, showing if the pixel is in the depth plane p.

As described in Sec. 3.3, we also have a refined logit

output lrefined. We calculate the same loss for both initial

and refined classification prediction. Our final depth plane

classification loss LP will be defined as following:

LP = λH(Pgt, l) +H(Pgt, lrefined), (8)

with λ being a loss weight parameter which was set to 0.7,

empirically.

Residual loss. The last loss term is also a simple L1
loss, calculated between the residual prediction rpred and

the ground truth residual map rgt. With the confidence ex-

plained in Sec. 3.4, our residual loss can be interpreted as,

LR = c⊙ |rgt − rpred|, (9)

where ⊙ indicates the Hadamard product.

Our final loss function L for end-to-end training of our

depth completion network is,

L = LD + LP +
1

D
LR. (10)

Since the residual part of our PR representation is normal-

ized to a value of dstep, we penalize the residual loss with

the parameter of 1

D
.

4. Experiment

4.1. Dataset & Training

NYU Depth V2 dataset. The NYU Depth V2 dataset [19]

contains RGB and depth sequences in 464 indoor scenes.

The dataset was captured by a Kinect sensor, which pro-

vides short-ranged semi-dense depth measurements. For

both training and testing, we simulate uniform depth point

sampling to randomly select 500 depth samples for each

image & depth pair. To neglect the image boundary area

with missing depth measurements, we downsized each im-

age into a size of 320×240, and then center-cropped it to be

a size of 304×228. We utilized ∼48K image pairs from the

official training set and used handpicked 654 pairs among

1449 pairs of fully-labeled dataset for evaluating, following

previous works.

KITTI Depth Completion dataset. The KITTI dataset [7]

is a driving scene dataset that was captured by stereo RGB

cameras, stereo monochrome cameras, and a LiDAR sensor.

The KITTI Depth Completion dataset [25] provides RGB

image and 2D-projected LiDAR sensor measurement as a

pair. It utilizes 11 consecutive frames to generate denser

depth map as a ground truth. For training, we ignored the

regions with no LiDAR measurements, by bottom-cropping

the images with the size of 1216 × 256. We used ∼93K

image pairs for training, and official selected validation set

of 1000 pairs for comparisons with other approaches.
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Figure 4. Qualitative depth completion results on the NYU Depth V2 dataset. Depth plane classification results were shown in reversed

color scheme for better visibility.

Method # params (M) RMSE REL δ1 δ2 δ3
Sparse-to-Dense [18] 28.39 0.230 0.044 97.1 99.4 99.8

DC-3coeff [14] 27.02 0.131 0.013 97.9 99.3 99.8

DC-all [14] 27.02 0.118 0.013 97.8 99.4 99.9

DeepLiDAR [22] 53.44 0.115 0.022 99.3 99.9 100.0

Ours 14.34 0.104 0.014 99.4 99.9 100.0

CSPN [3] 256.08 0.117 0.016 99.2 99.9 100.0

Depth-Normal [28] 28.99 0.112 0.018 99.5 99.9 100.0

NLSPN [21] 25.84 0.092 0.012 99.6 99.9 100.0

Table 1. Depth completion evaluation results on the NYU

Depth V2 dataset. Algorithms on the lower block utilizes any

kind of iterative post-refinement process. The metrics RMSE and

REL are presented in meters (m). Numbers of parameters were

driven from officially released codes.

For both datasets, we adopted ResNet-18 [10] model for

our encoder, and used ADAM optimizer with learning rate

of 1e−3, weight decay rate of 1e−6, and β of (0.9, 0.999).
The learning rate was reduced to its 20% every 5 epochs,

where the training was done for 20 epochs in total. We set

the batch size to 32 for the NYU Depth V2 dataset, and 8

for the KITTI Depth Completion dataset, using 4 NVIDIA

RTX 2080 Ti GPUs, which take half a day and 3 days in

training, respectively.

We set d1 and dD as the minimum and the maximum

depth values of the given sparse input samples. We place the

intermediate planes equally spaced depth-wise, thereby the

value of dstep is identical in every plane. We chose the num-

ber of depth planes D as 8 for the NYU Depth V2 dataset,

and 64 for the KITTI Depth Completion dataset, regarding

the maximum range difference between two datasets. Com-

parison between other ways of choosing dps and dstep will

be shown in Sec. 4.3.

4.2. Comparisons with state­of­the­art

We use commonly used metrics for evaluation as follow-

ing: root mean squared error (RMSE), mean absolute er-

ror (MAE), relative mean absolute error (REL), root mean

squared error of the inverse depth (iRMSE), mean absolute

error of the inverse depth (iMAE), and a percentage of pre-

dicted pixels with the relative error being smaller than 1.25i,
δi.

In Tab. 1, we present our quantitative evaluation result

on the NYU Depth V2 dataset with others. We categorized

various depth completion algorithms into two categories,

where the first one refers to the methods with no iterative

post-processing refinement, and the other one means the

opposite. In Tab. 1, the upper block shows the previous

approaches and ours, which are in the first category, and

the lower block contains algorithms like CPSN [3] and NL-

SPN [21].

Among the methods with no additional iterative post-

processing refinement, our result performs the best in most

of the metrics. More specifically, our depth completion net-

work using PR representation outperforms Depth Coeffi-

cient (DC) algorithm by Imran et al. [14] in terms of RMSE

and δis. As was introduced in Sec. 2, Depth Coefficient took

similar strategy as ours, by defining multiple depth planes

with discrete depth values. They tried to predict depth co-

efficients using multi-class classification, which were then

used for weighted summation in the final depth reconstruc-

tion. Depth Coefficient used 80 channels of depth bases,

and DC-all applied weighted summation using all of these

80 depth values, while DC-3coeff used only three adja-

cent depth values with the highest probability. However,

DC only performs classification, which is why we believe

that they show reliable REL score, but it also requires suffi-

cient number of depth channels to maintain certain level of

performance. On the other hand, our algorithm uses only

8 depth planes, yet combines the strength of classification

and regression, thereby shows much better performance on

other metrics.

We also report the number of network parameters of each
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Figure 5. Qualitative depth completion results on the KITTI Depth Completion dataset. Depth plane classification results were shown

in reversed color scheme for better visibility.

Method Runtime (s) RMSE MAE iRMSE iMAE

Self-Supervised S2D [17] 0.08 814.73 249.95 2.80 1.21

DeepLiDAR [22] 0.07 687.00 215.38 2.51 1.10

Depth-Normal [28] 0.10 811.07 236.67 2.45 1.11

DC-3coeff [14] 0.15 1212.00 241.00 - -

DC-all [14] 0.10 1061.00 252.00 - -

FuseNet [1] 0.09 785.00 217.00 2.36 1.08

CSPN++ [2] 0.20 725.43 207.88 - -

Ours 0.01 867.12 204.68 2.17 0.85

Table 2. Depth completion evaluation results on the KITTI

Depth Completion validation dataset. The metrics are presented

in millimeters (mm). Running times were taken from the official

KITTI benchmark website. Note that a few of the reported meth-

ods have different experimental environments.

algorithm, to analyze the efficiency of the approach. Com-

pared to CSPN [3], which uses ResNet-50 as encoder, and

utilizes heavy and time-consuming iterative post-refinement

module, our depth completion network using PR represen-

tation performs much better in every metrics, while hav-

ing only 5∼6% of network parameters. Also, our approach

shows comparable result in comparison to NLSPN [21],

which is the state-of-the-art method, with ∼55% of network

parameters. Overall, our result shows the second-best per-

formance in most of the metrics with the smallest number of

network parameters, that is 5∼55% of others. This shows

that our way of reformulating depth completion problem

into a combination of depth plane classification and residual

map regression is efficient and effective approach.

Qualitative results on the NYU Depth V2 dataset are also

shown in Fig. 4. Compared to NLSPN [21], although we

did not use any iterative post-refinement processing, our re-

sults show even better details in depth map estimations, as

the wheels of the chair in the first example, or the details

of the bookshelves in the second example. This is due to

our depth plane classification, which avoids depth mixing

on object boundaries, and our context-guided probability

volume filtering. Also, since our decoder R can learn nor-

malized residual map plane-wise, it is easier to obtain more

details by magnifying information between depth planes.

Evaluation results on the official KITTI Depth Comple-

Category Method RMSE REL δ1 δ2 δ3

Depth Plane Setup

UA 0.113 0.016 99.3 99.9 100.0

DR 0.114 0.016 99.3 99.9 100.0

DA 0.117 0.017 99.1 99.8 99.9

Number of Planes

4 0.111 0.016 99.4 99.9 100.0

16 0.105 0.015 99.4 99.9 100.0

32 0.106 0.015 99.4 99.9 100.0

l(p) Filtering No 0.105 0.015 99.4 99.9 100.0

Confidence-guided No 0.122 0.018 99.2 99.8 99.9

Ours 0.104 0.014 99.4 99.9 100.0

Table 3. Ablation study on our design choices. Other options

beside selected category were set to default settings of ‘Ours’. De-

fault settings are; UR depth plane setup, 8 planes, with l(p) filter-

ing, and with confidence-guided learning. The results were taken

from the NYU Depth V2 dataset.

tion validation dataset is shown in Tab. 2. For the KITTI

Depth Completion dataset, we also report running time of

each algorithm, where the numbers were retrieved from of-

ficial KITTI benchmark website. Our algorithm has the

shortest inference time, where it is 7 to 20 times faster, com-

paring to other algorithms. Also, our results excel others in

MAE, iRMSE, and iMAE metrics. This again shows that

our approach is efficient, in both network mobility and com-

putational speed. Fig. 5 shows qualitative results on depth

completion and plane classification of our algorithm.

4.3. Ablation Study

Setting the depth planes. As mentioned in Sec. 3.1, the

values of plane depths and the number of planes can be set

arbitrarily. Our proposed way of determining the parame-

ters is to set d1 and dD according to the sparse input values,

and to place intermediate planes equally spaced in between.

We name this setup UR, as in Uniformly and Relatively set

depth planes.

In Tab. 3, we present three other setups, which are,

UA (Uniformly & Absolutely), DR (Disparity-wise &

Relatively), and DA (Disparity-wise & Absolutely). For ex-

ample, d1 and dD were set to 0m and 10m in UA setup,

regarding the overall depth range of the NYU Depth V2
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UR32

Figure 6. Ablation study on our design choices. (a) Depth plane classification results on different depth planes setups. (b) Improvement

on using channel-wise guided image filtering. (c) Failure case of not using confidence-guided residual learning.

dataset. Some of the previous multiplane-related depth pre-

diction approaches like DPSNet [13] or DORN [6] claimed

that placing depth planes disparity-wise or in increasing log

scale would boost the performance compared to uniformly-

placed depth plane setup. However, in the case of using

PR representation for depth completion, the results show

that UR and UA perform better than DR and DA. Unlike

DPSNet [13] and DORN [6], which only focus on finding

the best depth plane to place a pixel, our depth completion

method using PR representation estimates residual map on

top of the depth plane classification result. Since we de-

signed our predicted residual map to have a single chan-

nel, we believe that disparity-wise depth plane settings like

DR and DA suffer from varying dstep values, which hard-

ens the residual regression. Also, UA performs better than

disparity-wise plane settings but worse than UR, since the

distance that each plane should represent is broader. On

the other hand, DR preserves better object boundary infor-

mation in close region, as shown in Fig. 6-(a), because it

placed more planes on the front. We believe that the best

way to setup depth planes in our PR representation would

vary, depending on the task.

We also examine the influence of the number of planes.

The number of planes affects the ratio of classification and

regression in our depth completion network. As shown

in Tab. 3, our result with plane number of 8 performs the

best, and the experiments with 16 and 32 number of depth

planes show better results than the one with 4 depth planes.

Our intuition is that if the plane number is large, it lessens

the burden for the decoder R. However, setting more depth

planes results in the increased difficulty of depth plane clas-

sification. Moreover, it would make initial input on each

plane to be very sparse, which will also make the plane clas-

sification part more challenging.

Probability volume filtering. We show the effect of our

probability volume filtering using channel-wise guided im-

age filter. Although our channel-wise guided filter do in-

crease the quantitative evaluation result of the final pre-

dicted depth, it does not boost the performance dramati-

cally, as can be seen in Tab. 3. However in Fig. 6-(b), we

can see that the depth plane classification result with our

channel-wise guided image filter contains more detailed in-

formation on the object boundaries area, compared to the

result with no filter applied.

Confidence-guided residual regression. We examine on

how confidence-guided adaptive residual learning improves

the result. As was explained in Sec. 3.4, in order to make

the reconstructed depth result more seamless on the depth

plane boundary region, residual learning using depth plane

classification-based confidence information is needed. As

presented in Tab. 3, using confidence-guided learning im-

proves very much of a performance. Also, in Fig. 6-(c), the

result without confidence-guided learning finds it difficult

to predict the right residual values at the boundary regions

between two discrete planes, and therefore makes a discon-

tinuity in the final predicted depth map.

5. Conclusion

In this paper, we addressed the main difficulties in pre-

vious depth completion algorithms, which are depth mixing

on object boundaries, heavy network computation, and slow

inference. We proposed a novel way to solve depth comple-

tion, by reformulating depth regression problem into a com-

bination of depth plane classification and residual regres-

sion. We introduced Plane-Residual (PR) representation as

well, where we represent a depth pixel as two separate val-

ues as in (p, r), where p is the closest discrete depth plane,

and r is the distance from the plane. We showed compet-

itive results with lighter and faster computation using our

approach, thereby verified our idea and design choices. We

also believe that PR representation can be utilized in vari-

ous depth-related problems like monocular depth estimation

and multi-view stereo matching.
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