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Abstract

We propose a novel end-to-end learning-based approach

for single image defocus deblurring. The proposed ap-

proach is equipped with a novel Iterative Filter Adap-

tive Network (IFAN) that is specifically designed to han-

dle spatially-varying and large defocus blur. For adaptively

handling spatially-varying blur, IFAN predicts pixel-wise

deblurring filters, which are applied to defocused features

of an input image to generate deblurred features. For effec-

tively managing large blur, IFAN models deblurring filters

as stacks of small-sized separable filters. Predicted separa-

ble deblurring filters are applied to defocused features us-

ing a novel Iterative Adaptive Convolution (IAC) layer. We

also propose a training scheme based on defocus disparity

estimation and reblurring, which significantly boosts the de-

blurring quality. We demonstrate that our method achieves

state-of-the-art performance both quantitatively and quali-

tatively on real-world images.

1. Introduction

Defocus deblurring aims to restore an all-in-focus image

from a defocused image, and is highly demanded by daily

photographers to remove unwanted blur. Moreover, restored

all-in-focus images can greatly facilitate high-level vision

tasks such as semantic segmentation [21, 30] and object

detection [6, 3]. Despite the usefulness, defocus deblurring

remains a challenging problem as defocus blur is spatially

varying in size, and its shape also varies across the image.

A conventional strategy [28, 7, 22, 5, 12, 14] is to

model defocus blur as a combination of different convo-

lution results obtained by applying predefined kernels to a

sharp image. It estimates per-pixel blur kernels based on

the blur model and then performs non-blind deconvolution

[8, 15, 13]. However, this approach often fails due to the re-

strictive blur model, which disregards the nonlinearity of

a real-world blur and constrains defocus blur in specific

shapes such as disc [7] or Gaussian kernels [28, 22, 12, 14].

Recently, Abuolaim and Brown [1] proposed the first

end-to-end learning-based method, DPDNet, which does

not rely on a specific blur model, but directly restores a

sharp image. Thanks to the end-to-end learning, DPDNet

outperforms previous approaches for real-world defocused

images. They show that dual-pixel data obtainable from

some modern cameras can significantly boost the deblurring

performance, and present a dual-pixel defocus deblurring

(DPDD) dataset. However, ringing artifacts and remaining

blur can often be found in their results, mainly due to its

naı̈ve UNet [26] architecture, which is not flexible enough

to deal with spatially-varying and large blur [37].

In this paper, we propose an end-to-end network embed-

ded with our novel Iterative Filter Adaptive Network (IFAN)

for single image defocus deblurring. IFAN is specifically

designed for the effective handling of spatially-varying and

large defocus blur. To handle the spatially-varying nature

of defocus blur, IFAN adopts an adaptive filter prediction

scheme motivated by recent filter adaptive networks (FANs)

[35, 37]. Specifically, IFAN does not directly predict pixel

values, but generates spatially-adaptive per-pixel deblurring

filters, which are then applied to features from an input de-

focus blurred image to generate deblurred features.

To efficiently handle large defocus blur that requires

large receptive fields, IFAN predicts stacks of small-sized

separable filters instead of conventional filters unlike pre-

vious FANs. To apply predicted separable filters to fea-

tures, we also propose a novel Iterative Adaptive Convo-

lution (IAC) layer that iteratively applies separable filters to

features. As a result, IFAN significantly improves the de-

blurring quality at a low computational cost in the presence

of spatially-varying and large defocus blur.

To further improve the single image deblurring quality,

we train our network with novel defocus-specific tasks: de-

focus disparity estimation and reblurring. The learning of

defocus disparity estimation exploits dual-pixel data, which

provides stereo images with a tiny baseline, whose dispari-

ties are proportional to defocus blur magnitudes [9, 24, 1].

Leveraging dual-pixel stereo images, we train IFAN to pre-
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dict the disparity map from a single image so that it can also

learn to predict blur magnitudes more accurately.

On the other hand, the learning of reblurring task, which

is motivated by the reblur-to-deblur scheme in [4], uti-

lizes deblurring filters predicted by IFAN for reblurring all-

in-focus images. For accurate reblurring, IFAN needs to

predict deblurring filters that contain accurate information

about the shapes and sizes of defocus blur. During training,

we introduce an additional network that inverts predicted

deblurring filters to reblurring filters and reblurs the ground-

truth all-in-focus image. We then train IFAN to minimize

the difference between the defocused input image and the

corresponding reblurred image. We experimentally show

that both tasks significantly boost the deblurring quality.

To verify the effectiveness of our method on diverse real-

world images from different cameras, we extensively eval-

uate the method on several real-world datasets such as the

DPDD dataset [1], Pixel dual-pixel test set [1], and CUHK

blur detection dataset [27]. In addition, for quantitative eval-

uation, we present the Real Depth of Field (RealDOF) test

set that provides real-world defocused images and their

ground-truth all-in-focus images.

To summarize, our contributions include:

• Iterative Filter Adaptive Network (IFAN) that effec-

tively handles spatially-varying and large defocus blur,

• a novel training scheme that utilizes the learning of de-

focus disparity estimation and reblurring, and

• state-of-the-art performance of defocus deblurring in

terms of deblurring accuracy and computational cost.

2. Related Work

Defocus deblurring Most defocus deblurring ap-

proaches, including classical and recent deep-learning-

based ones, assume a specific blur model and try to

estimate a defocus map based on the model. They estimate

the defocus map of an image leveraging various cues, such

as hand-crafted features [28, 13, 5, 12], learned regression

features [7], and deep features [22, 14]. They then utilize

non-blind deconvolution methods such as [8, 15, 13] to re-

store a sharp image. However, their performance is limited

due to their restrictive blur models. Recently, Abuolaim and

Brown [1] proposed an end-to-end learning-based approach

that outperforms previous blur model-based ones. However,

their results often have ringing artifacts and remaining blur

as mentioned in Sec. 1.

Filter adaptive networks FANs have been proposed to

facilitate the spatially-adaptive handling of features in vari-

ous tasks [2, 19, 20, 18, 11, 31, 37, 35, 29, 33]. FANs com-

monly consist of two components: prediction of spatially-

adaptive filters and transformation of features using the pre-

dicted filters, where the latter component is called filter
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Figure 1. Filter Adaptive Convolution (FAC) [37]

adaptive convolution (FAC). Various FANs have been pro-

posed and applied to different tasks, such as frame interpo-

lation [2, 19, 20], denoising [18], super-resolution [11, 31],

semantic segmentation [29], and point cloud segmentation

[33]. For the deblurring task, Zhang et al. [35] proposed

pixel-recurrent adaptive convolution for motion deblurring.

However, their method requires massive computational cost

as the recurrent neural network must run for each pixel.

Zhou et al. [37] proposed a novel filter adaptive convolu-

tion layer for frame alignment and video deblurring. How-

ever, handling large motion blur requires predicting large

filters, which results in huge computational cost.

3. Single Image Defocus Deblurring

In this section, we first introduce the Iterative Adaptive

Convolution (IAC) layer, which forms the basis of our IFAN

(Sec. 3.1). Then, we present our deblurring network based

on IFAN with detailed explanations on each component

(Sec. 3.2). Finally, we explain our training strategy exploit-

ing the disparity estimation and reblurring tasks (Sec. 3.3).

3.1. Iterative Adaptive Convolution (IAC)

Our IAC is inspired by the filter adaptive convolution

(FAC) [37] that forms the basis of previous FANs. For a

better understanding of IAC, we first briefly review FAC.

Fig. 1 shows an overview of a FAC layer. A FAC layer

takes a feature map e and a map of spatially-varying convo-

lution filters F as input. e and F have the same spatial size

h×w. The input feature map e has c channels. At each spatial

location in F is a ck2-dim vector representing c convolution

filters of size k×k. For each spatial location (x, y), the FAC

layer generates c convolution filters from F by reshaping the

vector at (x, y). Then, the layer applies the filters to the fea-

tures in e centered at (x, y) in the channel-wise manner to

generate an output feature map ê ∈ R
h×w×c.

For effectively handling spatially-varying and large de-

focus blur, it is critical to secure large receptive fields. How-

ever, while FAC facilitates spatially-adaptive processing of

features, increasing the filter size to cover wider receptive

fields results in huge memory consumption and computa-
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tional cost. To resolve this limitation, we propose the IAC

layer that iteratively applies small-sized separable filters to

efficiently enlarge the receptive fields with little computa-

tional overhead.

Fig. 2 shows an overview of our IAC layer. Similarly to

FAC, IAC takes a feature map e and a map of spatially-

varying filters F as input, whose spatial sizes are the same.

At each spatial location in F is a Nc(2k + 1)-dim vector

representing N sets of filters {F1,F2, · · · ,FN}. The n-th

filter set Fn has two 1-dim filters fn1 and fn2 of the sizes

k×1 and 1×k, respectively, and one bias vector bn. fn1 ,

fn2 , and bn have c channels. The IAC layer decomposes the

vector in F at each location into filters and bias vectors, and

iteratively applies them to e in the channel-wise manner to

produce an output feature map ê.

Let ên denote the n-th intermediate feature map after

applying the n-th separable filters and bias, where ê0 = e

and êN= ê. Then, the IAC layer computes ên for n ∈
{1, · · · , N} as follows:

ên = LReLU(ê(n−1) ∗ fn1 ∗ fn2 + bn), (1)

where LReLU is the leaky rectified linear unit [17] and ∗ is

the channel-wise convolution operator that performs convo-

lutions in a spatially-adaptive manner.

Separable filters in our IAC layer play a key role in

resolving the limitation of the FAC layer. Xu et al. [34]

showed that a convolutional network with 1-dim filters can

successfully approximate a large inverse filter for the decon-

volution task. Similarly, our IAC layer secures larger recep-

tive fields at much lower memory and computational costs

than the FAC layer by utilizing 1-dim filters, instead of 2-

dim convolutions. However, compared to dense 2-dim con-

volution filters in the FAC layer, our separable filters may

not provide enough accuracy for deblurring filters. We han-

dle this problem by iteratively applying separable filters to

fully exploit the nonlinear nature of a deep network. Our it-

erative scheme also enables small-sized separable filters to

be used for establishing large receptive fields.

3.2. Deblurring Network with IFAN

Fig. 3 shows an overview of our deblurring network

based on IFAN. Our network takes a single defocused im-

age IB∈R
H×W×3 as input and produces a deblurred output

IBS ∈R
H×W×3, where H and W are the height and width

of an image, respectively. The network is built upon a sim-

ple encoder-decoder architecture consisting of a feature ex-

tractor, reconstructor, and IFAN module in the middle. The

feature extractor extracts defocused features eB∈R
h×w×ce ,

where h = H
8 and w = W

8 , and feeds them to IFAN. IFAN

removes defocus blur in the feature domain by predicting

spatially-varying deblurring filters and applying them to eB
using IAC. The deblurred features eBS from IFAN is then

passed to the reconstructor, which restores an all-in-focus
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Figure 2. Proposed Iterative Adaptive Convolution (IAC)

image IBS . The detailed architecture of each network com-

ponent can be found in our supplementary material. In the

following, we describe IFAN in more detail.

Iterative Filter Adaptive Network (IFAN) IFAN takes

defocused features eB as input, and produces deblurred fea-

tures eBS . To produce deblurred features, IFAN takes IB
as additional input, and predicts deblurring filters from IB .

IFAN consists of a filter encoder, disparity map estimator,

filter predictor, and IAC layer. The filter encoder encodes

IB into eF ∈ R
h×w×ce , which is then passed to the dis-

parity map estimator. The disparity map estimator is a sub-

network specifically designed to exploit dual-pixel data for

effectively training IFAN, which will be discussed in Sec.

3.3. After the disparity map estimator, the filter predictor

predicts a deblurring filter map Fdeblur ∈ R
h×w×cFdeblur ,

where cFdeblur
=Nce(2k + 1). Finally, the IAC layer trans-

forms the input features eB using the predicted filters

Fdeblur to generate deblurred features eBS .

3.3. Network Training

We train our network using the DPDD dataset with two

defocus-specific tasks: defocus disparity estimation and re-

blurring. In this section, we explain the training data, our

training strategy using each task, and our final loss function.

Dataset We use dual-pixel images from the DPDD

dataset [1] to train our network. A dual-pixel image pro-

vides a pair of stereo images with a tiny baseline, whose

disparities are proportional to defocus blur magnitudes. The

DPDD dataset provides 500 dual-pixel images captured
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Figure 4. The reblurring network

with a Canon EOS 5D Mark IV. Each dual-pixel image is

provided in the form of a pair of left and right stereo im-

ages I lB and IrB , respectively. For each dual-pixel image, the

dataset also provides a defocused image IB , which is gener-

ated by merging I lB and IrB , and its corresponding ground-

truth all-in-focus image IS . The 500 dual-pixel images are

split into training, validation, and testing sets, each of which

contains 350, 74, and 76 scenes, respectively. Refer to [1]

for more details on the DPDD dataset.

Defocus disparity estimation As the disparities between

dual-pixel stereo images are proportional to blur magni-

tudes, we can train IFAN to learn more accurate defocus

blur information by training IFAN to predict the disparity

map. To this end, during training, we feed a right image IrB
from a pair of dual-pixel stereo images to our deblurring

network. Then, we train the disparity map estimator to pre-

dict a disparity map dr→l ∈ R
h×w between the downsam-

pled left and right stereo images. Specifically, we train the

disparity map estimator using a disparity loss defined as:

Ldisp = MSE(Ir→l
B↓ , I lB↓), (2)

where MSE(·) is the mean-squared error function. I lB↓ is a

left image downsampled by 1
8 . Ir→l

B↓ is a right image down-

sampled by 1
8 and warped by the disparity map dr→l. We

use the spatial transformer [10] for warping. By minimiz-

ing Ldisp, both filter encoder and disparity map estimator

are trained to predict an accurate disparity map and eventu-

ally accurate defocus magnitudes. Note that we utilize dual-

pixel images only for training, and our trained network re-

quires only a single defocused image as its input.

Reblurring We train IFAN also using the reblurring task.

For the learning of reblurring, we introduce an auxiliary re-

blurring network. The reblurring network is attached at the

end of IFAN and trained to invert deblurring filters Fdeblur

to reblurring filters Freblur (Fig. 4). Then, using Freblur,

the IAC layer reblurs a downsampled ground-truth image

IS↓ ∈R
h×w×3 to reproduce a downsampled version of the

defocused input image. For training IFAN as well as the re-

blurring network, we use a reblurring loss defined as:

Lreblur = MSE(ISB↓, IB↓), (3)

where ISB↓ is a reblurred image obtained from IS↓ using

Freblur, and IB↓ is a downsampled input image. Lreblur in-

duces IFAN to predict Fdeblur containing valid information

about blur shapes and sizes needed for accurate reblurring.

Such information eventually improves the performance of

deblurring filters used for the final defocus deblurring. Note

that we utilize the reblurring network only for training.

Loss functions In addition to the disparity and reblurring

losses, we use a deblurring loss, which is defined as:

Ldeblur = MSE(IBS , IS). (4)

Our total loss function to train our network is then de-

fined as Ltotal =Ldeblur + Ldisp + Lreblur. Each loss term

affects different parts of our network. While Ldeblur trains

the feature extractor, IFAN, and reconstructor, Ldisp trains

only the filter encoder and disparity map estimator in IFAN.

Lreblur trains both IFAN and reblurring network. Note that

we use dual-pixel stereo images (I lB , I
r
B) only for training.

Both Ldeblur and Lreblur utilize IB while Ldisp utilizes

(I lB , I
r
B). In this way, we can fully utilize the DPDD dataset

for training our network.
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IFAN
RBN

Evaluations on the DPDD Dataset [1] Computational Costs

FP + IAC DME PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓ Params (M) MACs (B)

24.88 0.753 0.416 0.289
10.58 364.3

X 24.97 0.761 0.412 0.280

X 25.07 0.765 0.406 0.271

10.48 362.9
X X 25.18 0.780 0.403 0.233

X X 25.28 0.780 0.400 0.245

X X X 25.37 0.789 0.394 0.217

Table 1. An ablation study. FP, DME, and RBN indicate the filter predictor, disparity map estimator, and reblurring network, respectively.

The first row corresponds to the baseline model. For fair evaluation, to obtain the baseline model, the components of our model are replaced

by conventional convolution layers and residual blocks with similar model parameter numbers and computational costs.

(a) Input (b) baseline (c) D (d) F (e) FD (f) FR (g) FDR (h) GT

Figure 5. Qualitative results of an ablation study on the DPDD dataset [1]. The first and last columns show a defocused input image and

its ground-truth all-in-focus image, respectively. Between the columns, the letters in each sub-caption indicate combination of components

(refer Table 1). F means the filter predictor and the IAC layer, D means the disparity map estimator, and R means the reblurring network.

The baseline implies a model without F , D and R. Images in the red and green box are zoomed-in cropped patches.

4. Experiments

We implemented our models using PyTorch [23]. We use

rectified-Adam [16] with β1 = 0.9, β2 = 0.99 and weight de-

cay rate 0.01 for training our network. We use gradient norm

clipping with the value empirically set to 0.5. The network

is trained for 600k iterations with an initial learning rate

of 1.0× 10-4, which is step-decayed to half at the 500k-

th and 550k-th iterations, which are experimentally chosen.

We set the number of filters N = 17 for Fdeblur and Freblur.

For each iteration, we randomly sample a batch of images

from the DPDD training set. We use a batch size of 8, and

randomly augment images with Gaussian noise, gray-scale

image conversion, and scaling, then crop them to 256×256.

For the evaluation of defocus deblurring performance,

we measure the Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity (SSIM) [32], Mean Absolute Error (MAE),

and Learned Perceptual Image Patch Similarity (LPIPS)

[36] between deblurred results and their corresponding

ground-truth images. We evaluate our models and previous

ones on a PC with an NVIDIA GeForce RTX 3090 GPU.

4.1. Ablation Study

To analyze the effect of each component of our model,

we conduct an ablation study (Table 1 and Fig. 5). All mod-

els in the ablation study are trained under the same con-

ditions (e.g., optimizer, batch size, learning rate, random

seeds, etc.). For the validation, we compare a stripped-down

baseline model and its five variants. For the baseline model,

we restructure the key modules specifically designed for our

network using conventional convolution layers and resid-

ual blocks. Specifically, we change the channel sizes of the

last layers of the disparity map estimator and filter predictor

blocks to ce so that they predict conventional feature maps.

We also replace the IAC layer with residual blocks that take

a concatenation of eB and Fdeblur as input, and detach the

reblurring network. The baseline model is trained with nei-

ther Ldisp nor Lreblur but only Ldeblur. For the other vari-

ants, we recover combinations of the restructured compo-

nents one by one from the baseline model. For the vari-

ants with the disparity map estimator, we train them also

with Ldisp. Similarly, for the variants with the reblurring

network, we train them also with Lreblur. The detailed ar-

chitectures of all the models used in the ablation study can

be found in the supplementary material.

Explicit deblurring filter prediction We first verify the

effect of the filter prediction scheme implemented using

the filter predictor and IAC layer. Table 1 shows that in-

troducing the filter predictor and IAC layer to the baseline

model increases the deblurring performance (the first and

third rows in the table), confirming the advantage of explicit

pixel-wise filter prediction in flexible handling of spatially-

varying and large defocus blur. In addition, compared to the

gain (PSNR: 0.36% and LPIPS: 3.21%) obtained when the

disparity map estimator is embedded in the baseline model

(the second row in the table), there is more performance

gain (PSNR: 0.44% and LPIPS: 16.31%) when the disparity

map estimator is added to a model with the filter predic-

tor and IAC layer (the fourth row in the table). This obser-

vation validates that explicit utilization of deblurring filters

has more potential in absorbing extra defocus blur-specific

supervision provided by dual-pixel images. Fig. 5 shows a
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Model
Evaluations the DPDD Dataset [1] Computational Costs

PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓ Params (M) MACs (B) Time (Sec)

Input 23.89 0.725 0.471 0.349 - - -

JNB [28] 23.69 0.707 0.480 0.442 - - 105.8

EBDB [12] 23.94 0.723 0.468 0.402 - - 96.58

DMENet [14] 23.90 0.720 0.470 0.410 26.94 1172.5 77.70

DPDNetS [1] 24.03 0.735 0.461 0.279 35.25 989.8 0.462

DPDNetD [1] 25.23 0.787 0.401 0.224 35.25 991.4 0.474

Ours 25.37 0.789 0.394 0.217 10.48 362.9 0.014

Table 2. Quantitative comparison with previous defocus deblurring methods. All the methods are evaluated using the code provided by

the authors. JNB and EBDB are not deep learning-based methods, so their parameter numbers and MACs are not available. DPDNetD [1]

takes not a single defocused image but dual-pixel stereo images as input at test time. All the other methods, including ours, take a single

defocused image as input at test time.

(a) Input (b) EBDB (c) DPDNetS (d) DPDNetD (e) Ours (f) GT

Figure 6. Qualitative comparison on the DPDD dataset [1]. The first and last columns show defocused input images and their ground-truth

all-in-focus images, respectively. Between the columns, we show deblurring results of different methods. Note that DPDNetD requires

a pair of dual-pixel stereo images as input, while other methods, including ours, require only a single image at test time. Refer to the

supplementary material for more results.

qualitative comparison. As shown in the figure, the filter

predictor and IAC layer substantially enhance the deblur-

ring quality ((b) and (c) vs. (d) and (e) in the figure).

Disparity map estimation and reblurring We ana-

lyze the influence of the disparity map estimator and re-

blurring network. Specifically, we compare the combina-

tions (filter predictor+ IAC+ disparity map estimator) and

(filter predictor+ IAC+ reblurring network). Table 1 show

that the model with the disparity map estimator performs

better than the model with the reblurring network in recov-

ering textures (lower LPIPS), as the disparity map estimator

helps more accurately estimate per-pixel blur amounts (Fig.

5e and f). On the other hand, the model with the reblur-

ring network better restores overall image contents (higher

PSNR), as the reblurring network guides deblurring filters

to contain information about blur shapes and blur amounts.

We can also observe that the model with both disparity map

estimator and reblurring network achieves the best perfor-

mance in every measure (Fig. 5g). This shows that the dis-

parity map estimator and reblurring network have synergis-

tic effects, complementing each other.

4.2. Comparison with Previous Methods

In this section, we compare our method with previous

defocus map-based approaches as well as recent end-to-end

learning-based approaches: Just Noticeable Blur estimation

(JNB) [28], Edge-Based Defocus Blur estimation (EBDB)

[12], Defocus Map Estimation Network (DMENet) [14],

DPDNetS and DPDNetD [1]. Among these, JNB, EBDB,

and DMENet are defocus map-based approaches that first

estimate a defocus map and perform non-blind deconvo-

lution. DPDNetS and DPDNetD are end-to-end learning-
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based approaches that directly restore all-in-focus images.

They share the same network architecture, but DPDNetS
takes a single defocused image as input while DPDNetD
takes a pair of dual-pixel stereo images.

For all the previous methods, we use the code (and

model weights for learning-based methods, DMENet and

DPDNet) provided by the authors. For JNB, EBDB, and

DMENet, we used the deconvolution method [13] to obtain

all-in-focus images using the estimated defocus maps. For

DPDNetS , we retrain the network on 8-bit images with the

training code provided by the author, as the authors provide

only a model trained with 16-bit images (refer to the supple-

mentary material for the evaluation of our model trained on

16-bit images). We measure computational costs in terms

of the number of network parameters, number of multiply-

accumulate operations (MACs) computed on a 1280×720
image, and average computation time computed on test im-

ages. For JNB and EBDB, which are not learning-based

methods, we measure only their computation times.

We compare the methods on the DPDD test set [1]. Ta-

ble 2 shows a quantitative comparison. The previous defo-

cus map-based methods show poor performance on the real-

world blurred images in the DPDD test set, which is even

lower than the input defocused images due to their restric-

tive blur models. On the other hand, the recent end-to-end

approaches, DPDNetD and DPDNetS , achieve higher qual-

ity compared to the previous methods. Our model outper-

forms DPDNetS by a significant gap with a smaller com-

putational cost. Moreover, although our model uses a single

defocused image, it outperforms DPDNetD as well, proving

the effectiveness of our approach.

Fig. 6 shows a qualitative comparison. Due to their inac-

curate defocus maps and restricted blur models, the results

of the defocus map-based methods have a large amount of

remaining blur (Fig. 6b). DPDNetS and DPDNetD produce

better results than the previous ones, however, tend to pro-

duce artifacts and remaining blur (Fig. 6c and 6d). On the

other hand, our method shows more accurate deblurring re-

sults (Fig. 6e), even with a single defocused input. Espe-

cially, compared to DPDNetD, Fig. 6 show that our method

better handles spatially-varying blur (the first row), large

blur (the second row), and image structures as well as tex-

tures (the third row). More qualitative results are in the sup-

plementary material.

4.2.1 Generalization Ability

As our method is trained using the DPDD training set,

which is captured by a specific camera (Canon EOS 5D

Mark IV), one question naturally follows how well the

model generalizes to other images from different cameras.

To answer this question, we evaluate the performance of our

approach on other test sets.

Model PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

Input 22.33 0.633 0.513 0.524

JNB [28] 22.36 0.635 0.511 0.601

EBDB [12] 22.38 0.638 0.509 0.594

DMENet [14] 22.41 0.639 0.508 0.597

DPDNetS [1] 22.67 0.666 0.506 0.420

Ours 24.71 0.748 0.407 0.306

Table 3. Quantitative evaluation on the RealDOF test set.

(a) Input (b) DPDNetS (c) Ours (d) GT

Figure 7. Qualitative comparison on the RealDOF test set. From

left to right: a defocused input image, deblurred results of

DPDNetS [1] and our method, and a ground-truth image.

RealDOF test set To quantitatively measure the perfor-

mance of our method on real-world defocus blur images,

we prepare a new dataset named Real Depth of Field (Re-

alDOF) test set. RealDOF consists of 50 scenes. For each

scene, the dataset provides a pair of a defocused image and

its corresponding all-in-focus image. To capture image pairs

of the same scene with different depth-of-fields, we built

a dual-camera system with a beam splitter as described in

[25]. Specifically, our system is equipped with two cam-

eras attached to the vertical rig with a beam splitter. We

used two Sony a7R IV cameras, which do not support dual

pixels, with Sony 135mm F1.8 lenses. The system is also

equipped with a multi-camera trigger to synchronize the

camera shutters to capture images simultaneously. The cap-

tured images are post-processed for geometric and photo-

metric alignments, similarly to [25]. More details about the

RealDOF test set are in the supplementary material.

Table 3 shows a quantitative comparison on the Re-

alDOF test set. The table shows that our model clearly im-

proves the image quality, showing that the model can gen-

eralize well to images from other cameras. Moreover, our

model significantly outperforms the previous state-of-the-

art single image deblurring method, DPDNetS , by more

than 2 dB in terms of PSNR. Fig. 7 qualitatively compares

our method and DPDNetS . While the result of DPDNetS
contains some amount of remaining blur, ours looks much

sharper with no remaining blur.

CUHK blur detection dataset The CUHK blur detection

dataset [27] provides 704 defocused images collected from

the internet without ground-truth all-in-focus images. Fig. 8

shows a qualitative comparison between DPDNetS and ours

on the CUHK dataset. The result shows that our method re-

moves defocus blur and restores fine details more success-

fully than DPDNetS . Refer to the supplementary material

for more qualitative results.
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N (RF)
Deblurring Results Params

(M)

MACs

(B)PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

8 (17) 25.19 0.777 0.404 0.246 9.44 347.9

17(35) 25.37 0.789 0.394 0.217 10.48 362.9

26(53) 25.39 0.788 0.393 0.215 11.52 377.9

35(71) 25.42 0.789 0.391 0.213 12.56 392.8

44(89) 25.45 0.792 0.389 0.206 13.60 407.8

Table 4. Deblurring performance and computational cost with re-

spect to the number of deblurring filters N evaluated on the DPDD

dataset [1]. RF denotes the receptive field size.

(a) Input (b) DPDNetS (c) Ours

Figure 8. Qualitative comparison on the CUHK blur detection

dataset [27]. From left to right: a defocused input image, deblurred

results of DPDNetS [1] and our method.

Pixel dual-pixel test set The DPDD dataset [1] provide

an additional test set consisting of dual-pixel defocused im-

ages captured by a Google Pixel 4 smartphone camera. We

refer the readers to the supplementary material for the qual-

itative evaluation on the Pixel dual-pixel test set.

4.3. Analysis on IFAN

In this section, we further investigate the effect of differ-

ent components of IFAN. We first analyze the effect of the

number of separable filters N in Fdeblur. Then, we evaluate

the effect of IAC compared to FAC [37].

Number of separable filters N A larger number of sep-

arable filters in Fdeblur leads IFAN to establish larger re-

ceptive fields and more accurate deblurring filters. Conse-

quently, when N is larger, we can handle large defocus

blur more accurately. Table 4 compares the performances

with different values of N , where the deblurring quality in-

creases with N . Based on the result, we choose N = 17 for

our final model, as the improvement is small for N > 17.

IAC vs. FAC Finally, we analyze the effectiveness of the

proposed IAC compared to FAC [37]. To compare IAC and

FAC, we replace the IAC layers in both IFAN and reblur-

ring network in our final model with FAC layers. For the

FAC layers, we use k = 11 to match the computational cost

to that of our final model for fairness. Table 5 and Fig. 9

respectively show quantitative and qualitative comparisons

between IAC and FAC. The comparisons show that IAC

outperforms FAC even with fewer parameters and opera-

tions, as IAC is better in handling large defocus blur by cov-

Module
Deblurring Results Params

(M)

MACs

(B)PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

FAC 25.18 0.778 0.406 0.249 10.51 363.4

IAC 25.37 0.789 0.394 0.217 10.48 362.9

Table 5. Quantitative comparison between the FAC [37] and IAC

layers evaluated on the DPDD dataset [1]. IAC indicates our model

with IAC layers, while FAC indicates a variant of our model whose

IAC layers are replaced with FAC layers. We set the filter size to

11×11 for the FAC layers for fairness in computational costs.

(a) Input (b) FAC (c) IAC (d) GT

Figure 9. Qualitative comparison between the FAC and IAC layers

evaluated on the DPDD dataset [1]. FAC in (b) means our final

model whose IAC layers are replaced with FAC layers. IAC in (c)

means our final model with IAC layers. The input blurred image

has large defocus blur, so details in the red and green boxes are

not visible. Our final model with IAC shows better restored details

compared to the model with FAC.

ering a much larger receptive field (35×35) on defocused

features than the receptive field (11×11) of FAC.

5. Conclusion

This paper proposed a single image defocus deblurring

framework based on our novel Iterative Filter Adaptive Net-

work (IFAN). IFAN flexibly handles spatially-varying de-

focus blur by predicting per-pixel separable deblurring fil-

ters. For efficient and effective handling of a large blur, we

proposed Iterative Adaptive Convolution (IAC) that itera-

tively applies separable filters on features. In addition, IFAN

learns to estimate defocus blur from a single image more

accurately through the learning of disparity map estimation

and reblurring. In the experiments, we verified the effect of

each component in our model, and showed that our method

achieves state-of-the-art performance.

The proposed network is still limited in handling sig-

nificantly large defocus blur (e.g., Fig. 9c has remaining

blur). Our network works best with a typical isotropic de-

focus blur, but may not properly handle blur with irregular

shape (e.g., swirly bokeh) or strong highlight (i.e., glitter

bokeh). Refer to the supplementary material for the failure

cases. We plan to extend our RealDOF test set by adding

more image pairs of diverse blur types captured with vari-

ous cameras and lenses.
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