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Abstract

Estimating the precise location of a camera using visual

localization enables interesting applications such as aug-

mented reality or robot navigation. This is particularly use-

ful in indoor environments where other localization tech-

nologies, such as GNSS, fail. Indoor spaces impose inter-

esting challenges on visual localization algorithms: occlu-

sions due to people, textureless surfaces, large viewpoint

changes, low light, repetitive textures, etc. Existing indoor

datasets are either comparably small or do only cover a

subset of the mentioned challenges. In this paper, we intro-

duce 5 new indoor datasets for visual localization in chal-

lenging real-world environments. They were captured in

a large shopping mall and a large metro station in Seoul,

South Korea, using a dedicated mapping platform consist-

ing of 10 cameras and 2 laser scanners. In order to ob-

tain accurate ground truth camera poses, we developed a

robust LiDAR SLAM which provides initial poses that are

then refined using a novel structure-from-motion based op-

timization. We present a benchmark of modern visual lo-

calization algorithms on these challenging datasets show-

ing superior performance of structure-based methods us-

ing robust image features. The datasets are available at:

https://naverlabs.com/datasets

1. Introduction

Visual localization estimates the 6 degrees of freedom

(DoF) camera pose of a given query image. It is an impor-

tant task in robotics, autonomous driving, and augmented

reality (AR) applications. Modern visual localization meth-

ods that utilize both, deep learning and multi-view ge-

ometry, show promising results in outdoor environments,

even in the presence of dramatic changes in scene appear-

ance [12, 31, 60, 48], and interesting real-world AR appli-

*These authors contributed equally.

Figure 1: Illustration of the proposed NAVER LABS in-

door visual localization datasets. Top: Point clouds from

LiDAR SLAM (red) and dense reconstruction [51] (color).

Bottom: Images showing different challenges; from left

to right: textureless areas, changing appearance, crowded-

ness/occlusions, dynamic environment.

cations, e.g. navigation, have been developed [20]. When

considering challenges for visual localization, indoor envi-

ronments differ from outdoor scenes in important aspects.

For example, while the lighting conditions in indoor spaces

tend to be more constant, indoor spaces are typically nar-

rower than outdoor environments, thus, small camera move-

ments can cause large changes in viewpoint. Dynamic ob-

jects, e.g., people, trolleys, flat screens, textureless areas,

and repetitive patterns also impose challenges for visual

localization and tend to occur more often indoors. High-

accuracy indoor visual localization is crucial, especially for

applications such as robot navigation, where a 10cm error

in position could already cause a robot falling down a stair

case. Even if in practice such extreme cases are avoided
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with proper redundancy in the on-board sensor suite [18, 6],

we want to push the capabilities of visual localization to

its limits. Large-scale indoor datasets with accurate ground

truth poses are thus required in order to develop and bench-

mark high performing (e.g. error below 10cm and 1◦) visual

localization algorithms.

Numerous datasets have been proposed for visual local-

ization [27, 30, 49, 48, 49, 31, 25, 25, 12, 60, 34, 4, 19, 57]

and Table 1 provides an overview. In outdoor environments,

structure-from-motion (SFM) is employed as an effective

tool to generate the ground truth poses. Unfortunately, due

to the aforementioned challenges, large-scale SFM is more

difficult to apply for indoor spaces [62, 56]. Thus, indoor

datasets often rely on additional depth sensors such as RGB-

D cameras [19, 58] and laser scanners (LiDAR) [56]. The

depth range provided by RGB-D cameras is often limited to

about 10m [24]. As a result, most of the existing datasets

constructed using RGB-D cameras capture relatively small

indoor spaces [3, 14, 11, 19, 57] and LiDARs [56] or ded-

icated visual 3D mapping devices [58, 11] have been used

in order to create larger indoor datasets. Such devices gen-

erate panoramic images or colored point clouds that cap-

ture the structure of indoor spaces with high spacial reso-

lution [17, 38]. In addition to high precision 3D scans, a

good visual localization dataset may also consist of many

images covering a large variety of views and situations.

Thus, additional training and realistic query images often

have to be recorded separately and they need to be regis-

tered within the generated point clouds in order to compute

their ground truth poses. One solution for this, as already

done for existing indoor visual localization datasets [56], is

utilizing semi-automatic annotation algorithms with a sig-

nificant amount of manual workload. As a consequence, the

area covered by existing datasets (see Table 1) is sparsely

sampled by the provided images [19, 57] and this causes

difficulties when, e.g., training deep neural networks for vi-

sual localization [50]. We conclude that datasets that are

large-scale, accurate, and densely sampled are still missing.

This motivated us to contribute another step towards

closing this gap. In this paper, we introduce five new local-

ization datasets acquired in challenging real-world indoor

environments. The datasets were captured in a large shop-

ping mall and a large metro station in Seoul, South Korea

and include images and point clouds obtained from a ded-

icated mapping platform comprising ten cameras and two

3D laser scanners. Compared to existing indoor datasets,

the proposed datasets provide dense image sampling and

cover many challenges of indoor visual localization (see

Figure 1). In addition, the database and the query sets were

captured with time intervals of up to 128 days, thus, the

datasets contain various changes over time. Since estimat-

ing precise ground truth (6DoF) camera poses for such large

indoor spaces using SFM, to the best of our knowledge, was

not possible so far (e.g. [62, 56] report failure cases), we

developed a novel, automated pipeline that utilizes both,

LiDAR SLAM and SFM algorithms to solve this prob-

lem. The proposed pipeline applies LiDAR-based pose-

graph SLAM to estimate the trajectories of the mapping

platform. The LiDAR SLAM poses are spline-smoothed

and used as a prior information for the subsequent SFM

process that obtains the camera poses jointly for multiple

trajectories within the same space. As shown in Figure 1,

the 3D models from both LiDAR SLAM and SFM are well

aligned. The datasets are referred to as NAVER LABS local-

ization datasets and are available at:

https://naverlabs.com/datasets

Our primary contributions are summarized as follows.

(i) We introduce five new large-scale datasets for challeng-

ing real-world indoor environments (Section 2.4). The pro-

posed datasets provide dense image sampling with ground

truth poses as well as accurate 3D models. (ii) We propose

a novel, fully-automated pipeline based on LiDAR SLAM

and SFM to obtain ground truth poses (Section 3). (iii) We

present detailed evaluations of modern visual localization

methods of relevant algorithmic groups showing their lim-

its on these challenging datasets (Section 4). We hope to

open new interesting research directions to further improve

visual localization.

2. The NAVER LABS localization datasets

This section first describes the characteristics of the pro-

posed datasets as well as the considered indoor spaces, it

then introduces the mapping platform we used to acquire the

data, and finally, it relates our datasets with existing work.

2.1. Dataset description

Our datasets consist of multiple sequences captured over

four months in five different floors in a department store

and a metro station (see Table 1). All places were pub-

licly accessible while scanning, thus many moving objects

such as people, trolleys, luggage, as well as flat screens

and store fronts were captured. Each floor is different in

terms of size, statistics, and characteristics: The captured

surface size varies from 5,250m2 to 20,879m2. The en-

tire dataset contains over 130k images, each individual floor

contains between 14k and 41k images. The 3D models,

reconstructed with the proposed SFM pipeline, consist of

1.3M to 3.0M 3D points, triangulated from 4.8M to 22.7M

local features (see Table 1).

The Dept. datasets were captured in one of the largest

shopping malls in South Korea. It consists of three different

floors: Dept. B1 contains areas with restaurants, supermar-

kets, and cafes, Dept. 1F and 4F contain cosmetic, jewelry,

and clothing shops. Dept. 1F and 4F were captured in good

lighting conditions but include lots of reflective surfaces.

Dept. B1 was captured under low-light conditions. During
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Datasets Environments Images Space 3D SFM Model Condition

DB Query (m2) Points Observations Interval Crowdedness

O
u
td

o
o
r

Cambridge [27] 5 smaller scenes 6,848 4,081 1.89M 17.68M - -

Dubrovnik [30] large city area 6,044 800 1.89M 9.61M - -

Aachen Day-Night [48, 49, 65] medium city area 4,328 922 1.65M 10.55M - -

Landmarks [31] 1k landmarks 204,626 10,000 38.19M 177.82M - -

Rome [30] 69 landmarks 15,179 1000 4.07M 21.52M - -

Vienna [25] 3 city zones 1,324 266 1.12M 4.85M - -

San Francisco [12, 31, 60] very large city area 1M 803 75M 300M - -

RobotCar Seasons [48, 34] 49 urban zones 20,862 11,934 6.77M 36.15M - -

CMU Seasons [48, 4] 17 sub-urban zones 7,159 75,335 1.61M 6.50M - -

In
d
o
o
r

Stanford [3] 270 small rooms 71,909 6,020 laser scanner - -

ScanNet [14] 707 small rooms 2,492,518 34,453 RGB-D camera - -

Matterport3D [11] 2,056 small rooms 194,000 46,561 RGB-D camera - -

7-scenes [19] 7 small rooms 26,000 17,000 - RGB-D camera - < 0.1%

TUM Indoor [22] Univ.bldg. (7 floors) 41,888 7,086 16,341 laser scanner 26 days 2.1%

TUM-LSI [62] Univ. bldg. (5 floors) 875 220 5,575 laser scanner - -

InLoc [57] Univ. bldg. (5 floors) 9,972 356 10,370 laser scanner / RGB-D months < 0.1%

Baidu [56] mall 682 2,296 9,179 laser scanner - 3.75%

N
L

(O
u

rs
) Dept. B1 mall 22,726 10,757 8,513 1.7M 17.1M 128 days 6.87%

Dept. 1F mall 21,600 5,323 10,046 1.5M 10.6M 128 days 5.47%

Dept. 4F mall 12,421 7,515 8,348 1.3M 8.7M same day 3.45%

Metro St. B1 mall & turnstiles 23,795 17,638 20,879 3.1M 13.6M 17 days 12.9%

Metro St. B2 platform 6,768 8,240 5,250 1.3M 4.8M same day 7.73%

Table 1: Visual localization datasets. Interval represents the time interval between the capture of the database and the

query sets. Crowdedness is the percentage of pixels belonging to humans. We compute this with an off-the-shelf semantic

segmentation network [13] followed by manual inspection. NL stands for NAVER LABS.

data acquisition, Dept. 4F was under construction, thus, a

large number of images containing texture-less temporary

walls are included. Rapid rotations of the mapping platform

often caused motion blur in the images.

Metro St. was collected in one of the most crowded metro

stations in Seoul and is intended for evaluating robustness

of visual localization algorithms in scenes with many mov-

ing objects. The images in this dataset show the largest pro-

portion of human pixels among the existing indoor local-

ization datasets, including ours. Furthermore, this dataset

is the largest in size and includes a variety of scenes with

shops, turnstiles, and stairs. Metro St. B2 was captured at

the platforms of the metro station. The two platforms in

this dataset were built with highly similar designs and inter-

nal structures as shown in Figure 5. This dataset is intended

for benchmarking visual localization algorithms in repeti-

tive and symmetric scenes. In addition, digital signage and

platform screen doors, which change appearance over time,

introduce new challenges.

2.2. Dataset format

To easily evaluate an image-based localization tech-

nique, each dataset is provided in the kapture1 format [23]

which supports timestamps, shared camera parameters,

multi-camera rigs, reconstruction data, and other sensor

data. The kapture toolbox enables to convert data into other

formats such as OpenMVG [36] and COLMAP [52]. As can

be seen in Table 1, our datasets consist of database images

for mapping, and query images for testing. In addition, we

split the query images into test and validation sets that rep-

resent different areas with little overlap (see Figure 2). The

1https://github.com/naver/kapture

Figure 2: Example of validation (red) and test (white) splits

for one of our datasets (Dept. 4F).

(a) (b) (c)

Figure 3: The mapping platform: (a) appearance, (b) side

view (c), top view.

ground truth poses of the validation set are released pub-

licly, the poses of the test set are retained to build a visual

localization benchmark.

2.3. Mapping platform

We collected data by using the dedicated mapping plat-

form shown in Figure 3. The mapping platform is equipped

with differential drive consisting of two wheels and four

3229



Type Amount Model Specification

3D LiDAR 2 Velodyne VLP-16 FoV: 360°×30°, angular resolution: 0.2°×2.0°, rotation rate: 10Hz,

camera 6 Basler acA2500-20gc FoV: 79.4°×63.0°, image resolution: 2592×2048, frame rate: 2.5Hz, global shutter

smartphone (as camera) 4 Galaxy S9 FoV: 77.0°(D), image resolution: 2160×2880, frame rate: 1Hz, rolling shutter

magnetic rotary position sensor

(as wheel encoder)
2 ams AS5047 resolution: 1024 pulses/rotation

Table 2: Sensors of the platform.

casters. Each wheel has an encoder to obtain odometry

data. The center of the virtual axle connecting two wheels

is considered as the origin of the platform, the x-axis defines

the forward direction, and the z-axis defines the opposite of

gravity.

The platform is equipped with two LiDARs with com-

plementary roles: One LiDAR is positioned horizontally at

the center of the platform because horizontal orientation of

a LiDAR sensor maximizes the information required to esti-

mate poses in indoor spaces. The other LiDAR is positioned

perpendicularly at the top of the platform to construct the

dense 3D point clouds via push broom scanning.

Furthermore, the mapping platform is equipped with two

different types of cameras; 6 industrial cameras (Basler

acA2500-20gc) and 4 smartphone (Galaxy S9) cameras.

The six industrial cameras are mounted at intervals of 60

degrees. They have a horizontal field of view (FoV) of more

than 70 degrees, thus, a set of images can horizontally cover

360 degrees. Each camera is facing 10 degrees upwards in

order to capture not too much ground surface. The four

smartphones are mounted slightly above the industrial cam-

eras to better reflect real-world applications where the cap-

ture device at test time will be different from the mapping

platform. The platform and the sensors are synchronized

using a network time protocol (NTP) server. Note that il-

lumination can change easily with camera movement in in-

door spaces, thus, we set the exposure time to automatic for

all cameras. Detailed specifications of each sensor are given

in Table 2.

For extrinsic calibration between the two LiDARs, we

estimate the relative pose using the iterative closest point

(ICP) algorithm [7, 53] using geometric features in their

shared field of view. For calibration between the base and

the cameras, we employ an online self-calibration via SFM

rather than an offline method. This is motivate by the fact

that, on the mapping platform, the smartphone cameras

have irregular time delays when compared to the industrial

cameras caused by automatic exposure time control and SW

synchronization of Android OS. As a result, an online cali-

bration method, which can deal with irregular time offsets,

is better suited. Additional details and results are described

in Section 3.2.

2.4. Related datasets

To complete the description of the NAVER LABS

datasets, in this section we discuss a list of related work.

Existing datasets often used for visual localization can be

divided in indoor and outdoor (see Table 1). While both

groups share the fundamental challenges of visual localiza-

tion (Section 1), outdoor datasets often contain images in-

cluding environmental changes, e.g., seasons, weather, il-

lumination, and indoor datasets often include images that

represent occlusions, dynamic objects, and repetitive struc-

tures. Popular indoor datasets such as Stanford [3], Scan-

Net [14], and Matterport3D [11] target semantic under-

standing rather than visual localization, thus, they do not

provide database and query splits. However, even indoor

datasets [19, 58, 56] that are more focused on localization

tasks were captured in a comparably small indoor spaces

which makes them less relevant for real-world applications.

Another important aspect of indoor localization is crowded-

ness in the sense of image regions covered by people. This

is interesting because it effects both, training and testing

(i.e. mapping and localization). As can be seen in Table 1,

crowdedness has not been considered so far. In summary,

large-scale datasets for visual localization are more often

available outdoors, in addition, indoor datasets rarely con-

tain people as inherent part of the environments they cover.

The proposed datasets target on closing these gaps. They

are captured in highly dynamic and crowded indoor spaces

and contain a large variety of symmetric, non-Lambertian,

and texture-less areas. Furthermore, since these datasets

were captured during business hours, they better reflect real-

world applications.

3. Ground truth generation

The ground truth poses for all images are generated using

our LiDAR SLAM (Section 3.1) and SFM algorithms (Sec-

tion 3.2). First, LiDAR SLAM produces poses of the map-

ping platform for each sequence. Then it merges sequences

taken in the same space such that the sequences have a uni-

fied coordinate system. Note that the point clouds and cam-

era poses can then be computed based on the platform poses

and calibration parameters. Finally, SFM is used to refine

the camera poses. This process allows us to obtain extrin-

sic camera calibration of the mapping platform without the

need of a manual calibration process.

3.1. LiDAR SLAM

In order to estimate the platform poses, we developed

a LiDAR SLAM pipeline based on pose-graph optimiza-

tion [33]. In the pose-graph, a node represents a platform
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Figure 4: Pose-graph for different sequences acquired at

Dept. B1 before (left) and after (right) merging and opti-

mization. The thick white line represents platform poses,

the green dots represent the accumulated point cloud ac-

cording to the poses, and the red line represents a con-

nection between spatially adjacent nodes in different se-

quences.

pose and an edge between two nodes represents a relative

pose constraint associated with the two platform poses.

Undistorted point cloud generation. To increase the

amount of point cloud data used in one node, we merge

point clouds collected from the two LiDARs. We transform

point clouds represented in different LiDAR coordinate sys-

tems into a platform coordinate system (using the extrinsic

offline calibration of the LiDARs) and concatenate them.

In addition, in order to collect point clouds efficiently and

evenly, we acquire point clouds by moving the platform at

speeds of up to 1.0 m/s. The scanning LiDAR characteris-

tics, which are similar to those of a rolling shutter camera,

cause distortion of point clouds while being in motion. We

employed wheel odometry to compensate for that. After

calculating the transforms between platform poses at dif-

ferent times from wheel odometry, they are applied to the

points to execute the compensation. Here, the position of a

point in a point cloud in the platform coordinate system is

calculated as

Bt p̃ = R̃BtBt+∆t
(RBL

Lt+∆t p̃+ tBL) + t̃BtBt+∆t
, (1)

where Bt and Lt define the base of the mapping platform

and the LiDAR at time t, respectively, and [R̃AB |t̃AB ] is

an odometry measurement by the wheel encoder from A to

B. Thus, (1) transforms the LiDAR point Lt+∆t p̃ at time

t+∆t, to the platform point Bt p̃.

Pose-graph SLAM. Since the wheel odometry is compa-

rably inaccurate, we set the edges of the graph as relative

poses estimated from ICP using undistorted sequential point

clouds. However, it is difficult to compensate for accumu-

lated pose errors using the information between sequential

nodes only. To overcome this, additional edges between

spatially-adjacent but time-distant nodes are calculated us-

ing ICP and added to the pose-graph. We acquire these

edges by following a coarse-to-fine approach. Using a dis-

tance threshold, we first select candidates that we quickly

Figure 5: 3D reconstruction of Metro St. B2.

verify with a rough ICP. Then we refine the verified can-

didates using a precise ICP. These edges act as additional

bridges to increase robustness and enable loop closing. The

platform poses are then estimated by optimizing this graph.

Graph merging. Platform poses estimated by the above

procedures are represented in an independent coordinate

system for each sequence. To unify the different coordinate

systems, we perform a merging process between graphs

from each sequence (Figure 4). As we start to scan a new

sequence roughly at the same starting position like the other

ones, the graphs are already coarsely aligned and loop clos-

ing (via ICP) can be performed throughout all the graphs

(we needed to manually correct only a few initial poses).

By optimizing the graph, we obtain the platform poses rep-

resented in a unified coordinate system.

3.2. Structurefrommotion

In this section, we describe the SFM pipeline used to

refine the initial image poses from LiDAR SLAM and to

reconstruct the 3D feature map aligned to the LiDAR point

cloud. The proposed bundle adjustment utilizes the prior

LiDAR SLAM poses and employs incremental mapping of

the COLMAP library [51] to perform accurate and efficient

large-scale indoor SFM. The intrinsic and rotational extrin-

sic parameters were also auto-calibrated for each dataset

during the SFM process.

Local feature matching. We extracted R2D2 [43] features

for each image. Then, we matched the features efficiently

using only the spatially close image pairs. More precisely,

we use the initial image poses from the LiDAR SLAM pro-

cess to effectively select most of the co-visible image pairs

by thresholding the distance and the viewing angle differ-

ence between two images. We then filter the initial feature

matches using cross-validation and reject outliers using ge-

ometric verification.

Map optimization. Although traditional SFM libraries,

such as COLMAP [51] and Visual SFM [64], could gen-

erally be applied to construct and optimize a 3D point cloud

map, we found that their standard bundle adjustment imple-

mentation was not suited for our purpose, i.e., refinement

of LiDAR SLAM poses. To perform SFM precisely and ef-

ficiently in such large indoor spaces, it is crucial to embed

precise prior pose information and rigid sensor configura-

tion constraints. In the existing SFM optimizers, however,

this is typically not possible if images or prior poses are not

time-synchronized. Thus, we cannot apply them because
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Dataset Images Points Avg. obs. Rep. err.

Dept. B1 33,483 1.7M 510.8 1.3614

Dept. 1F 26,923 1.5M 394.5 1.3436

Dept. 4F 19,936 1.3M 436.5 1.4695

Metro St. B1 41,433 3.1M 329.2 1.0373

Metro St. B2 14,958 1.3M 320.6 0.9900

Table 3: Mean reprojection error (Rep. err.) and mean fea-

ture observation count in the images (Avg. obs.) per dataset.

our datasets contain various types of sensors, i.e., industrial

cameras, smartphone cameras, and LiDARs, which are hard

to synchronize.

For this reason, we developed a novel bundle adjustment

algorithm which can optimize image poses, feature points,

and calibration parameters, jointly. This is done by utiliz-

ing poses from the continuous trajectories of the platform

that are estimated using LiDAR SLAM, as priors. To ac-

count for timestamp difference between sensors, we repre-

sented each platform trajectory as a continuous cubic spline

in SE(3) [37]. With the platform trajectory spline TWB(t)
and the extrinsic pose for camera Ci, TBCi

, the pose error

can be written as

e
spline
i = TWCi

⊖ (TWB(ti) TBCi
). (2)

Here, ⊖ denotes generalized minus defined in SE(3) man-

ifold. TWCi
is the image pose and ti the correspond-

ing timestamp. This continuous representation of the plat-

form trajectory enables efficient and elegant usage of asyn-

chronous prior poses coming from LiDAR SLAM. More

importantly, rigid configuration constraints between the

cameras and the platform can be embedded even though the

images of two different types of cameras were not captured

time-synchronously. The proposed pose error via spline can

be optimized with feature reprojection error

e
proj
ij = z̃ij − πCi

(TCiW
Wpj) (3)

to minimize the joint cost function

L =
∑

i∈I

[

ρ(‖eprojij ‖2) + ‖esplinei ‖2
]

, (4)

where ρ denotes the Cauchy loss [61]. By this modified

bundle adjustment method, image poses and triangulated

feature points can be refined and auto-calibration of intrin-

sic and extrinsic parameters can be conducted.

SFM pipeline. We generated the SFM models by iterating

our bundle adjustment and COLMAP’s incremental trian-

gulation [51], and for each iteration we decreased the out-

lier filtering thresholds. The initial reprojection errors using

poses from LiDAR SLAM vary between 50 and 200 pix-

els. As shown in Table 3, our SFM achieves very low re-

projection errors under 1.5 pixels. Additionally, our SFM

pipeline could accurately register images with low visual

Figure 6: LiDAR scan data projected to images.

saliency or crowded people by incorporating prior LiDAR

SLAM results. An example of our sparse and dense 3D re-

construction models are shown in Figure 5 and Figure 1,

respectively.

Auto-calibration. As mentioned above, the camera cal-

ibration parameters are automatically estimated while re-

constructing the 3D model of each dataset via our SFM

pipeline. To be more precise, only the intrinsic parameters

and the rotational part of the extrinsic (camera to platform)

parameters were auto-calibrated, the translation part of the

extrinsic parameters is obtained from the CAD model. Mo-

tions of the mapping platform were much smaller (up to

1m/s), when compared to the scale of target indoor spaces

(up to 50m). Experimentally, we found that the translation

motion of the mapping platform showed a small impact on

the reprojection loss term, which leads to unstable conver-

gence of extrinsic parameters. Contrary, if we fix the trans-

lation part of extrinsic parameters, all camera parameters

converge better.

4. Visual localization benchmark

In this section, we benchmark state-of-the-art visual lo-

calization algorithms on the proposed datasets. We selected

relevant approaches representing the different algorithmic

groups namely structure, image retrieval, scene coordinate

regression, and absolute pose regression based methods.

4.1. Evaluated methods

Structure-based methods use an SFM model [47, 55, 26,

51, 39] as a representation of the environment in which

new images can be registered in order to localize them.

This is done with local feature matching using descrip-

tors such as SIFT [32], R2D2 [43, 44], D2-Net [16] or

SuperPoint [15, 46]. Image retrieval using global image

representations such as DenseVLAD [59], NetVLAD [2],

APGeM [42], or DELG [10] can be used to select the image

pairs to match [60, 58, 45] rather than brute force matching

of the entire reconstruction. Structure-based methods per-

form very well on a large variety of datasets but come with

the burden of constructing and maintaining large 3D maps.

For our experiments, we chose a custom pipeline con-

sisting of two stages: mapping and localization. For map-

ping, we start by selecting the image pairs to match us-

ing the global image representations mentioned above, we
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Test set - Galaxy images Dept. B1 Dept. 1F Dept. 4F Metro St. B1 Metro St. B2

Algorithm / Accuracy th. 0.1m,1◦ 0.25m,2◦ 1m,5◦ 0.1m,1◦ 0.25m,2◦ 1m,5◦ 0.1m,1◦ 0.25m,2◦ 1m,5◦ 0.1m,1◦ 0.25m,2◦ 1m,5◦ 0.1m,1◦ 0.25m,2◦ 1m,5◦

structure-based methods

APGeM [42]+SIFT [32] 69.8 75.7 81.3 74.0 78.8 83.2 83.4 89.2 91.5 40.8 59.6 69.5 39.2 57.8 62.8

DELG [10]+SIFT [32] 71.2 77.6 84.0 79.1 83.7 88.3 81.2 87.0 89.2 40.7 60.3 70.2 42.1 60.3 65.6

DenseVLAD [59]+SIFT [32] 72.2 77.9 84.5 82.6 86.9 92.3 84.6 89.8 92.3 40.8 60.4 69.7 41.8 59.2 64.2

NetVLAD [2]+SIFT [32] 72.0 78.2 84.8 82.2 86.2 90.3 86.5 92.0 94.9 38.6 55.8 66.3 41.9 59.9 65.3

SIFT [32]+vocab. tree (COLMAP [52]) 67.6 75.0 80.7 80.8 84.9 88.9 68.7 73.9 76.2 38.0 57.2 67.0 39.0 56.7 62.5

APGeM [42]+D2-Net [16] 73.7 79.3 87.2 78.0 82.8 88.0 84.2 89.8 92.0 44.2 64.8 75.7 41.3 60.1 65.0

DELG [10]+D2-Net [16] 75.3 81.7 91.6 84.5 89.2 94.3 81.8 87.2 90.0 44.3 65.4 76.0 40.8 60.5 65.9

DenseVLAD [59]+D2-Net [16] 75.7 81.5 90.5 85.2 89.7 95.9 85.0 90.5 92.9 44.4 64.8 74.6 42.3 60.5 65.1

NetVLAD [2]+D2-Net [16] 75.5 82.3 91.4 84.5 88.9 94.2 87.0 92.4 94.9 42.9 61.9 71.3 41.7 61.5 66.3

APGeM [42]+R2D2 [43] 75.2 80.3 87.6 80.6 84.3 89.4 85.3 91.0 93.1 46.5 66.8 76.7 43.2 62.0 66.3

DELG [10]+R2D2 [43] 77.1 82.8 91.9 86.4 90.7 95.9 83.6 89.1 91.8 46.0 66.6 77.3 44.0 62.9 68.0

DenseVLAD [59]+R2D2 [43] 76.4 81.9 90.7 87.2 91.7 97.0 85.7 91.0 93.6 46.5 67.0 76.8 43.8 61.5 65.8

NetVLAD [2]+R2D2 [43] 76.2 82.1 90.7 86.2 90.3 95.2 88.0 93.2 95.4 44.0 62.7 72.7 43.8 62.6 67.6

ESAC [9]

1 expert 0.0 0.0 0.5 0.0 0.4 9.1 0.0 0.5 4.8 0.0 0.0 0.0 0.0 0.0 0.0

10 experts 0.9 2.9 6.5 21.1 46.0 62.1 20.1 39.5 62.2 4.8 17.9 35.8 5.9 19.2 33.9

20 experts 1.7 3.8 7.8 34.9 62.6 78.0 30.5 47.7 65.7 7.5 22.0 38.1 9.3 23.6 37.5

50 experts 3.5 8.2 12.6 43.3 66.3 77.0 45.2 62.5 73.1 11.4 31.1 44.7 11.2 26.1 39.9

PoseNet [27] 0.0 0.0 0.1 0.0 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Table 4: Results of various visual localization methods on the 5 NAVER LABS datasets, with the percentages of success-

fully localized test images within three thresholds for each datasets. The best method is shown in bold, the second best is

underlined.

then extract the local keypoints and match them using cross

validation and geometric verification, and finally, we com-

pute the 3D points using COLMAP’s [52] point triangula-

tor. For localization, for each query image we first retrieve

the 20 most similar database (map) images, we then extract

the local keypoints and match the 20 image pairs again us-

ing cross validation and geometric verification. Since the

database images are associated with 3D points from the

map, we can use the resulting 2D-3D matches to compute

the camera pose. For this, we use COLMAP’s image trian-

gulator. We also evaluated a traditional pipeline, fully based

on COLMAP [52], with SIFT [32] features and vocabulary

tree based matching. For both pipelines, we use less strict

bundle adjustment parameters to maximize the percentage

of localized images, even if this means that some of them

might be significantly wrong (see the supplementary mate-

rial for these parameters). We denote as GLOBAL+LOCAL

the method using GLOBAL features for retrieval and LO-

CAL features for matching.

Scene point regression methods establish the 2D-3D cor-

respondences between image pixel locations and the 3D

space using random forests [54, 35] or deep neural net-

works [8]. The latter (notably DSAC++ [8]) report high

pose accuracy on small scale environments but fail when

scaled up to larger scenes [63]. To overcome this limitation,

[9] proposes ESAC. The idea is to use the mixture of experts

strategy to separate large scenes into smaller scenes, called

experts. A gating network is used to first select a subset of

experts, and second to apply each of them (i.e., a DSAC++

like network) to estimate pose hypotheses. The pose hy-

pothesis with maximum sample consensus is selected as fi-

nal pose. Similarly, [29] proposes a coarse-to-fine strategy

within the neural network to increase the size of environ-

ments scene point regression can be successfully used. For

large-scale datasets however, [29] suggests to use image re-

trieval as additional conditioning.

For our experiments, we chose ESAC [9] with various

numbers of experts (1, 10, 20 and 50). Note that using 1 ex-

pert is similar to DSAC++ [8] (minor differences are listed

in [9]). To initialize the experts, pseudo-depth maps are re-

quired and are generated from an SFM model, here we use

APGeM+R2D2. This is simply used to initialize the ex-

perts, they are then refined using a reprojection loss which

does not depend on these pseudo depth maps.

Absolute pose regression methods use deep neural net-

works to directly estimate the 6DoF pose from an input im-

age [27, 28, 5, 50]. Similar to scene point regression, these

methods do not scale up well to large scenes and perform

similar to pose approximation methods [50]. For our exper-

iments, we chose PoseNet [27]. We follow [21] and train

the model for 300 epochs with Adam.

4.2. Evaluation metric

Following the well established evaluation protocol

from [48], we compute the percentage of successfully local-

ized images within three position and orientation thresholds

representing high (0.1m, 1◦), medium (0.25m, 2◦), and low

(1m, 5◦) accuracy. We chose the highest position accuracy

being 10cm because, according to our experience, this is the

minimum accuracy necessary for real-world applications.

4.3. Discussion

Table 4 shows the results of state-of-the-art visual local-

ization methods on the Galaxy images from the test set of

the 5 NAVER LABS datasets. We also provide the results

on other splits (validation set and/or Basler images) in the

supplementary material, as well as plots showing the per-

centage of localized images for varying thresholds.

First, we observe that structure-based methods signifi-

cantly outperform coordinate point regression and absolute

pose regression approaches. For instance, DELG+R2D2

successfully localizes more than 75% (resp. 90%) of the
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Test set # low freq. performance for performance for

Galaxy images images low freq. images other images

Dept. B1 96/2539 41.7 84.4

Dept. 1F 43/975 74.4 91.4

Dept. 4F 520/2411 67.1 95.2

Metro St. B1 217/4334 49.8 67.5

Metro St. B2 153/1786 49.7 64.2

Table 5: Impact of the absence of high frequencies (low

freq. images) for DELG+R2D2. We report the percentage

of successfully localized images within 25cm and 2◦.

images at the high (resp. low) accuracy thresholds on the

3 Dept. datasets, while ESAC performs worse (below 50%

at the high accuracy thresholds), and PoseNet simply fails.

The performance on the 2 Metro St. datasets is lower but the

overall ranking remains similar. Hypotheses for the lower

performance on Metro St. include the narrower scene, the

crowdedness, the symmetry of the scene (in B2, see Fig-

ure 5), and the screens changing their content regularly.

In terms of global features for image retrieval, DELG,

DenseVLAD, and NetVLAD have overall similar perfor-

mance, APGeM performing slightly worse, confirming the

finding of [40] for the indoor dataset [56]. For local fea-

tures, R2D2 often performs slightly better than D2-Net and

SIFT, confirming its robustness to visual localization chal-

lenges reported in [40, 43].

For scene point regression methods, the performance

with 1 expert is low. This is not surprising as it is equivalent

to DSAC++ which is known to not scale to large environ-

ments [63, 29]. Using more experts allow to better handle

larger datasets like ours, but the performance remains be-

hind structure-based methods. Further increasing the num-

ber of experts does not necessarily increase the performance

due to the unbalance of the clustering applied to 3D points

to separate the experts’ areas. The performance of ESAC is

particularly low on Dept. B1, which can be led back to the

blur in the images due to the low lighting conditions and the

repetitive textures as well as the dynamics in food court.

Absolute pose regression does not perform well at all,

due to limitations of such approaches, see [50].

In the supplementary material we report results for

Basler images and we obtain significantly higher perfor-

mances. This is not surprising since these images are taken

with the same cameras as the training images. In particular,

we observe that the performance of ESAC on the Basler test

set significantly increases on 4 out of 5 datasets. This sug-

gests that scene point regression might not be sufficiently

robust to varying cameras between training and test time.

We also report the performance on the validation set in the

supplementary material and draw the same conclusion.

To better evaluate the impact of some specific chal-

lenges, in Table 5 and Table 6, we report DELG+R2D2

performance when considering only images without high

frequency content (i.e., blurry and/or with large textureless

Test set # crowded performance for performance for

Galaxy images images crowded images other images

Dept. B1 35/2539 77.1 82.9

Dept. 1F 6/ 975 100.0 90.6

Dept. 4F 10/2411 70.0 89.3

Metro St. B1 565/4334 50.1 69.1

Metro St. B2 169/1786 56.2 63.6

Table 6: Impact of crowdedness for DELG+R2D2. We re-

port the performance as the percentage of successfully lo-

calized images within 25cm and 2◦.

area) and crowded images, respectively. We define images

without high frequency, following [41, 1]: we compute the

mean absolute difference between the original image and

its version without high frequencies, which is done in the

Fourier domain, and threshold it at 20. From Table 5, we

observe that the performance is significantly worse for low

frequency images, for instance from 95.2% successfully lo-

calized images within 25cm and 2◦drops down to 67.1% on

Dept. 4F, the dataset with the most low frequency images

due to large textureless temporary walls on a construction

site. The main reason for this decrease in performance is

the fact that local features used for matching mainly rely

on high frequency signals both for detecting and describing

the keypoints. For analyzing crowdedness, we use images

where at least 20% of the pixels belong to the human class,

according to a semantic segmentation approach. The results

reported in Table 6 show that it also represents a significant

challenge. For instance, on Metro St. B1 (largest number of

crowded images) we observe a drop of performance (suc-

cessfully localized images within 25cm and 2◦) from 69.1%

to 50.1%. This is due to the fact that humans introduce

irrelevant data both for image retrieval and local feature

matching. Despite these two challenges, the performance of

structure-based method remain quite high, with about 50%

of the images successfully localized within 25cm and 2◦.

5. Conclusion

We introduce the NAVER LABS datasets that are first to

propose large-scale densely-sampled indoor environments

with challenges like dynamic objects, moving crowds, and

changing scenes. We capture the data with a specific map-

ping platform equipped with LiDARs, cameras, and wheel

odometry and propose a new pipeline based on LiDAR

SLAM and SFM to generate ground truth poses. Finally, we

provide a benchmark of existing methods on these datasets.

We believe the NAVER LABS datasets will foster new re-

search directions in visual localization, image retrieval, and

local feature extraction and may also be used for other

tasks such as depth estimation or completion, LiDAR place

recognition, and map change detection.
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