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Figure 1: We wish to hear individual speech of a desired speaker only even if there is frame discontinuity in the audio-visual

data. When audio and video segments are taken from different points in time (solid box), it is intuitively difficult to separate

speech of each speaker compared to the aligned cases (dashed box). Best viewed in color.

Abstract

In this paper, we address the problem of separating indi-

vidual speech signals from videos using audio-visual neural

processing. Most conventional approaches utilize frame-

wise matching criteria to extract shared information be-

tween co-occurring audio and video. Thus, their perfor-

mance heavily depends on the accuracy of audio-visual syn-

chronization and the effectiveness of their representations.

To overcome the frame discontinuity problem between two

modalities due to transmission delay mismatch or jitter, we

propose a cross-modal affinity network (CaffNet) that learns

global correspondence as well as locally-varying affinities

between audio and visual streams. Given that the global

term provides stability over a temporal sequence at the
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utterance-level, this resolves the label permutation problem

characterized by inconsistent assignments. By extending

the proposed cross-modal affinity on the complex network,

we further improve the separation performance in the com-

plex spectral domain. Experimental results verify that the

proposed methods outperform conventional ones on vari-

ous datasets, demonstrating their advantages in real-world

scenarios.

1. Introduction

Humans have a remarkable auditory system that can

perceive sound sources separately in their conversations

even in the presence of many surrounding sounds, in-

cluding background noise, crowded babbling, thumping

music, and sometimes other loud voices [1, 2]. How-

ever, reliably separating a target speech signal for human-

computer interaction (HCI) systems such as speech recog-

nition [3, 4, 5], speaker recognition [6, 7, 8], and emotion

recognition [9, 10] is still a challenging task because it is an

ill-posed problem.
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With the impressive advent of deep learning technologies

that utilize high-dimensional embeddings [11, 12, 13], it

is possible nowadays to simultaneously analyze the unique

acoustic characteristics of different speakers even from

mixed signals. Although these deep learning-based meth-

ods are effective compared to conventional statistical sig-

nal processing-based ones, they are prone to a label per-

mutation (or ambiguity) error due to their frame-by-frame

or short segment-based processing paradigm [11, 14]. In

order to address this problem, permutation invariant train-

ing [15, 16] that utilizes a permutation loss criterion was

presented, but the label ambiguity problem still occurs at

the inference stage, especially for unseen speakers.

Leveraging the visual streams of target speech signals

can be one of the best alternatives. In psychology, sev-

eral experiments have proved that looking at speakers’ faces

is helpful for auditory perception under background noise

environments [17, 18]. For example, lip reading, which

matches lip movements onto utterances, is widely used

to recognize others’ words better [19]. In audio-visual

speech separation (AVSS) systems, audio and visual fea-

tures are used together or complement each other to derive

unique characteristics [20, 21, 22, 23, 24, 25, 26]. Mostly,

AVSS first extracts the common correspondence features

between speaker/linguistic information of speech signals

and face/articulatory lip movements of video signals, after

which the extracted features are exploited for the following

source separation task. Consequently, the AVSS problem

can be viewed as a local matching (i.e. frame-wise match-

ing) task, where segmented visual features are matched with

frames of specific sounds. Thus, the separation perfor-

mance highly depends on the alignment accuracy between

audio and video streams.

In real-world scenarios, however, audio and video are

recorded from different devices with their own specifica-

tions, and they are transmitted through independent com-

munication channels and saved with different codec pro-

tocols. These practical issues frequently cause mutually

unaligned states in talking videos. Fig. 1 shows an ex-

ample of a video with a speech that has physical errors

in its video contents, where sometimes audio plays ahead

of video and vice versa. When there are even subtle data

transformations caused by jitters, omissions, and out-of-

synchronization in video streams, conventional local match-

ing strategies [20, 23, 25] are vulnerable. This issue can be

detrimental to the performance of AVSS systems in video-

telephony, broadcasting, video conferencing, or filming.

In this paper, we highlight those limitations and tackle

the alignment problems in AVSS processing. We propose a

novel cross-modal affinity network for robust speech sepa-

ration, referred to as CaffNet, by utilizing visual cues in con-

sideration of relative timing information. Affinity, i.e. mu-

tual correlation, learned in CaffNet compensates for abrupt

discontinuities in audio-visual data without external infor-

mation or additional supervision. Furthermore, we propose

an affinity regularization module that tiles the diagonal term

of the affinity matrix to match audio-visual sequences at the

utterance level. Since the affinity regularization provides

a global positional constraint, it avoids the label permuta-

tion problem that occurred by inconsistent assignment over

time of the speech signals to the visual target. In addition,

considering the estimation of the magnitude mask in tan-

dem with the phase mask is one of the keys to reasonable

speech reconstruction because such factors are correlated

with each other [27, 28]. To accomplish this, we extend

CaffNet to have a complex-valued convolution network ar-

chitecture [29, 30, 31] such that speech quality is indeed

increased by restoring the mask of the magnitude and phase

spectrum together. We demonstrate the effectiveness of the

proposed networks with extensive experiments, achieving

large improvements in unconditioned scenarios on several

benchmark datasets [32, 33, 34].

2. Related Work

Audio-visual Speech Separation. In terms of multi-

sensory integration, it has been proved that looking at talk-

ing faces during conversation is helpful for speech percep-

tion [35]. Inspired by this psychological mechanism, nu-

merous works have tried to effectively utilize visual context

on speech separation tasks [36, 37, 25, 20, 38, 24, 21, 22,

39, 23]. With the emergence of deep neural networks and

the availability of new large-scale datasets [19, 33, 34, 24],

a series of works [38, 40] have been published in the

past few years on audio-visual speech separation (AVSS).

Although they have shown promising results in various

speech-oriented applications, these methods have concen-

trated on isolating the magnitude of speech only, which re-

stricts their applicability. To alleviate this limitation, sev-

eral works have been proposed to generate both magnitude

and phase masks [20, 24, 23, 22]. However, these meth-

ods generate phase masks with estimated magnitude masks

and noisy phase without learning complex-valued represen-

tations, which requires them to consider the correlation be-

tween each complex component. This limitation has man-

ifested itself in significantly degraded performance under

extremely noisy conditions [31]. Furthermore, the afore-

mentioned methods have all assumed one-to-one correspon-

dence between the audio-visual segments.

Most recently, this problem has been tackled in [21, 39]

for situations in which visual face sequences were not fully

reserved. In [21], although they considered the case that

visual cues abruptly disappear due to occlusion, it still re-

quired video sequences aligned to audio. Even though the

speaker identity extracted from the still face image seemed

to provide a promising visual cue for the separation [39],

it showed far less separation performance than ones using
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Figure 2: Overall network configuration: (1) encoding audio and visual features; (2) learning cross-modal affinity; (3)

predicting spectral soft mask M to reconstruct target speech Ŷ. A red-dotted box means the magnitude operation processing.

visual sequences since they only regulated global informa-

tion rather than local contexts. In this paper, we lever-

age sequential audio-visual frames as the inputs to our net-

works under the assumption that locally misaligned visual

frames with audio frames can still provide local context and

speaker identity for robust speech separation.

Cross-modal Alignment. As audio and video sequences

are recorded using different devices, synchronization prob-

lem often appears in recordings. Most recent audio-visual

synchronization methods rely on cross-modal representa-

tion techniques that measure the linguistic similarity be-

tween audio-visual embedding pairs [41, 42, 43]. However,

there has been little work on exploring the problem of syn-

chronization along with mismatched audio and video pairs

because prior works generally assumed that a paired audio

and video set has only one speech. More related to our work

are affinity-based multi-modal approaches in various other

challenging tasks, such as music sound separation [44],

emotion recognition [45], language understanding [46], and

self-supervised learning [47]. We further extend the cross-

modal affinity learning to generate time-independent audio-

visual representations using an affinity regularization with

an utterance-wise matching criterion.

3. Approach

3.1. Motivation and Overview

In general, humans experience severe confusion when

there is a linguistic discrepancy between what we see and

what we hear, i.e. a difference between the perceived words

from the mouth and actual speech. This is called cognitive

dissonance, which is known as the McGurk effect [48]. This

effect could be observed in previous frame-wise matching

based methods [32, 20, 23, 38, 25] inducing poor perfor-

mance when the cross-modal data is conflicted. To deal with

such inconsistency problem, we introduce a CaffNet to es-

timate time-frequency soft masks to isolate a single speech

signal from a mixture of sounds (such as other speakers and

background noise), taking into account time-agnostic mu-

tual correlation.

Concretely, our model is split into three parts, including

an audio-visual encoder, learning cross-modal affinity, and

soft-mask estimation, as shown in Fig. 2. The key idea of

CaffNet is to learn cross-modal affinity between the audio

and video streams even if they have different sampling rates

in the wild environments. By this, we mean that information

from the video stream stretches or compresses to match the

audio signal for the reconstruction of the target speaker’s

speech regardless of the frame discontinuity problem. Due

to matching ambiguity generated in parts that are muted or

that have similar pronunciations from simultaneous speak-

ers, the initially computed affinity includes erroneous values

and causes the label permutation problem while degrading

the separation performance. We resolve this problem by

suggesting an affinity regularization to induce global con-

sistency of cross-modal affinity. Furthermore, we extend

this approach to complex-valued neural networks, estimat-

ing the magnitude and phase components jointly.

Given a noisy time-domain speech X , CaffNet is trained

to isolate a clean speech Y from X with corresponding a

user-chosen speaker’s face video I1:T , where T is a length

of the video stream. The noisy sound X = Y + H is as-

sumed to be a sum of clean speech Y and natural environ-

mental factors H such as background noise, distortions in

speech, and sound from other speakers. As it has been a

common practice to transform a time-domain speech to a

time-frequency representation (i.e. spectrogram) via short-

time Fourier transform (STFT), each of the corresponding

time-frequency representations for X , H , and Y is com-

puted by 512-point STFT and denoted by X ∈ C, H ∈ C

and Y ∈ C, respectively.

3.2. Cross­modal Affinity Network

Audio-visual Encoder. As in [20, 21, 44], the audio-

visual encoder has a two-stream architecture consisting of

an audio encoder stream and a video encoder stream, which

take noisy audio and video frames containing the target

face, respectively. At first, the audio and video encoders

generate their own embedding features independently. In

specific, the audio encoder Fs takes the magnitude spec-

trum of consecutive input frames, |X|. The audio embed-

ding features are extracted by stacked 1D convolutional lay-
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Figure 3: Illustration of cross-modal affinity estimation

module. It takes speech feature S̄ and video feature V̄

to calculate the affinity matrix A. The cross-modal iden-

tity matrix Γ regularizes the affinity matrix A to maintain

global correspondence.

ers S = Fs(|X|), where S ∈ R
N×C is a speech embed-

ding feature, C and N indicate the dimension of a chan-

nel and the temporal length of the spectrogram, respec-

tively. Besides, visual features are extracted from the tem-

poral stack of five consecutive video frames via the state-

of-the-art audio-visual synchronization model E(·) [41] by

a feed-forward process. Finally, a visual embedding feature

V ∈ R
M×C is obtained through the visual encoder Fv:

V = Fv(Π(Ef (I
1:5), Ef (I

2:6), · · · , Ef (I
T -4:T ))), (1)

where I denotes video frames, T is the number of video

frames, Π(·) indicates a concatenation operator, and M =
T − 4 is an entire length of clips tied 5 frames. As the

audio and video have different sampling rates, it requires

either up-sampling or down-sampling process to equalize

the temporal resolution of audio and video embedding ma-

trices [20, 23]. However, our network is fully-convolutional

network that effectively learns the audio-visual affinity re-

gardless of the size of each embedding matrix.

Learning Cross-modal Affinity. We assume that audio

and video embeddings are naturally out of joint in the un-

constrained environments due to temporal mismatch be-

tween two media. Considering the fact that learning affinity

can draw linguistic dependencies between audio and visual

features, it is possible to model relative timing dependencies

without considering their distances.

More specifically, we first extract audio feature S̄ and vi-

sual feature V̄ by feeding outputs of the audio-visual en-

coder to modality-separated two non-local layers [49] to

measure the affinity on the nearest embedding space as pos-

sible. Then, an affinity matrix Ai,j between i-th audio fea-

ture and j-th visual feature is computed using cosine simi-

larity with L2 normalization on an embedding space:

Ai,j = softmax(
< S̄iws, V̄jwv >

‖S̄iws‖2‖V̄jwv‖2
), (2)
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Figure 4: Visualization of affinity matrices. (a) When au-

dio contains only one voice, it shows monotonous pattern

with audio-visual correspondence. (b) When there is mix-

ture input, the pattern is tangled in absence of sequential

consistency. (c) Final affinity is arranged with the help of

affinity regularization.

where ws and wv are embedding weights of audio and vi-

sual features, respectively, as illustrated in Fig. 3. In (2),

softmax activation function is applied row-wise for normal-

ization to obtain an affinity matrix A ∈ R
N×M . Ideally, the

linear pattern can be found along the diagonal of the affinity

matrix as shown in Fig. 4(a). However, we observe that the

affinity weights in different frames are often similar in the

silent speech or regions having similar pronunciation be-

tween different speakers as depicted in Fig. 4(b), which can

cause the label permutation problem. To resolve this prob-

lem, we propose an affinity regularization to penalize the

probabilistic affinity matrix corresponding to global align-

ment context to reliably infer the spectrogram mask of an

interest such that

Γi,j =
exp(

∑

i,j D
k
i,jAi,j/τ)

∑

k exp(
∑

i,j D
k
i,jAi,j/τ)

, (3)

where Γ is a cross-modal identity matrix, k ∈ Nk is the

search window of offset range across the diagonal term, τ
is a softening parameter [50] set as 0.1, and D is a diagonal

mask which satisfies:

Dk
i,j =

{

1, if fa
fv
(j − k) + 1 ≤ i ≤ fa

fv
(j − k + 1)

0, otherwise,
(4)

where f∗ is a sampling rate of each segment (e.g., fa/fv =
4 in our experimental setting). In our experiments, we

search for the offsets over [−9,+9] frame range, where neg-

ative offset means that audio is ahead of video and vice

versa. We set Nk ∈ [0, · · · , 19] and if the input pair is

matched in a timely manner, diagonal term appears from

the 9-th video frame index as shown in Fig. 4(c). Fig. 4

clearly shows that the regularization encourages the model

to maintain temporal consistency in the matching process.

Then the final visual features V̂ ∈ R
N×C′

are then repre-

sented as follows:

V̂i =
∑

j(Ai,j + γΓi,j) · (woV̄j)
⊤, (5)
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where the identity matrix Γ is added to the initial affinity

matrix A without breaking its global behavior [49, 51]. wo

is a projection parameter which has C ′ output channel. Bal-

ance parameter γ is set to 1.0 in our experiments.

Soft Mask Estimation. The mask decoder Fm takes both

the transformed visual features V̂ and corresponding audio

features S̄ to generate a soft mask [52], which filters the

mixture spectrogram to produce the enhanced spectrogram.

Audio-visual features are concatenated over the channel di-

mension to compute an integrated feature Ψ = Π(S̄, V̂). In

this way, each audio feature is associated with correspond-

ing visual features, which will be used to recover clean

speech. We employ the similar mask decoder architecture

used in [20] as the residual building block of our decoder.

The sequentially up-scaled output to the original size of the

input spectrogram is then passed through sigmoid activation

to regularize output values between 0 and 1. Finally, the es-

timated speech spectrogram Ŷ = M⊙ |X| is computed by

element-wise multiplying the estimated mask M = Fm(Ψ)
on the input spectrogram |X|. Then, the estimated speech Ŷ
is computed by inverse STFT. We note that the architectural

detail of CaffNet is explained in supplementary materials.

Training. The terminal objective of our model is to es-

timate a target speech Y of an interest person associ-

ated visual inputs. During training, while previous local

matching methods assume that audio is correctly aligned

to video [20, 23, 25], we consider that sometimes the au-

dio stream leads the video or sometimes the video stream

is going ahead of the audio. To accomplish these cases in

the training scheme, CaffNet leverages a video clip that is

recorded a little longer than the randomly sampled audio in

the datasets. However, there is no additional label on what

time the audio will be matched to in the video.

To train CaffNet, we minimize the magnitude loss LMAG

that makes the magnitude of enhanced spectrogram be sim-

ilar to that of clean spectrogram on a logarithmic scale [39]:

LMAG(Y, Ŷ) = ‖ log(|Y|/|Ŷ|)‖2. (6)

3.3. Complex Cross­modal Affinity Network

In this section, we explain how to further improve the

separation ability of CaffNet generating complex ratio mask

that considers magnitude and phase simultaneously with

simple modifications. The complex model, CaffNet-C, has

a similar architecture configuration as that of the CaffNet.

Although using only CaffNet provides satisfactory perfor-

mance, we upbuild inflated complex CaffNet (CaffNet-C)

based on complex-valued building blocks [30] to handle

complex matrices represented in the spectrograms. In tasks

related to audio signal reconstruction, such as speech en-

hancement [31] and separation [29], it is ideal to perform

correct estimation of both components. Details on batch

normalization and weight initialization for complex net-

works can be found in [30, 31].

Different from CaffNet, which solely takes the magni-

tude of spectrogram as input, the audio encoder stream of

CaffNet-C leverages the whole amount of complex-valued

spectrogram to extract the audio embedding feature with

stacked complex-valued convolutional layers such that S =
Fc

s (X), where S ∈ R
N×D×2 contains the real and imagi-

nary parts of a complex number, and Fc
s denotes complex

audio encoder.

Inspired by [31], we decode the corresponding phase

along with both the noisy phase and magnitude from

the feature representation step. This solution makes the

complex-valued mask M estimated using the magnitude

feature and noise phase feature at the same time. The noise

phase is refined to clean phase with the complex mask de-

coder Fc
m:

M = Fc
m(Π(|S̄|, V̂) · eiθS̄). (7)

The estimated speech spectrogram Ŷ is computed by mul-

tiplying the estimated mask M on the input spectrogram X:

Ŷ = M⊙X = |M| · |X| · ei(θM+θX). (8)

Finally, we compute the estimated speech Ŷ with inverse

STFT. By inducing complex convolutions in CaffNet-C, we

use the scale-invariant source-to-distortion ratio (SI-SDR)

to the objective function such as

LSI-SDR(Y, Ŷ ) = − < Y, Ŷ > /‖Y ‖‖Ŷ ‖, (9)

where it makes more phase sensitive, as inverted phase

gets penalized as well. Combining (6) and (9), the fi-

nal overall objective function in the CaffNet-C is given by

LALL = LMAG +αLSI-SDR, where α is a hyper parameter to

balance two objective functions and we set it to 1.0.

4. Experiments

4.1. Setup

Datasets. Our networks are evaluated on three com-

monly used AVSS benchmarks: Lip Reading Sentences 2

(LRS2) [53, 19, 54], Lip Reading Sentences 3 (LRS3) [33],

and VoxCeleb2 [34] datasets. LRS2 and LRS3 include

224 and 475 hours of videos respectively, along with

cropped face tracks of the speakers. While LRS2 is sourced

from British television broadcasts, LRS3 contains TED and

TEDx videos. Following [21], we remove the few speak-

ers from the LRS3 training set that also appear in the test

set, so that there is no overlap of identities between the two

subsets. Hence, the test set includes only unseen and un-

heard speakers during training and is suitable for a speaker-

agnostic evaluation of our methods. VoxCeleb2 contains

over 1 million utterances spoken by 5,994 speakers. They
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Figure 5: Evaluation of AVSS performance with respect to each delay offset between audio and visual streams on LRS2

dataset. The frame offset unit is 40ms which is the duration length between consecutive video frames. (a) reports the SDRi

evaluation using ground-truth phase with estimated magnitude spectrum. (b) and (c) report the SDRi and PESQi evaluation

results on the predicted phase as well as estimated magnitude spectrum, respectively.

provide the pre-train set and test set, and we follow this set-

ting in our experiments. It is assumed that all datasets are

well-synchronized [20, 21], so we adapt them to our pur-

poses by augmenting data. Furthermore, VoxCeleb2 is di-

vided into training and test sets according to the speaker’s

identity to explicitly assess whether our model can gener-

alize to unseen speakers during training. Thus training and

testing sets are disjoint in terms of speaker’s identities.

Data Sampling Protocol. As mentioned in Sec. 3, we

premise that audio-visual data is obtained in asynchronous

circumstances. We assume that any given frame possesses

the same time shift, so the visual stream is randomly shifted

by −9 to 9 frames. Although we randomly shift video

frames to assume the discontinuities of training data, the

corresponding video clips contain all the audio-response

information. For example, if the audio is sampled in the

time duration [T, T + δ] and the video is shifted by −9
frames, i.e. 0.36s, we extract the video frames during the

time duration [T − 0.36, T + δ]. If the selected time offset

is 9, the video frames are extracted within the time dura-

tion [T, T + δ + 0.36]. For consistency and fair evaluation,

we follow the similar evaluation settings in the previous

work [20]. To generate synthetic training examples, we first

select a source pair consisting of visual and audio features

by sampling 2 seconds randomly. Source speech is mixed

with randomly selected other speaker’s speech signal in the

time domain, to simulate multi-talker backgrounds signals.

Features. We use a recent audio-visual synchronization

model [41] for extracting visual features to serve as its vi-

sual input. The input to the visual stream is a video of

cropped facial frames, with a frame rate of 25 fps. For every

video frame, it outputs a compact 512-dimensional feature

vector. For audio features, we use a time-frequency repre-

sentation via STFT with a 25ms window length and a 10ms

hop length as a sampling rate of 16kHz. Note that the ex-

traction of face embeddings follows prior work [22].

Evaluation Metrics. We use three metrics to compare the

results of our method to previous methods [20, 22]. First,

the signal-to-distortion ratio (SDR) [55] is commonly used

metric in recent works [20, 21, 38] to investigate the qual-

ity of enhanced speech. Following the previous work [20],

we also report results on the perceptual evaluation of speech

quality (PESQ) [56] varying from -0.5 to 4.5 and the short-

time objective intelligibility (STOI) [57], which is corre-

lated with the intelligibility of degraded speech signals. In

the following experiments, we report SDR improvement

(SDRi) and PESQ improvement (PESQi) for a fair com-

parison with other methods since the testing samples are

randomly generated by combinations of the test set.

Baseline Models. For the fair comparison with CaffNet,

we reproduce the magnitude network of ‘V-Conv’ [20],

which is trained with the magnitude loss only. Also, since

V-Conv model only assumes the synchronization circum-

stances between audio and visual streams, we combine V-
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Dataset Method
SDRi ↑ PESQi ↑ STOI ↑

GT GL PR MX GT GL PR MX GT GL PR MX

LRS2

V-Conv [20] 11.28 -4.36 - 6.73 1.35 0.63 - 0.75 0.89 0.85 0.86

LWTNet [22] 6.88 -4.61 4.06 3.77 0.65 0.16 0.32 0.29 0.77 0.72 0.73 0.74

CaffNet (ours) 11.16 -3.49 - 6.79 1.29 0.63 - 0.73 0.89 0.85 - 0.86

CaffNet-C (ours) 12.46 -2.54 10.01 7.94 1.15 0.65 0.94 0.73 0.89 0.84 0.88 0.86

LRS3

V-Conv [20] 11.23 -1.37 - 7.00 1.08 0.55 - 0.61 0.86 0.82 - 0.83

LWTNet [22] 7.71 -3.93 4.83 4.44 0.82 0.35 0.49 0.45 0.84 0.80 0.82 0.82

CaffNet (ours) 10.22 -2.64 - 6.46 1.06 0.49 - 0.60 0.86 0.82 - 0.84

CaffNet-C (ours) 12.31 -1.38 9.78 7.92 0.91 0.49 0.71 0.55 0.86 0.82 0.85 0.83

Table 1: Evaluation of AVSS performance on the LRS2 and LRS3 datasets when audio and visual inputs are in synchronous

condition. Contrary to other methods [22, 20], CaffNet and CaffNet-C are trained in unconditioned circumstance, i.e. training

with randomly given frame offsets. GT: ground-truth phase; GL: Griffin-Lim; PR: predicted phase; MX: mixture phase.

Conv with a cutting-edge synchronization method proposed

in [41, 58] to deal with asynchronous samples, referred to as

’V-Conv+PM’. Furthermore, we examine the performance

of LWTNet [22] using delayed test samples, where this

method includes an independent synchronization module.

4.2. Results

LRS2 and LRS3. In Fig. 5, the proposed models, CaffNet

and CaffNet-C, show robust performance in asynchronized

environment while the previous methods have significant

degradation in performance when the two frames were de-

layed. Although V-Conv+PM system has the synchroniza-

tion step before the separation, it is clear that our meth-

ods are more robust to these temporal shifts. Because V-

Conv+PM is a cascaded-step system, errors in the first step

have a negative impact on the second. For that reason, V-

Conv+PM even shows less effective results, even compared

to V-Conv when audio and visual streams are synchronized.

Furthermore, despite the alignment step in LWTNet [22], its

accuracy is poorer than our methods on delayed samples.

When the two streams are well-aligned, our method pro-

vides competitive performance compared to baseline meth-

ods. In Tab. 1, we summarize the comparison results on the

LRS2 and LRS3 datasets without a random shift on video

streams (i.e., frame offset is 0). Even though our network is

trained in an unconditioned environment where audio and

visual streams are not synchronized, our method outper-

forms existing methods [20, 22] which are trained with the

synchronized audio-visual streams.

To validate the generality of our models, we investigate

the performance on the LRS3 dataset, summarized in Tab. 1.

Each model is only trained on the LRS2 dataset and evalu-

ated on the LRS3 dataset without an additional adaptation

process. Overall performances are similar to those on the

LRS2 dataset. CaffNet-C achieves the best SDRi of 12.31
and still outperforms all the others, where the reconstruc-

tions are obtained using the magnitudes predicted by our

network and either the ground truth phase. This demon-

strates that our methods can be generalized to other datasets.

Furthermore, the results show that phase estimation helps

Speaker
Mixture Phase estimation

(Source-Reference) GT GL PR MX

Seen

Male-Female 7.35 -5.46 3.54 3.33

Female-Male 7.51 -3.63 3.99 3.71

Male-Male 8.21 -4.61 4.24 3.91

Female-Female 7.24 -3.41 3.91 3.58

Unseen

Male-Female 8.22 -5.12 4.80 4.42

Female-Male 7.34 -3.42 3.99 3.71

Male-Male 7.35 -5.46 3.55 3.33

Female-Female 6.37 -4.23 3.15 2.92

Table 2: Evaluation of SDRi on CaffNet-C with regarding

to gender combinations on the VoxCeleb2 dataset

reconstruct the magnitude. Compared to CaffNet, CaffNet-

C improves the SDRi by 2.09dB using ground-truth phase

on the LRS3 dataset, respectively.

VoxCeleb2. In order to explicitly investigate whether our

model can be generalized to speakers unseen during train-

ing, we fine-tune and test on the VoxCeleb2 in Tab. 2. The

training and test sets are disjoint in terms of speaker iden-

tities. We evaluate performance based on gender combi-

nations, as many previous speech separation methods have

shown significant performance degradation when mixtures

involve same-gender speech [11, 39]. Although our method

shows slight drops in performance on the female-female set,

the result on the male-male set is similar to those of subsets

including different genders.

4.3. Analysis

We conduct extensive experiments to describe the con-

tribution of our method. Note that all experiments in this

section are performed on the LRS2 dataset with CaffNet-C.

Channel Latency. Our premise is that temporal align-

ment of cross-modal can be achieved in our networks with-

out additional supervision for ground-truth mapping be-

tween each pair of input streams. As shown in Fig. 6,

CaffNet-C surprisingly finds appropriate frame offsets with-

out any extra supervision. It demonstrates that our

method reliably infers clean speech with well-aligned vi-

sual streams. Although we obtain the highest SDR in the
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Figure 6: Qualitative results of affinity matrices according

to the frame delay offsets. If the frame offset is negative,

a linear pattern along the diagonal of the affinity matrix is

displaced higher than zero offset case, and if it is positive,

the pattern is shown lower than (b). (·) is SDR.

AR Magnitude Phase
Delay offset

-5 0 5

✗ Prediction GT 8.01 7.77 7.71

✗ Prediction GL -3.93 -4.24 -3.96

✗ Prediction MX 4.37 3.99 3.86

✗ Prediction PR 5.13 4.75 4.62

✓ Prediction GT 12.42 12.48 12.41

✓ Prediction GL -3.05 -2.67 -2.54

✓ Prediction MX 7.96 7.97 7.85

✓ Prediction PR 9.95 9.92 9.88

Table 3: Evaluation of SDRi to demonstrate the effective-

ness of affinity regularization. ‘AR’ refers to the presence

or absence of regularization.

synchronous setting, there are only slight differences be-

tween the performance despite delays in audio and video.

Affinity Regularization. One might also ask whether

affinity regularization of our method is helpful. To verify

its efficacy, we conducted an ablation study with CaffNet-C

in Tab. 3. Since the affinity regularization has induced the

global correspondence term for reliable speech separation,

SDRi increases about 4 dB. It provides reasonable evidence

for the effects of the affinity regularization.

Jitter. We then assessed the impact of our method from

jitter, another well-known discontinuity problem frequently

observed due to independent packetization of the audio-

video streams. As a proof of concept, we assumed that no

video frames are transmitted from t to t+τ frames, where

τ is chosen as a random integer number such that τ ≤ 8
(≈ 0.3 s). Considering a simple frame repetition method

that can be used in the jitter situation, we replaced the miss-

ing video frames with the (t−1)-th frame. CaffNet-C shows

compliant performance with 5.64 dB even in these challeng-

ing situations, in terms of SDRi on the testing set of LRS2

dataset. As exemplified in Fig. 7, it shows that our network

clearly distinguishes two global terms in the affinity matrix

when the frame jitter arises in the visual stream.

Speech Recognition. To verify the intelligibility of the

outputs, we further exploit the estimated speech signals on
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Figure 7: Example of affinity matrices with jitter problem.

In this case, the jitter is happen for 0.4s on the 25th frame,

thus diagonal components are disconnected and reappeared

from the 35th frame.

Magnitude Phase
Delay offset

Avg. ↓
-5 0 5

Mixture MX - 84.91 - 84.91

Ground-truth GT - 17.74 - 17.74

Prediction GT 31.70 32.96 31.90 32.18

Prediction GL 40.54 39.38 39.74 39.88

Prediction MX 38.35 37.01 37.73 37.69

Prediction PR 35.88 35.08 34.83 35.26

Table 4: Automatic speech recognition on the LRS2 dataset.

another task. Specifically, we conduct an additional ex-

periment for automatic speech recognition with enhanced

speech signals. To do this, we utilize the speech recognition

API of Google cloud system 1 and compute the word error

rate (WER) as an automatic metric to evaluate the accuracy

of recognition. Firstly, we obtain the WER of 17.74% on

the clean ground-truth set, which is the best result that we

can achieve in this setup, while the WER on the mixture

set is 84.95%. In Tab. 4, CaffNet-C achieves 35.26% error

rate when we use separated speech signals with the network

setup of phase prediction (PR). It clearly shows that there is

no meaningful difference by varying delay offset.

5. Conclusion and Future Work

We presented a novel framework to separate a target

speaker’s speech from audio in the wild. To deal with the lo-

cal matching problem in AVSS, we effectively established

a cross-modal affinity between a pair of audio-visual fea-

tures by modeling relative timing dependencies without su-

pervision. We further suggested a way of affinity regular-

ization to employ global alignment while addressing the

label permutation problem. Moreover, we generalized the

proposed networks to the complex domain to reconstruct

both magnitude and phase masks, enhancing the separation

performance. A direction for future work is to explore ap-

plications of this generic framework which can be widely

plugged into many audio-visual systems.

1https://cloud.google.com/speech-to-text
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