
Network Quantization with Element-wise Gradient Scaling

Junghyup Lee Dohyung Kim Bumsub Ham∗

School of Electrical and Electronic Engineering, Yonsei University

Abstract

Network quantization aims at reducing bit-widths of

weights and/or activations, particularly important for im-

plementing deep neural networks with limited hardware

resources. Most methods use the straight-through esti-

mator (STE) to train quantized networks, which avoids a

zero-gradient problem by replacing a derivative of a dis-

cretizer (i.e., a round function) with that of an identity func-

tion. Although quantized networks exploiting the STE have

shown decent performance, the STE is sub-optimal in that

it simply propagates the same gradient without consider-

ing discretization errors between inputs and outputs of the

discretizer. In this paper, we propose an element-wise gra-

dient scaling (EWGS), a simple yet effective alternative to

the STE, training a quantized network better than the STE

in terms of stability and accuracy. Given a gradient of

the discretizer output, EWGS adaptively scales up or down

each gradient element, and uses the scaled gradient as the

one for the discretizer input to train quantized networks via

backpropagation. The scaling is performed depending on

both the sign of each gradient element and an error between

the continuous input and discrete output of the discretizer.

We adjust a scaling factor adaptively using Hessian infor-

mation of a network. We show extensive experimental re-

sults on the image classification datasets, including CIFAR-

10 and ImageNet, with diverse network architectures under

a wide range of bit-width settings, demonstrating the effec-

tiveness of our method.

1. Introduction

Convolutional neural networks (CNNs) have shown re-

markable advances in many computer vision tasks, such

as image classification [16, 24, 36], semantic segmenta-

tion [15, 28], object detection [13, 27], and image restora-

tion [9], while at the cost of large amounts of weights and

operations. Network quantization lowers bit-precision of

weights and/or activations in a network. It is effective in

particular to reduce the memory and computational cost of

∗Corresponding author.

−𝓖𝓖𝐱𝐱𝑞𝑞
−𝓖𝓖𝐱𝐱𝑛𝑛

𝐱𝐱𝑞𝑞
𝐱𝐱𝑛𝑛copy

copy

round

(a) Gradient propagation using STE [3].

−𝓖𝓖𝐱𝐱𝑞𝑞−𝓖𝓖𝐱𝐱𝑛𝑛
𝐱𝐱𝑞𝑞

𝐱𝐱𝑛𝑛scale down

scale up

round

(b) Gradient propagation using EWGS.

Figure 1: Comparison of STE [3] and EWGS. We visualize dis-

crete levels and a loss landscape by straight lines and a contour

plot, respectively. In a forward pass, a continuous latent point xn

is mapped to a discrete point xq using a round function. Training

a quantized network requires backpropagating a gradient from xq

to xn. (a) The STE propagates the same gradient i.e., Gxn = Gxq

without considering the value of xn, where we denote by Gxn

and Gxq the gradients of xn and xq , respectively. (b) Our ap-

proach, on the other hand, scales up or down each element of the

gradient during backpropagation, while taking into account dis-

cretization errors i.e., xn − xq . (Best viewed in color.)

CNNs, and thus network quantization could be a potential

solution for implementing CNNs with limited hardware re-

sources. For example, binarized neural networks [19, 34]

use 32× less memory compared to the full-precision (32-

bit) counterparts, and the binarization techniques allow to

replace multiplication and addition with XNOR and bit-

count operations, respectively.

Quantized networks involve weight and/or activation

quantizers in convolutional or fully-connected layers. The

quantizers take full-precision weights or activations, and

typically perform normalization, discretization, and denor-

6448

malization steps to convert them into low-precision ones.

The main difficulty of training a quantized network arises

from the discretization step, where a discretizer (i.e., a

round function) maps a normalized value to one of dis-

crete levels. Since an exact derivative of the discretizer

is either zero or infinite, gradients become zero or ex-

plode during backpropagation. Most quantization meth-

ods [7, 12, 21, 31, 42, 44] overcome this issue by exploiting

the straight-through estimator (STE) [3]. The STE propa-

gates the same gradient from an output to an input of the

discretizer, assuming that the derivative of the discretizer

is equal to 1. This could bring a gradient mismatch prob-

lem [39], since the discretizer used in a forward pass (i.e.,

the round function) does not match up with that in a back-

ward pass (i.e., an identity or hard tanh functions). Nev-

ertheless, recent methods exploiting the STE have shown

reasonable performance [4, 12, 21, 31].

We take a different point of view on how the STE works.

We interpret that a full-precision input (which we call a “la-

tent value”) of the discretizer moves in a continuous space,

and a discretizer output (which we call a “discrete value”)

is determined by projecting the latent value to the nearest

discrete level in the space. This suggests that shifting the

latent values in the continuous space influences the discrete

values. The STE, in this sense, shifts (or updates) the la-

tent values with coarse gradients [41], that is, the gradients

obtained with the discrete values (Fig. 1a), which is sub-

optimal. For example, both latent values of 0.51 and 1.49
produce the same discrete value of 1 using a round func-

tion, and the STE forces to update the latent values equally

with the same gradient from the discrete value of 1, regard-

less of their discretization errors induced by the rounding.

Updating these latent values should be treated differently,

because, for example, a small increment for the latent value

of 1.49 leads to changing the discrete value from 1 to 2,

whereas the increment for the latent value of 0.51 cannot.

Similarly, a small decrement for the latent value of 0.51 can

convert the discrete value from 1 to 0, but the latent value

of 1.49 requires a much larger decrement to do so.

In this paper, we present an element-wise gradient scal-

ing (EWGS) that enables better training of a quantized net-

work, compared with the STE, in terms of stability and ac-

curacy. Given a gradient of discrete values, EWGS adap-

tively scales up or down each element of the gradient con-

sidering its sign and discretization errors between latent and

discrete values. The scaled gradient is then used to update

the latent value (Fig. 1b). Since optimal scaling factors,

which control the extent of EWGS, may vary across weight

or activation quantizers in different layers, we propose an

approach to adjusting the factors adaptively during training.

Specifically, we relate the scaling factor with the second-

order derivatives of a task loss w.r.t the discrete values, and

propose to estimate the factor with the trace of a Hessian

matrix, which can be computed efficiently with the Hutchin-

son’s method [1, 40]. Without an extensive hyperparam-

eter search, training schedules [39, 43, 47], or additional

modules [6, 30, 46], various CNN architectures trained with

our approach achieve state-of-the-art performance on Ima-

geNet [8]. Note that the STE is a special case of EWGS, in-

dicating that it can be exploited to other quantization meth-

ods using the STE. The main contributions of our work can

be summarized as follows:

• We introduce EWGS that scales up or down each gradi-

ent element of the discrete value adaptively for backprop-

agation, while considering discretization errors between

inputs and outputs of a discretizer.

• We relate a scaling factor with the second-order deriva-

tives of a loss function w.r.t discrete values, allowing to

compute the parameter effectively and adaptively with

the Hessian information of a quantized network.

• We demonstrate the effectiveness of our method with var-

ious CNN architectures under a wide range of bit-widths,

outperforming the state of the art on ImageNet [8]. We

also verify that our approach boosts the performance of

other quantization methods, such as DoReFa-Net [44]

and PROFIT [31].

Our code and models are available online: https://

cvlab.yonsei.ac.kr/projects/EWGS.

2. Related work

Network quantization has been formulated as a con-

strained optimization problem to minimize quantization er-

rors, where bit-widths of weight and/or activation values

are restricted by binary [34], ternary [25, 45], or arbitrary

ones [44]. The works of [5, 38] propose to consider the half-

wave Gaussian distribution of activations for quantization,

resulting from batch normalization [20] and a ReLU [24],

which reduces the errors from quantizing activation val-

ues. Recent methods learn quantizer parameters for con-

trolling, e.g., clipping ranges [7, 12, 21] and non-uniform

quantization intervals [21] or levels [42]. Motivated by this,

we design a uniform quantizer, and learn lower and upper

bounds of quantization intervals [21]. All the aforemen-

tioned approaches exploit STE to handle the derivative of

a discretizer. This suggests that our approach can be easily

incorporated into these methods, making it possible to boost

the performance in a complementary way.

Aside from quantization methods, lots of training tech-

niques have been introduced to enhance the performance

of quantized networks. Incremental quantization [43] di-

vides network weights in a layer into two groups of full-

precision and quantized ones, and trains a quantized net-

work in an iterative manner by expanding the group of

6449

quantized weights gradually. Progressive quantization [47]

decreases bit-widths from high- to low-precision gradually,

boosting the performance of a low-precision model. To

leverage the knowledge from full-precision models, high-

performance networks [30] or layer-wise auxiliary mod-

ules [46] are also exploited. Very recently, PROFIT [31]

introduces a training strategy, specially designed for quan-

tizing light-weight networks, which progressively freezes

learned network weights during an iterative quantization

process. These methods also rely on STE, and require

heuristic scheduling techniques [31, 43, 47] or additional

network weights [30, 46] for training. In contrast, our

approach focuses on the backpropagation step of network

quantization, improving the performance without bells and

whistles.

Similar to ours, recent methods [2, 6, 14, 39] try to tackle

the problem of STE. They claim that the STE causes a gra-

dient mismatch problem [14, 39], and introduce soft ver-

sions of discretizers, consisting of sigmoid [39] or tanh [14].

These approaches approximate the discretizer (typically us-

ing a round function) well, especially when a tempera-

ture parameter in sigmoid or tanh functions is large, but

the large temperature causes vanishing/exploding gradient

problems. Hyperparameters should thus be tuned carefully

during training [39]. The proximal method with a regular-

izer [2] and a meta quantizer using synthetic gradients [6]

avoid the use of STE. They are, however, limited to quan-

tizing network weights only, and require a cost-expensive

optimization process [2] or additional meta-learning mod-

ules [6]. On the contrary, our method can be applied to both

weight and activation quantization in an efficient manner

with a simple gradient scaling.

Closely related to ours, the works of [10, 11] exploit

Hessian information for network quantization. Specifically,

they exploit eigenvalues [11] or traces [10] of Hessian ma-

trices to measure the sensitivity of each layer, and allocate

different bit-widths to the layers. That is, they leverage the

Hessian information to train a mixed-precision network. In

contrast to this, we use the trace of a Hessian matrix to ad-

just a scaling factor for EWGS.

3. Approach

In this section, we introduce our quantization method us-

ing EWGS (Sec. 3.1). We then describe how to determine a

scaling factor for EWGS (Sec. 3.2).

3.1. Quantization with EWGS

We design a uniform quantizer Q that converts a full-

precision input x to a quantized output Q(x), where we de-

note by x a scalar element of either a weight or an input

activation tensor x in a layer. We learn a quantization inter-

val [14, 21] using lower and upper bounds, denoted by l and

u, respectively. Specifically, the quantizer first generates a

full-precision latent value xn by normalizing and clipping

the input value x as follows:

xn = clip

(

x− l

u− l
, 0, 1

)

, (1)

where clip(·, 0, 1) is a clipping function with lower and up-

per bounds of 0 and 1, respectively. Note that weight and/or

activation quantizers in every quantized layer use separate

parameters for the quantization intervals (i.e., l and u).

For b-bit quantization, the latent value xn is converted to

a discrete value xq using a round function with pre-/post-

scaling as follows:

xq =
round((2b − 1)xn)

2b − 1
. (2)

Finally, the quantizer outputs a quantized weight QW (x) or

activation QA(x) as follows:

QW (x) = 2 (xq − 0.5) , QA(x) = xq, (3)

where we restrict the quantized activation QA(x) to be non-

negative [5] considering the pre-activation by a ReLU. To

adjust an output scale of the layer, we train an additional

parameter α for each quantized layer, which is multiplied by

the output activations of convolutional or fully-connected

layers.

The main difficulty of training a quantized network

arises from the round function in Eq. (2), since its deriva-

tive is zero at almost everywhere. Most quantization meth-

ods avoid zero gradients using STE [3]. It approximates

the derivative of the round function by an identity function,

that is, Gxn
= Gxq

, where we denote by xn and xq ten-

sors containing latent and discrete values, respectively, and

by Gxn
and Gxq

corresponding gradients. Propagating the

same gradient from discrete to latent values is, however,

sub-optimal for the following reasons: (1) Multiple latent

values can produce the same discrete value; (2) The same

gradient provided by the discrete value affects differently to

each of the latent values. To overcome this problem, we in-

troduce an EWGS method, an effective alternative to STE,

defined as follows:

gxn
= gxq

(1 + δsign(gxq
)(xn − xq)), (4)

where gxn
and gxq

are the elements of the gradients Gxn

and Gxq
, corresponding to the partial derivatives of a task

loss w.r.t xn and xq , respectively. sign(·) is a signum func-

tion and δ ≥ 0 is a scaling factor. EWGS adjusts the gra-

dient element of discrete values gxq
adaptively using the

sign of the element, sign(gxq
), and a discretization error,

xn − xq . Note that STE is a special case of EWGS, that is,

Eq. (4) corresponds to STE, when a scaling factor δ is zero.

We visualize in Fig. 2 1-D examples illustrating an effect

of EWGS. We can see that EWGS encourages a gradient el-

ement for the discrete value gxq
to decrease with the scale

6450

round

𝑔𝑔𝑥𝑥𝑞𝑞
𝑔𝑔𝑥𝑥𝑛𝑛 > 𝑔𝑔𝑥𝑥𝑞𝑞

𝑥𝑥𝑛𝑛 < 𝑥𝑥𝑞𝑞 round

𝑔𝑔𝑥𝑥𝑞𝑞
𝑔𝑔𝑥𝑥𝑛𝑛 < 𝑔𝑔𝑥𝑥𝑞𝑞

𝑥𝑥𝑞𝑞 < 𝑥𝑥𝑛𝑛
𝑔𝑔𝑥𝑥𝑞𝑞

𝑔𝑔𝑥𝑥𝑛𝑛 = 𝑔𝑔𝑥𝑥𝑞𝑞𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑞𝑞
round

(a) The sign of an update for the discrete value xq is positive (i.e., −gxq > 0).

round

𝑔𝑔𝑥𝑥𝑞𝑞
𝑔𝑔𝑥𝑥𝑛𝑛 > 𝑔𝑔𝑥𝑥𝑞𝑞

𝑥𝑥𝑛𝑛 < 𝑥𝑥𝑞𝑞 round

𝑔𝑔𝑥𝑥𝑞𝑞
𝑔𝑔𝑥𝑥𝑛𝑛 < 𝑔𝑔𝑥𝑥𝑞𝑞

𝑥𝑥𝑞𝑞 < 𝑥𝑥𝑛𝑛
𝑔𝑔𝑥𝑥𝑞𝑞

𝑔𝑔𝑥𝑥𝑛𝑛 = 𝑔𝑔𝑥𝑥𝑞𝑞𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑞𝑞round

(b) The sign of an update for the discrete value xq is negative (i.e., −gxq < 0).

Figure 2: 1-D illustrations of EWGS. We visualize a latent value xn and a discrete value xq , by red and cyan circles, respectively, where

the discrete value is obtained by applying a round function (a dashed arrow) to the latent value. We also visualize their update vectors by

solid arrows with corresponding colors, and we denote by |gxn | and |gxq | the magnitudes of the update vectors for xn and xq , respectively.

For each (a) and (b), we present three cases, where the latent value xn is equal to (left), smaller than (middle), and larger than (right) the

discrete one xq . EWGS scales up the gradient element for the discrete value gxq , when a latent value xn requires a larger magnitude of an

update, compared to the discrete one xq (e.g., (a)-middle or (b)-right), and scaling down in the opposite case (e.g., (a)-right or (b)-middle).

When the latent value xn is equal to the discrete value xq , it propagates the same gradient element similar to STE (e.g., (a)-left or (b)-left).

(Best viewed in color.)

of (1+ δsign(gxq
)(xn − xq)) to update the latent value xn,

when the latent value xn to update is already located farther

than the discrete value xq in the direction of change (i.e.,

−sign(gxq
)) as shown in Fig. 2a (right) and Fig. 2b (mid-

dle), and to increase in the opposite case as shown in Fig. 2a

(middle) and Fig. 2b (right). Note that we use non-negative

values for the scaling factor δ, since negative ones lead to

opposite effects. To sum up, EWGS resolves discrepancies

between latent and discrete values during backpropagation

by considering discretization errors between these values

and their direction of change. As will be shown in Sec. 4.3,

this not only stabilizes the training of a quantized network

but also encourages better convergence compared to STE.

3.2. Scaling factor for EWGS

It is crucial to determine a scaling factor δ, since an

improper value would hinder the training process, and

weight/activation quantizers in different layers may require

different degrees of scaling. Let us consider the following

equation:

gxn
= gxq

+
gxn

− gxq

xn − xq
(xn − xq)

= gxq
+

gxq+ǫ − gxq

ǫ
(xn − xq) ,

(5)

where ǫ = xn − xq is a discretization error from the round

function in Eq. (2). Since an absolute value of the error is

bounded by a small number i.e., |ǫ| ≤ 0.5
2b−1

, we assume that

the error is small enough to approximate Eq. (5) as follows:

gxn
≈ gxq

+ g′xq
(xn − xq) , (6)

where g′xq
=

∂gxq

∂xq
is a second-order derivative of a task

loss w.r.t the discrete value xq . This can be represented as

follows:

gxn
≈ gxq

(

1 +
g′xq

|gxq
| sign(gxq

)(xn − xq)

)

, (7)

which corresponds to EWGS in Eq. (4). This suggests that

we can set the scaling factor δ as
g′

xq

|gxq |
, but calculating an

exact Hessian matrix H to obtain the second-order deriva-

tive g′xq
is computationally demanding. We instead approx-

imate the second-order derivative by an average of diago-

nal elements in the Hessian matrix H , with an assumption

that the main diagonal dominates the matrix H , and the

discrete values xq obtained from the same weight or acti-

vation quantizer in a layer influence similarly to the loss

function [10, 11]. To this end, we compute a Hessian trace

with an efficient algorithm [10, 40] using the Hutchinson’s

method [1]:

Tr(H) = Tr(HI) = Tr(HE[vvT])

= E[Tr(Hvv
T)] = E[vTHv],

(8)

6451

Algorithm 1 Forward and backward propagations in a

quantizer using EWGS.

1: Hyperparameter: a quantization bit-width b; an update pe-

riod of the scaling factor k.

2: Parameter: lower and upper bounds of a quantization inter-

val, denoted by l, u ∈ R, respectively; a scaling factor for

EWGS δ ∈ R.

3: Input: a full-precision input tensor x ∈ R
N containing either

weights or activations, where N is the number of elements in

the tensor.

4: Output: a quantized tensor Q(x) ∈ R
N .

5: Forward Propagation

6: Compute latent values [Eq. (1)]:

xn = clip
(

x−l
u−l

, 0, 1
)

.

7: Compute discrete values [Eq. (2)]:

xq = round((2b−1)xn)

2b−1
.

8: Compute quantized output values [Eq. (3)]:

Q(x) =

{

2 (xq − 0.5) , if x is a weight tensor.

xq, if x is an activation tensor.

9: Backward Propagation

10: Obtain the gradient of discrete values Gxq via backpropaga-

tion.

11: Calculate the gradient of latent values Gxn using EWGS

[Eq. (4)]:

Gxn = Gxq ⊙
(

1 + δsign(Gxq)⊙ (xn − xq)
)

,

where ⊙ is element-wise multiplication and sign(·) applies

the signum function to each element.

12: Propagate the gradient to the input.

13: Scaling Factor Update

14: Update the scaling factor δ using Eq. (10) for every k itera-

tions.

where I is an identity matrix, E is an expectation operator,

and v is a random vector drawn from the Rademacher distri-

bution, satisfying E[vvT] = I . This implies that we can es-

timate the trace of a Hessian matrix Tr(H) with E[vTHv],
where we can obtain Hv efficiently without forming an ex-

act Hessian matrix as follows:

∂GT
xq
v

∂xq
=

∂GT
xq

∂xq
v + GT

xq

∂v

∂xq
=

∂GT
xq

∂xq
v = Hv. (9)

We then define the scale parameter δ as follows:

δ =
Tr(H)/N

G
, (10)

where N is the number of diagonal elements in the Hessian

matrix and G is a gradient representative determined from a

distribution of the gradients Gxq
. Based on Eq. (7), we could

take an average over the absolute values of gradient ele-

ments i.e., E[|gxq
|] for setting G, but we empirically found

that most gradients are concentrated near zero, such that the

average value tends to be biased to small gradient elements.

We instead set G to a sufficiently large value. A plausible

reason is that considering large gradient elements is more

important, since they dominate the training. Specifically,

we use 3σ(Gxq
) as the gradient representative G, where

σ(·) computes a standard deviation. It enables finding a

sufficiently large gradient element (e.g., 3σ(·) accounts for

roughly 99 percent of data in case of the Gaussian distribu-

tion). We could take the maximum over the absolute values

of gradient elements, but it often corresponds to an outlier

of a distribution.

Assuming that the loss function is locally convex, we

take a non-negative value for the scaling factor (i.e.,

max(0, δ)), which coincides with the condition in Eq. (4).

We use individual scaling factors for all weight and acti-

vation quantizers in a network, and update them periodi-

cally during training for efficiency. We summarize in Algo-

rithm 1 an overall quantization procedure of our approach.

4. Experiments

In this section, we describe our experimental set-

tings (Sec. 4.1) and evaluate our method on image classi-

fication (Sec. 4.2). We then present a detailed analysis on

EWGS (Sec. 4.3).

4.1. Experimental settings

Dataset. We perform extensive experiments on standard

benchmarks for image classification, including CIFAR-

10 [23] and ImageNet (ILSVRC-2012) [8]. The CIFAR-10

dataset contains images of size 32 × 32, consisting of 50K

training and 10K test images with 10 classes. The ImageNet

dataset includes roughly 1.2M training and 50K validation

images with 1K classes. We report the top-1 classification

accuracy for both datasets.

Network architectures. We use network architectures of

ResNet-20 [16] on CIFAR-10, and ResNet-18, ResNet-34

and MobileNet-V2 [35] on ImageNet. We do not modify the

network architectures for fair comparison. We insert weight

and/or activation quantizers right before the convolutional

or fully-connected operators in every layer to quantize. Fol-

lowing the standard experimental protocol in [34, 42], we

do not quantize the first and the last layers unless otherwise

specified. We initialize network weights with pretrained

full-precision models, which are readily available in Py-

Torch [32] (ResNet-18, ResNet-34, and MobileNet-V2) or

trained by ourselves (ResNet-20).

Initialization. We initialize the lower and upper bounds

of a quantization interval, l and u, respectively, by consider-

ing the distribution of quantizer inputs, such that the interval

covers roughly 99% of the input values, to use a set of dis-

crete levels effectively. Specifically, for each weight quan-

tizer, the lower and upper bounds are initialized by −3σ(w)
and 3σ(w), respectively, where w is a weight tensor in a

layer. Considering that input activations typically follow

6452

Methods

W/A
1/1 1/2 2/2 3/3 4/4 1/32 2/32 32/32

XNOR [34] 51.2 (−18.1) - - - - 60.8 (−8.5) - 69.3

PACT [7] - - 64.4 (−5.8) 68.1 (−2.1) 69.2 (−1.0) - - 70.2

LQ-Net [42] - 62.6 (−7.7) 64.9 (−5.4) 68.2 (−2.1) 69.3 (−1.0) - 68.0 (−2.3) 70.3

QIL [21] - - 65.7 (−4.5) 69.2 (−1.0) 70.1 (−0.1) - 68.1 (−2.1) 70.2

QuantNet [39] 53.6 (−16.7) 63.4 (−6.9) - - - 66.5 (−3.8) 69.1 (−1.2) 70.3

DSQ [14] - - 65.2 (−4.7) 68.7 (−1.2) 69.6† (−0.3) 63.7 (−6.2) - 69.9

LSQ [4, 12] - - 66.7 (−3.4) 69.4 (−0.7) 70.7 (+0.6) - - 70.1

LSQ+ [4] - - 66.8 (−3.3) 69.3 (−0.8) 70.8 (+0.7) - - 70.1

IRNet [33] - - - - - 66.5 (−3.1) - 69.6

Ours 55.3 (−14.6) 64.4 (−5.5) 67.0 (−2.9) 69.7 (−0.2) 70.6 (+0.7) 67.3 (−2.6) 69.6 (−0.3) 69.9

Table 1: Quantitative comparison of top-1 validation accuracy on ImageNet [8] using the ResNet-18 [16] architecture. We report results

for quantized networks and their full-precision versions. W/A represents bit-widths of weights (W) and activations (A). The numbers in

brackets indicate the performance drops or gains compared to the full-precision models. †: all layers including the first and the last layers

are quantized.

the half-wave Gaussian distribution [5], we initialize the

lower and upper bounds in each activation quantizer with

0 and
3σ(a)√
1−2/π

, respectively, where a is an input activa-

tion tensor. An output scale α in every quantized layer is

initialized by
E(|o|)
E(|oq|)

, where o and oq are convolution (or

matrix multiplication) outputs computed with full-precision

and quantized representations, respectively. Note that we

initialize these parameters during the first forward pass. We

set scaling factors δ for EWGS to 0 initially, and update

them for every 1 epoch on ImageNet and 10 epochs on

CIFAR-10.

Training details. Initial learning rates for network

weights are set to 1e-3, 1e-2, 1e-2, and 5e-3 for ResNet-20,

ResNet-18, ResNet-34, and MobileNet-V2, respectively.

We set a learning rate for the quantizer parameters (i.e.,

interval parameters, l and u, and output scales α) to 1e-5,

smaller than those of the network weights [21]. We use a co-

sine annealing technique [29] for learning rate decay. Fol-

lowing the training settings in [21, 31, 33], we use the SGD

optimizer to train the network weights, except ResNet-20

on CIFAR-10 using the Adam optimizer [22], with weight

decay of 4e-5 for MobileNet-V2 and 1e-4 for the others.

The quantizer parameters are trained with the Adam opti-

mizer without weight decay. We train ResNet-20 for 400

epochs on CIFAR-10 with a batch size of 256. ResNet-18,

ResNet-34, and MobileNet-V2 are trained for 100 epochs

on ImageNet with batch sizes of 256, 256, and 100, respec-

tively.

4.2. Results

We compare in Table 1 the validation accuracy on Ima-

geNet [8] using the ResNet-18 [16] architecture under var-

ious bit-width settings. All numbers for other methods, ex-

cept for LSQ [12], are taken from corresponding papers in-

cluding the performance of full-precision models. Note that

LSQ reports the results with a pre-activation structure [17]

of ResNet, which is different from ours. We thus take the re-

sults from the work of [4] in which LSQ is reproduced using

the same network structure as ours. We summarize the find-

ings from Table 1 as follows: (1) Our quantization method

with EWGS achieves the state of the art. For 4-bit weights

and 4-bit activations, our method shows the classification

accuracy slightly lower than LSQ+ [4], but the performance

gain w.r.t the full-precision model is on a par with LSQ+.

In particular, our model achieves the performance compa-

rable to the full-precision one with only 3-bit representa-

tions. (2) Our method performs better than QuantNet [39]

and DSQ [14], which attempt to address the problem of

STE using soft quantizers, indicating that EWGS is a bet-

ter alternative to STE than soft quantizers. (3) Our method

exploiting EWGS brings significant performance improve-

ment in a binary setting, surpassing other methods including

the ones specially designed for binary quantization [33, 34].

This suggests that EWGS works favorably even with large

discretization errors. (4) We verify the effectiveness of our

method over a wide range of quantization bit-widths, out-

performing the state of the art consistently, whereas other

methods report the results selectively in few settings.

We show in Tables 2 and 3 quantization results for

ResNet-34 [16] and MobileNet-V2 [35], respectively, on

ImageNet [8]. As mentioned earlier, LSQ [12] uses a dif-

ferent network structure1, but we include its performance in

Table 2 in order to compare relative performance drops or

gains for network quantization. We can observe from Ta-

ble 2 similar findings in Table 1. Our method outperforms

the state of the art over all bit-width settings. With 3-bit

weights and 3-bit activations, the quantized network trained

with our method does not degrade the performance at all,

compared with the full-precision model. Ours also gives

better results than LSQ in terms of performance drops or

1The full-precision baseline of ResNet-34 used in LSQ shows the top-1

validation accuracy of 74.1, which is higher than that of our full-precision

baseline (73.3).

6453

Methods

W/A
1/1 1/2 2/2 3/3 4/4 1/32 32/32

LSQ [12] - - 71.6 (−2.5) 73.4 (−0.7) 74.1 (+0.0) - 74.1

ABC-Net [26] 52.4 (−20.9) - - 66.7 (−6.6) - - 73.3

LQ-Net [42] - 66.6 (−7.2) 69.8 (−4.0) 71.9 (−1.9) - - 73.8

QIL [21] - - 70.6 (−3.1) 73.1 (−0.6) 73.7 (+0.0) - 73.7

DSQ [14] - - 70.0 (−3.8) 72.5 (−1.3) 72.8† (−1.0) - 73.8

IR-Net [33] - - - - - 70.4 (−2.9) 73.3

Ours 61.5 (−11.8) 69.6 (−3.7) 71.4 (−1.9) 73.3 (+0.0) 73.9 (+0.6) 72.2 (−1.1) 73.3

Table 2: Quantitative comparison of top-1 validation accuracy on ImageNet [8] using the ResNet-34 [16] architecture. We report results

for quantized networks and their full-precision versions. †: all layers including the first and the last layers are quantized.

Methods

W/A
4/4 32/32

PACT [7, 37] 61.4 (−10.4) 71.8

DSQ [14] 64.8 (−7.1) 71.9

PROFIT [31] 71.6† (−0.3) 71.9

Ours 70.3† (−1.6) 71.9

Table 3: Quantitative comparison of top-1 validation accuracy on

ImageNet [8] using the MobileNet-V2 [35] architecture. We quan-

tize MobileNet-V2 using our method with the training hyperpa-

rameters and the network structures used in PROFIT [31]. We

report results for quantized networks and their full-precision ver-

sions. †: all layers including the first and the last layers are quan-

tized.

gains after quantization. We can see from Table 3 that our

model performs better than PACT [7, 37] and DSQ [14],

but it is slightly outperformed by PROFIT [31] for 4-bit

quantization of both weights and activations. Note that

PROFIT exploits many training heuristics, such as knowl-

edge distillation [18], progressive quantization [47], an ex-

ponential moving average of weights, batch normalization

post-training, and iterative training with incremental weight

freezing. We achieve a comparable result using a sim-

ple gradient scaling without bells and whistles, which con-

firms that EWGS is simple yet effective method for net-

work quantization. Moreover, PROFIT is effective to quan-

tize light-weight networks only, while ours can be applied

to various network architectures under a wide range of bit-

widths.

4.3. Discussion

Analysis on scaling factor. We show in Fig. 3 variations

of scaling factors at a particular layer during training. We

can see that scaling factors oscillate within a certain range

without diverging or changing drastically. This suggests

that we could consider the scaling factors as hyperparam-

eters, fixed regardless of training epochs, instead of updat-

ing them frequently. Figure 3 also shows scaling factors

for each layer averaged over epochs. We can observe that

scaling factors for weights and activations tend to decrease

and increase, respectively, for deeper layers, except the 7th,

12th, and 17th layers. They correspond to convolutional lay-

0 20 40 60 80 100
Epoch

10 4

10 3

Sc
al

in
g

fa
ct

or

Variations of scaling factors

W

A

1 3 5 7 9 11 13 15 17 19
Layer number

10 4

10 3

Av
er

ag
e

sc
al

in
g

fa
ct

or

Average scaling factors for each layer

W

A

Figure 3: Variations of scaling factors in the 10th quantized layer

over training epochs (left); Scaling factors for each layer averaged

over epochs (right). We visualize scaling factors for both weight

and activation, denoted by δW and δA, respectively. We use the

ResNet-18 [16] architecture for binary quantization. (Best viewed

in color.)

Scaling factor
Top-1 accuracy

(full-precision: 91.4)

Eq. (10) with G = 3σ(Gxq) 85.6

Eq. (10) with G = max(|Gxq |) 85.5

Eq. (10) with G = E[|gxq |] 83.1

Fixed (1e-1) 60.9

Fixed (1e-3) 85.3

Fixed (1e-5) 85.0

Fixed (0) = STE 84.7

Table 4: Quantitative comparison for different configurations of

scaling factors. We binarize both weights and activations of

ResNet-20 [16] on CIFAR-10 [23], and report the top-1 test accu-

racy. The first three rows use scaling factors obtained by Eq. (10)

but with different gradient representatives G. The last four rows

use fixed hyperparameters, specified in brackets, for both scaling

factors of weights and activations in all quantized layers.

ers with a filter size of 1 × 1 and a stride of 2, designed to

reduce the size of residuals in the residual blocks, having

the different behavior compared to other plain layers. This

confirms that our strategy leveraging Hessian information

captures different characteristics across layers, providing an

individual scaling factor for each layer.

We compare quantization results for different configura-

tions of scaling factors in Table 4. We obtain the results

by binarizing weights and activations of ResNet-20 [16] on

CIFAR-10 [23]. The first three rows show quantization re-

sults for different gradient representatives G in Eq. (10).

Overall, our method shows better results with large gradi-

6454

Network
W/A

Quant. Backward Top-1

architectures methods methods acc.

ImageNet

ResNet-18 [16]

1/1 Ours
STE 54.6

EWGS 55.3

1/32 Ours
STE 66.3

EWGS 67.3

MobileNet-V2 [35]

4/4† Ours
STE 69.2

EWGS 70.3

4/4† PROFIT [31]
STE 69.2⋆

EWGS‡ 70.0

CIFAR-10

ResNet-20 [16]

1/1 Ours
STE 84.7

EWGS 85.6

1/1 DoReFa [44]
STE 84.9⋆

EWGS‡ 85.9

1/32† DoReFa [44]
STE 89.7⋆

EWGS‡ 90.3

Table 5: Quantitative comparison of STE and EWGS. We use

ResNet-18 [16] and MobileNet-V2 [35] on ImageNet [8], and

ResNet-20 on CIFAR-10 [23]. We report the top-1 validation

and test accuracies for ImageNet and CIFAR-10, respectively. For

MobileNet-V2 and ResNet-20, we also compare the performance

with different quantization methods, such as PROFIT [31] and

DoReFa-Net [44]. †: all layers including the first and the last

layers are quantized; ‡: weight and activation scaling factors for

EWGS in all quantized layers are fixed to 0.01; ⋆: models repro-

duced by ourselves.

ent elements, e.g., three standard deviations and the maxi-

mum over absolute values in the first and second rows, re-

spectively, than the small one, e.g., an average in the third

row. A reason is that large gradients mainly influence the

training process, but an average value is usually biased to

small gradient elements, as discussed in Sec. 3.2. The last

four rows compare the results with fixed scaling factors.

We use the same scaling factor for both weight and activa-

tion quantizers in all quantized layers. We can see that our

method achieves the performance comparable to the best

result (85.6 vs. 85.3), and even outperforms STE (84.7 vs.

85.3), if the scaling factor is properly set. Otherwise, the

performance is degraded (e.g., with the scaling factor of 1e-

1) or becomes similar to the one for STE, especially with

an extremely small scaling factor (e.g., 1e-5). This suggests

that EWGS is also effective with a single scaling factor, but

the value should be carefully chosen.

Performance comparison with STE. We compare in Ta-

ble 5 the performance of EWGS and STE with different

combinations of network architectures, quantization meth-

ods, and bit-widths. Specifically, we use different quanti-

zation methods, including PROFIT [31], DoReFa-Net [44],

and ours, and exploit either EWGS or STE for backprop-

agation. We then use them to quantize ResNet-18 [16],

MobilNet-V2 [35] and ResNet-20. EWGS gives better re-

125K 250K 375K 500K
Iteration

2.0

2.2

2.4

2.6

2.8

3.0

Tr
ai

ni
ng

 lo
ss

Training loss
STE
EWGS

0 20 40 60 80 100
Epoch

40.0

42.5

45.0

47.5

50.0

52.5

55.0

To
p-

1
ac

cu
ra

cy
 [%

]

Top-1 validation accuracy
STE
EWGS

(a) Weight: 1-bit / Activation: 1-bit.

125K 250K 375K 500K
Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

ni
ng

 lo
ss

Training loss
STE
EWGS

0 20 40 60 80 100
Epoch

50

55

60

65

To
p-

1
ac

cu
ra

cy
 [%

]

Top-1 validation accuracy
STE
EWGS

(b) Weight: 1-bit / Activation: 32-bit.

Figure 4: Training losses and validation accuracies for binarized

networks using STE and EWGS. We use ResNet-18 [16] to quan-

tize (a) both weights and activations and (b) weights only, and

show the results on ImageNet. (Best viewed in color.)

sults than STE within our framework, achieving about 1%

accuracy gains over STE consistently, regardless of the net-

work architectures. It also outperforms STE by a large mar-

gin for other quantization methods, such as PROFIT [31]

and DoReFa-Net [44], demonstrating the generalization

ability of EWGS. The accuracy of PROFIT is slightly lower

than the one reported in the paper, possibly because we do

not use the progressive quantization technique [47]. We

show in Fig. 4 the training losses and validation accura-

cies for binarizing the ResNet-18 [16] architecture in Ta-

ble 5. We can clearly see that training quantized networks

with EWGS is better in terms of stability and accuracy,

compared to STE. The networks with EWGS achieve lower

losses and higher accuracies, which is significant especially

for weight-only quantization. These results confirm once

more the effectiveness of EWGS.

5. Conclusion

We have introduced an EWGS method that adjusts gradi-

ents and scaling factors adaptively for each layer. The vari-

ous CNN architectures quantized by our method show state-

of-the-art results for a wide range of bit-widths. We have

shown that EWGS boosts the quantization performance of

other methods exploiting STE, without bells and whistles,

demonstrating the effectiveness and generalization ability

of our approach to scaling gradients adaptively for back-

propagation. We believe that EWGS could be an effective

alternative to STE for network quantization.

Acknowledgments. This research was supported by the

Samsung Research Funding & Incubation Center for Future

Technology (SRFC-IT1802-06).

6455

References

[1] Haim Avron and Sivan Toledo. Randomized algorithms for

estimating the trace of an implicit symmetric positive semi-

definite matrix. Journal of the ACM (JACM), 58(2):1–34,

2011. 2, 4
[2] Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant:

Quantized neural networks via proximal operators. In ICLR,

2019. 3
[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-

timating or propagating gradients through stochastic neurons

for conditional computation. arXiv, 2013. 1, 2, 3
[4] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen

Blankevoort, and Nojun Kwak. LSQ+: Improving low-bit

quantization through learnable offsets and better initializa-

tion. In CVPR Workshop, 2020. 2, 6
[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaussian

quantization. In CVPR, 2017. 2, 3, 6
[6] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan.

MetaQuant: Learning to quantize by learning to penetrate

non-differentiable quantization. In NeurIPS, 2019. 2, 3
[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. PACT: Parameterized clipping activation

for quantized neural networks. arXiv, 2018. 2, 6, 7
[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009. 2, 5, 6, 7, 8
[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In ECCV, 2014. 1
[10] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir

Gholami, Michael W Mahoney, and Kurt Keutzer. HAWQ-

V2: Hessian aware trace-weighted quantization of neural

networks. arXiv, 2019. 3, 4
[11] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-

honey, and Kurt Keutzer. HAWQ: Hessian aware quanti-

zation of neural networks with mixed-precision. In ICCV,

2019. 3, 4
[12] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S Modha.

Learned step size quantization. In ICLR, 2020. 2, 6, 7
[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014. 1
[14] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit

neural networks. In ICCV, 2019. 3, 6, 7
[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017. 1
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 5, 6, 7, 8
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016. 6
[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. In NeurIPS Workshop, 2015.

7
[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

NeurIPS, 2016. 1
[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 2
[21] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by opti-

mizing quantization intervals with task loss. In CVPR, 2019.

2, 3, 6, 7
[22] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 6
[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, 2009.

5, 7, 8
[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In NeurIPS, 2012. 1, 2
[25] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.

arXiv, 2016. 2
[26] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In NeurIPS, 2017. 7
[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In ECCV, 2016.

1
[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 1
[29] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-

ent descent with warm restarts. In ICLR, 2017. 6
[30] Asit Mishra and Debbie Marr. Apprentice: Using knowledge

distillation techniques to improve low-precision network ac-

curacy. In ICLR, 2018. 2, 3
[31] Eunhyeok Park and Sungjoo Yoo. PROFIT: A novel training

method for sub-4-bit MobileNet models. In ECCV, 2020. 2,

3, 6, 7, 8
[32] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. 2017. 5
[33] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,

Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and

backward information retention for accurate binary neural

networks. In CVPR, 2020. 6, 7
[34] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. XNOR-Net: ImageNet classification us-

ing binary convolutional neural networks. In ECCV, 2016.

1, 2, 5, 6
[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 5, 6, 7, 8
[36] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2014. 1
[37] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

HAQ: Hardware-aware automated quantization with mixed

precision. In CVPR, 2019. 7

6456

[38] Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang,

Yang Liu, and Jian Cheng. Two-step quantization for low-bit

neural networks. In CVPR, 2018. 2
[39] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,

Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quanti-

zation networks. In CVPR, 2019. 2, 3, 6
[40] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Ma-

honey. PyHessian: Neural networks through the lens of the

Hessian. In ICML Workshop, 2020. 2, 4
[41] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher,

Yingyong Qi, and Jack Xin. Understanding straight-through

estimator in training activation quantized neural nets. In

ICLR, 2019. 2
[42] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. LQ-Nets: Learned quantization for highly accurate and

compact deep neural networks. In ECCV, 2018. 2, 5, 6, 7
[43] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong

Chen. Incremental network quantization: Towards lossless

CNNs with low-precision weights. In ICLR, 2017. 2, 3
[44] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He

Wen, and Yuheng Zou. DoReFa-Net: Training low bitwidth

convolutional neural networks with low bitwidth gradients.

arXiv, 2016. 2, 8
[45] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.

Trained ternary quantization. In ICLR, 2017. 2
[46] Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen,

and Ian Reid. Training quantized neural networks with a

full-precision auxiliary module. In CVPR, 2020. 2, 3
[47] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,

and Ian Reid. Towards effective low-bitwidth convolutional

neural networks. In CVPR, 2018. 2, 3, 7, 8

6457

