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Abstract

Existing studies in weakly-supervised semantic segmen-

tation (WSSS) using image-level weak supervision have sev-

eral limitations: sparse object coverage, inaccurate ob-

ject boundaries, and co-occurring pixels from non-target

objects. To overcome these challenges, we propose a

novel framework, namely Explicit Pseudo-pixel Supervision

(EPS), which learns from pixel-level feedback by combin-

ing two weak supervisions; the image-level label provides

the object identity via the localization map and the saliency

map from the off-the-shelf saliency detection model offers

rich boundaries. We devise a joint training strategy to fully

utilize the complementary relationship between both infor-

mation. Our method can obtain accurate object boundaries

and discard co-occurring pixels, thereby significantly im-

proving the quality of pseudo-masks. Experimental results

show that the proposed method remarkably outperforms ex-

isting methods by resolving key challenges of WSSS and

achieves the new state-of-the-art performance on both PAS-

CAL VOC 2012 and MS COCO 2014 datasets. The code is

available at https://github.com/halbielee/EPS.

1. Introduction

Weakly-supervised semantic segmentation (WSSS) uti-

lizes weak supervision (e.g., image-level labels [36, 37],

scribbles [29], or bounding boxes [22]) and aims at

achieving competitive performances to the fully-supervised

model, which requires pixel-level labels. Most existing

studies adopt image-level labels as the weak supervision of

the segmentation model. The overall pipeline of WSSS con-

sists of two stages. Firstly, pseudo-masks are generated for
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Figure 1. Motivating example of utilizing both the saliency map

and the localization map for WSSS. (a) Groundtruth, (b) saliency

map via PFAN [51], (c) localization map via CAM [52] and (d)

our EPS utilizing both the saliency map and the localization map

for training a classifier. Note that the saliency map cannot capture

person and car while our result can correctly restore them, and the

localization map overly captures two objects.

target objects using an image classifier. Then, the segmen-

tation model is trained using the pseudo-masks as supervi-

sion. The prevalent technique for generating pseudo-masks

is class activation mapping (CAM) [52], which provides ob-

ject localization maps corresponding to their image-level

labels. Because of the supervision gap between the fully

(i.e., pixel-level annotations) and weakly (i.e., image-level

labels) supervised semantic segmentation, WSSS has the

following key challenges: 1) the localization map only cap-

tures a small fraction of target objects [52], 2) it suffers from

the boundary mismatch of the objects [23], and 3) it hardly

separates co-occurring pixels from target objects (e.g., the

railroad from a train) [25].
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To address these problems, existing studies can be cat-

egorized into three pillars. The first approach expands ob-

ject coverage to capture the full extent of objects by eras-

ing pixels [9, 23, 28], ensembling score maps [21, 27], or

using self-supervised signal [41]. However, they fail to de-

termine accurate object boundaries of the target object be-

cause they have no clue to guide the object’s shape. The

second approach focuses on improving the object bound-

aries of pseudo-masks [13, 32]. Since they effectively learn

object boundaries, they naturally expand pseudo-masks un-

til boundaries. However, they still fail to distinguish co-

incident pixels of non-target objects from a target object.

It is because the strong correlation between the foreground

and the background (i.e., co-occurrence) is almost indistin-

guishable from an inductive bias (i.e., the frequency of ob-

serving the target object and its coincident pixels), as shown

in [10]. Lastly, the third approach aims to mitigate the co-

occurrence problem using extra groundtruth masks [24], or

the saliency map [35, 47]. However, [24, 28] require strong

pixel-level annotations, which are far from a weakly super-

vised learning paradigm. [35] is sensitive to the errors of

the saliency map. Also, [47] does not cover the full extent

of objects and suffers from the boundary mismatch.

In this paper, our goal is to overcome the three challenges

of WSSS by fully utilizing both the localization map (i.e.,

CAM from the image classifier trained with image-level la-

bels) and the saliency map (i.e., the output of the off-the-

shelf saliency detection model [18, 34, 51]). We focus on

a complementary relationship in the localization map and

the saliency map. As illustrated in Figure 1, the localization

map can distinguish different objects but does not separate

their boundaries effectively. Contrarily, while the saliency

map provides rich boundary information, it does not reveal

object identity. In this sense, we argue that our method us-

ing two complementary pieces of information can resolve

the performance bottleneck of WSSS.

To this end, we propose a novel framework for WSSS,

called Explicit Pseudo-pixel Supervision (EPS). To fully

utilize the saliency map (i.e., both the foreground and the

background), we design a classifier to predict C+1 classes,

consisting of C target classes and the background class. We

leverage C localization maps and the background localiza-

tion map to estimate a saliency map. Then, the saliency loss

is defined as the pixel-wise difference between the saliency

map and our estimated saliency map. By introducing the

saliency loss, the model can be supervised by pseudo-pixel

feedback across all classes. We also use the multi-label clas-

sification loss to predict image-level labels. Therefore, we

train the classifier to optimize both the saliency loss and the

multi-label classification loss, synergizing the predictions

for both the background and foreground pixels– we find that

our strategy can improve both the saliency map (Section 3.3

and Figure 3) and the pseudo-mask (Section 5.1 and Fig-

ure 4).

We stress that, because the saliency loss penalizes

boundary mismatches via pseudo-pixel feedback, it can en-

force our method to learn the object’s accurate boundaries.

As a byproduct, we can also capture the entire object by ex-

panding the map until the boundaries. Because the saliency

loss helps separate the foreground (e.g., a train) from the

background, our method can assign the co-occurring pixels

(e.g., a railroad) to the background class. Experimental re-

sults show that our EPS achieves remarkable segmentation

performances, recording new state-of-the-art accuracies on

PASCAL VOC 2012 and MS COCO 2014 datasets.

2. Related Work

Weakly-supervised semantic segmentation. The general

pipeline of WSSS is to generate pseudo-masks from a clas-

sification network and to use the pseudo-masks as supervi-

sion to train a segmentation network. Due to the scarcity

of boundary information in the image-level label, many ex-

isting methods suffer from inaccurate pseudo-masks. To

address this problem, cross-image affinity [15], knowledge

graph [31] and contrastive optimization [38, 50] are used

to improve the quality of pseudo-masks. [5] proposes a

self-supervised task to discover sub-categories to enforce

the classifier to improve CAM. [1, 2] implicitly exploit the

boundary information by calculating affinities between pix-

els. [49] focuses on producing reliable pixel-level annota-

tions and designs an end-to-end network for generating seg-

mentation maps. [20, 25] train the segmentation network

by utilizing a boundary loss. Recently, [3] uses a single

segmentation-based model with a self-supervised training

scheme. [14] focuses on the robustness of the segmentation

network by utilizing multiple incomplete pseudo-masks.

Saliency-guided semantic segmentation. Saliency detec-

tion (SD) methods generate the saliency map that distin-

guishes between the foreground and the background in an

image via external saliency datasets with pixel-level anno-

tations [18, 46, 51], or image-level annotations [39]. Many

WSSS methods [15, 20, 27, 28, 42, 44] exploit the saliency

map as the background cues of pseudo-masks. [43] uti-

lizes the saliency map as the full supervision of single-

object images. [16] uses an instance-level saliency map to

learn the similarity graph for objects. [6, 40, 47] combine

saliency maps with class-specific attention cues to generate

reliable pseudo-masks. [48] jointly solves WSSS and SD

using a single network to improve the performance of both

tasks. Our EPS can be categorized into the saliency-guided

method but is clearly distinguished from all others in the fol-

lowing reason. Most existing methods exploit the saliency

map as a part of pseudo-masks or as the implicit guidance

for refining the intermediate feature of the classifier. Con-

trarily, our method utilizes the saliency map as pseudo-pixel
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Figure 2. The overall framework of our EPS. C + 1 localization maps are generated from a backbone network. The actual saliency map

is generated from the off-the-shelf saliency detection model. Some localization maps for target labels are selectively used to generate an

estimated saliency map (Section 3.2). The overall framework is jointly trained with the saliency loss and the classification loss (Section 3.3).

feedback for localization maps. Although [48] is the most

similar work to ours in the sense of utilizing two comple-

mentary information, they neither address the co-occurring

problem nor handle the noisy saliency map issue.

3. Proposed Method

In this section, we propose a new framework for Weakly-

supervised semantic segmentation (WSSS), called Explicit

Pseudo-pixel Supervision (EPS). Considering two stages in

WSSS, the first stage is to generate pseudo-masks and the

second stage is to train the segmentation model. Here, our

main contribution is to generate accurate pseudo-masks.

Following the WSSS convention [13, 21, 27, 28, 41, 42],

we then train a segmentation model, where the generated

pseudo-masks in the first stage are used as supervision.

3.1. Motivation

Our key insight of EPS is to fully exploit two comple-

mentary information, i.e., the object identity from the lo-

calization map and boundary information from the saliency

map. To this end, we utilize the saliency map as pseudo-

pixel feedback to the localization map for both target labels

and the background. We devise a classifier with an addi-

tional background class, leading to predict a total of C + 1
classes, as shown in Figure 2. Using the classifier, we can

learn C + 1 localization maps, i.e., C localization maps for

target labels and a background localization map.

We then explain how EPS can tackle both the boundary

mismatch and co-occurrence problems in WSSS. To man-

age the boundary mismatch problem, we estimate the fore-

ground map from C localization maps and match it with the

foreground of the saliency map. In this way, the localiza-

tion maps for target labels can receive pseudo-pixel feed-

(a) (b) (c) (d)

Figure 3. Qualitative examples of estimated saliency maps on

PASCAL VOC 2012. (a) Input images, (b) groundtruth, (c)

saliency maps from [51] and (d) our estimated saliency maps.

back from the saliency map, thereby improving the bound-

aries of objects. To mitigate the co-occurring pixels of non-

target objects, we also match the localization map for the

background with the saliency map. Since the localization

map for the background also receives pseudo-pixel feed-

back from the saliency map, the co-occurring pixels can be

successfully assigned to the background; the co-occurring

pixels of non-target objects mostly overlap with the back-

ground. It is why our method can separate the co-occurring

pixels from target objects.

Lastly, the objective function of EPS is formulated with

two parts: the saliency loss Lsal (marked by red box/arrow

in Figure 2) via the saliency map, and the multi-label clas-

sification loss Lcls (marked by blue box/arrow in Figure 2)
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via image-level labels. By jointly training the two ob-

jectives, we can synergize the localization map and the

saliency map with complementary information– we observe

that noisy and missing information of each other is comple-

mented via our joint training strategy, as illustrated in Fig-

ure 3. For example, the original saliency map obtained from

the off-the-shelf model [18, 34, 51] has missing and noisy

information. On the other hand, our results successfully re-

store missing objects (e.g., boats or chairs) and remove the

noise (e.g., water bubbles or contrail), which are evidently

better than the original saliency map. Consequently, EPS

can capture more accurate object boundaries and separate

the co-occurring pixels from target objects. These advan-

tages result in remarkable performance gains; Table 6 re-

ports that EPS remarkably outperforms existing models up

to 3.8–10.6% gains in terms of the segmentation accuracy.

3.2. Explicit Pseudopixel Supervision

We explain how to utilize the saliency map for pseudo-

pixel supervision. The key advantage of the saliency map

is to provide an object silhouette, which can better re-

veals object boundaries. To make use of this property, we

match the saliency map with two cases: the foreground

and the background. To make class-wise localization maps

comparable with the saliency map, we merge the localiza-

tion maps for target labels and generate a foreground map,

Mfg ∈ R
H×W . We can also represent the foreground by

performing the inversion of a background map which is the

localization map for the background label Mbg ∈ R
H×W .

(Later, we explain how to refine the foreground map to ad-

dress noisy saliency maps.)

Specifically, we estimate the saliency map M̂s using

Mfg and Mbg as follows:

M̂s = λMfg + (1− λ)(1−Mbg), (1)

where λ ∈ [0, 1] is a hyperparameter to adjust a weighted

sum of the foreground map and the inversion of the back-

ground map. (By default, we set λ to 0.5 in our experiments

and an additional ablation study for λ is found in the supple-

mentary material.) Then, we define the saliency loss Lsal

as the sum of pixel-wise differences between our estimated

saliency map and an actual saliency map. (The formal defi-

nition of Lsal is presented in Section 3.3.)

It is worth noting that using the pre-trained model is

regarded as weakly supervised learning, thus utilizing the

saliency map has been widely accepted as a common prac-

tice in WSSS. Despite its popularity, adopting the fully su-

pervised saliency detection model can be arguable in that

they use pixel-level annotations from different datasets. In

this paper, we investigate the effect of different saliency de-

tection methods; 1) unsupervised and 2) fully supervised

saliency detection models (see Section 5.3), and empirically

show our method using any of them outperforms all other

methods [13, 21, 40, 43, 47] using fully supervised saliency

models. Whereas existing methods are limited to fully take

advantage of the saliency map, our method incorporates the

saliency map as pseudo-pixel supervision and exploits it as

the cues for boundaries and co-occurring pixels.

Map selection for handling saliency bias. Previously, we

assume that the foreground map can be the union of the lo-

calization maps for target labels; the background map can

be the localization map of the background label. However,

such a naı̈ve selection rule may not be compatible with the

saliency map computed by the off-the-shelf model. For ex-

ample, the saliency map from [51] often ignores some ob-

jects as salient objects (e.g., small people nearby a train in

Figure 1). This systematic error is inevitable because the

saliency model learns the statistics of different datasets. Un-

less considering this error, the same error may propagate to

our model and lead the performance degradation.

To tackle the systematic error, we develop an effective

strategy using the overlapping ratio between the localization

map and the saliency map. Specifically, the i-th localization

map Mi is assigned to the foreground if Mi is overlapped

with the saliency map more than τ%, otherwise the back-

ground. Formally, the foreground and the background map

are computed by:

Mfg =

C∑

i=1

yi ·Mi · ✶[O(Mi,Ms) > τ ],

Mbg =

C∑

i=1

yi ·Mi · ✶[O(Mi,Ms) ≤ τ ] +MC+1,

(2)

where y ∈ R
C is the binary image-level label and

O(Mi,Ms) is the function to compute the overlapping ra-

tio between Mi and Ms. For that, we first binarize the lo-

calization map and the saliency map such that: for pixel p,

Bk(p) = 1 if Mk(p) > 0.5; Bk(p) = 0, otherwise. Bi

and Bs are the binarized maps corresponding to Mi and

Ms, respectively. We then compute the overlapping ratio

between Mi and Ms, i.e., O(Mi,Ms) = |Bi ∩Bs|/|Bi|.
We set τ = 0.4 regardless of datasets and backbone models.

In the supplementary material, we show that our method is

robust against the choice of τ (i.e., τ within [0.3, 0.5] shows

the comparable performance).

Instead of a single localization map for the background

label, we combine the localization map for the background

label with the localization maps not selected as the fore-

ground. Although it is simple, we can bypass the error

of the saliency map and effectively train some objects ne-

glected from the saliency map. (In Table 3, we report the

effectiveness of the proposed strategy to overcome the error

of the saliency map.)

3.3. Joint Training Procedure

Using the saliency map and image-level labels, the over-

all training objective of EPS consists of two parts, the
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saliency loss Lsal and the classification loss Lcls. First,

the saliency loss Lsal is formulated by measuring the av-

erage pixel-level distance between the actual saliency map

Ms and the estimated saliency map M̂s.

Lsal =
1

H ·W
||Ms − M̂s||

2, (3)

where Ms is obtained from the off-the-shelf saliency de-

tection model– PFAN [51] trained on DUTS dataset [39].

Note that our method consistently outperforms all previous

arts regardless of the saliency detection models.

Next, the classification loss is computed by a multi-label

soft margin loss between the image-level label y and its pre-

diction ŷ ∈ R
C , which is the result of the global average

pooling on the localization map for each target class.

Lcls = −
1

C

C∑

i=1

yi log σ(ŷi) + (1− yi) log (1− σ(ŷi)), (4)

where σ(·) is the sigmoid function. Finally, the total train-

ing loss is the sum of the multi-label classification loss and

the saliency loss, i.e., Ltotal = Lcls + Lsal.

As shown in Figure 2, Lsal is involved in updating the

parameters of C + 1 classes, including target objects and

the background. Meanwhile, Lcls only evaluates the label

prediction for C classes, excluding the background class–

the gradient from Lcls does not flow into the background

class. However, the prediction of the background class can

be implicitly affected by Lcls because it supervises classi-

fier training.

4. Experimental Setup

Datasets. We conduct an empirical study on two popu-

lar benchmark datasets, PASCAL VOC 2012 [12] and MS

COCO 2014 [30]. PASCAL VOC 2012 consists of 21

classes (i.e., 20 objects and the background) with 1,464,

1,449, and 1,456 images for training, validation, and test

set, respectively. Following the common practice in se-

mantic segmentation, we use the augmented training set

with 10,582 images [17]. Next, COCO 2014 consists of

81 classes, including a background, with 82,081 and 40,137

images for training and validation, where images with no

target classes are excluded as done in [9]. Because the

groundtruth segmentation labels of some objects overlap

each other, we adopt the groundtruth segmentation labels

from COCO-Stuff [4], which solves the overlapping prob-

lem on the same COCO dataset.

Evaluation protocol. We validate our method with the val-

idation and the test set on PASCAL VOC 2012, and the val-

idation set on COCO 2014. The evaluation results on the

test set of PASCAL VOC 2012 is obtained from the offi-

cial PASCAL VOC evaluation server. Also, we adopt mean

intersection-over-union (mIoU) to measure the accuracy of

segmentation models.

(a) (b) (c) (d) (e) (g)(f)

Figure 4. Qualitative comparison for pseudo-masks on PASCAL

VOC 2012. (a) Input images, (b) groundtruth, (c) CAM, (d)

SEAM, (e) ICD, (f) SGAN and (g) our EPS.

Implementation details. We choose ResNet38 [45] as the

backbone network of our method with the output stride of

8. All backbone models are pre-trained on ImageNet [11].

We use the SGD optimizer with a batch size of 8. Our

method is trained until 20k iterations with learning rate 0.01

(0.1 for the last convolutional layer). For data augmenta-

tion, we use a random scaling, random flipping, and ran-

dom crop into 448 × 448. For the segmentation networks,

we adopt DeepLab-LargeFOV (V1) [7] and DeepLab-ASPP

(V2) [8], and VGG16 and ResNet101 for their backbone

networks. Specifically, we use four segmentation networks:

VGG16-based DeepLab-V1 and DeepLab-V2, ResNet101

based DeepLab-V1 and DeepLab-V2. More detailed set-

ting is in the supplementary material.

5. Experimental Results

5.1. Handling Boundary and Cooccurrence

Boundary mismatch problem. To validate the boundary

of pseudo-masks, we compare the quality of boundaries

with the state-of-the-art methods [32, 41, 52]. We utilize

SBD [17], which provides boundary annotations and the

boundary benchmark in PASCAL VOC 2011. As done

in [32], the quality of the boundary is evaluated in a class-

agnostic manner by computing the edges of pseudo-masks

from the Laplacian edge detector. Then, the boundary qual-

ity is evaluated by measuring recall, precision, and F1-

score, comparing the predicted and groundtruth boundaries.

Table 1 reports that our method largely outperforms other

methods in all three metrics. The qualitative examples in

Figure 4 show that our method can capture more accurate

boundaries than all the other methods.

Co-occurrence problem. As discussed in several stud-
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Method Recall (%) Precision (%) F1-score (%)

CAM [52]CVPR’16 22.3 35.8 27.5

SEAM [41]CVPR’20 40.2 45.0 42.5

BES [32]ECCV’20 45.5 46.4 45.9

Our EPS 60.0 73.1 65.9

Table 1. Boundary accuracy evaluated on the SBD trainval set.

Note that the results of BES are measured from the boundary pre-

diction network proposed in [32].

Method
boat w/ train w/ train w/

water railroad platform

CAM [52]CVPR’16 0.74 (33.1) 0.11 (52.9) 0.09 (49.6)

SEAM [41]CVPR’20 1.13 (30.7) 0.24 (48.6) 0.20 (45.5)

ICD [13]CVPR’20 0.47 (41.4) 0.11 (56.7) 0.09 (49.2)

SGAN [47]ACCESS’20 0.10 (42.3) 0.02 (48.8) 0.01 (36.3)

Our EPS 0.10 (55.0) 0.02 (78.1) 0.01 (73.0)

Table 2. Comparison with representative existing methods han-

dling the co-occurrence problem. Each entry is mk,c in blue (the

lower the better) and IoU in the bracket (the higher the better).

ies [20, 25, 28, 35], we observe that some background

classes frequently appear with target objects in PASCAL

VOC 2012. We quantitatively analyze the frequency of co-

occurred objects by employing the PASCAL-CONTEXT

dataset [33], which provides pixel-level annotations for a

whole scene (e.g., water and railroad). We choose three

co-occurring pairs; boat with water, train with railroad,

and train with platform. We compare IoU for the target

class and the confusion ratio between a target class and

its coincident class. The confusion ratio measures how

much the coincident class is incorrectly predicted as the

target class. The confusion ratio mk,c is calculated by

mk,c = FPk,c/TPc, where FPk,c is the number of pixels

mis-classified as the target class c for the coincident class k,

and TPc is the number of true-positive pixels for the target

class c. More detailed analysis on the co-occurrence prob-

lem is in the supplementary materials.

Table 2 reports that EPS consistently shows a lower con-

fusion ratio than other methods. SGAN [47] has quite a

similar confusion ratio with ours, but our method captures

the target class much accurately in terms of IoU. Interest-

ingly, SEAM shows a high confusion ratio and even worse

than CAM. It is because SEAM [41] learns to cover the full

extent of target objects by applying self-supervised train-

ing, which is easily fooled by the coincident pixels of target

objects. Meanwhile, CAM only captures the most discrim-

inative region of target objects and does not cover the less

discriminative parts, e.g., the coincident class. We can also

observe this phenomenon in Figure 4.

Baseline Naı̈ve Pre-defined Our adaptive

mIoU 66.1 66.5 67.9 69.4

Table 3. Effect of map selection strategies. The accuracies of

pseudo-masks using different map selection strategies are evalu-

ated on the PASCAL VOC 2012 train set.

Method
w/o w/ w/

refinement CRF [26] AffinityNet [2]

CAM [52]CVPR’16 48.0 - 58.1

SEAM [41]CVPR’20 55.4 56.8 63.6

ICD [32]CVPR’20* 59.9 62.2 -

SGAN [47]ACCESS’20* 62.8 - -

Our EPS 69.4 71.4 71.6

Table 4. Accuracy (mIoU) of pseudo-masks evaluated on the PAS-

CAL VOC 2012 train set. Note that * indicates that low-confident

pixels are ignored; other methods use all pixels for evaluation.

5.2. Effect of Map Selection Strategies

We evaluate the effectiveness of our map selection strat-

egy to mitigate the error of the saliency map. We com-

pare three different map selection strategies to the baseline,

which does not use the map selection module. As the naı̈ve

strategy, the foreground map is the union of all object local-

ization maps; the background map equals the localization

map of the background class (i.e., naı̈ve strategy). Next, we

follow the naı̈ve strategy with the following exceptions. The

localization maps of several pre-determined classes (e.g.,

sofa, chair, and dining table) are assigned to the back-

ground map (i.e., pre-defined class strategy). Lastly, the

proposed selection method utilizes the overlapping ratio be-

tween the localization map and the saliency map, as ex-

plained in Section 3.2 (i.e., our adaptive strategy).

Table 3 shows that our adaptive strategy can effectively

handle the systematic bias of the saliency map. The naı̈ve

strategy implies no bias consideration when generating the

estimated saliency map from the localization maps. In this

case, the performance of pseudo-masks is degraded, espe-

cially on sofa, chair or dining table classes. The perfor-

mance of using pre-defined classes shows that the bias can

be mitigated by neglecting missing classes in the saliency

map. However, as it requires manual selection by human

observers, it is less practical and cannot make an optimal

decision per image. Meanwhile, our adaptive strategy can

handle the bias automatically and makes more effective de-

cisions for a given saliency map.

5.3. Comparison with stateofthearts

Accuracy of pseudo-masks. We adopt a multi-scale in-

ference by aggregating the prediction results from images

with different scales, which is a common practice utilized

in [2, 41]. Then, We evaluate the accuracies of pseudo-

masks in the train set by comparing our EPS with the
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(a)

(b)

(c)

Figure 5. Qualitative examples of segmentation results on PASCAL VOC 2012. (a) Input images, (b) groundtruth and (c) our EPS.

baseline CAM [52] and three state-of-the-art methods, i.e.,

SEAM [41], ICD [13], and SGAN [47]. Here, measuring

the accuracy of the pseudo-masks in the train set is a com-

mon protocol in WSSS because the pseudo-masks of the

train set are used to supervise the segmentation model. Ta-

ble 4 summarizes the accuracies of pseudo-masks and indi-

cates that our method clearly outperforms all existing meth-

ods by large margins (i.e., 7–21% gaps). Figure 4 visualizes

the qualitative examples of pseudo-masks, confirming that

our method remarkably improves the object boundary and

significantly outperforms three state-of-the-art methods in

terms of the quality of pseudo-masks. Our method can cap-

ture the precise boundaries of objects (2nd row) and thus

naturally cover the full extent of objects (3rd row), and also

mitigate the coincident pixels (1st row). More examples and

failure cases of our method are provided in the supplemen-

tary material.

Accuracy of segmentation maps. Previous methods [2,

13, 41] generate pseudo-masks and refine them with the

CRF post-processing algorithm [26] or affinity network [2].

Meanwhile, as shown in Table 4, our generated pseudo-

masks are accurate enough, thereby we train a segmenta-

tion network without any additional refinement for pseudo-

masks. We extensively evaluate and precisely compare our

method with others on the four segmentation networks in

the Pascal VOC 2012 dataset.

Our method performs remarkably better than other meth-

ods regardless of segmentation networks. Table 5 re-

ports that our method is more accurate than other methods

with the same VGG16 backbone. Besides, our results on

the VGG16 are comparable or even superior to other ex-

isting methods based on a more powerful backbone (i.e.

ResNet101 in Table 6). Our method also shows a clear im-

provement over existing methods. Finally, Table 6 demon-

strates that our method (under ResNet101 based DeepLab-

V1 with saliency map) achieves the new state-of-the-art per-

formance (71.0 for validation and 71.8 for test set) in the

PASCAL VOC 2012 dataset. We highlight that the gains

Method Seg. Sup. val test

SEC [25]ECCV’16 V1 I. 50.7 51.7

AffinityNet [2]CVPR’18 V1 I. 58.4 60.5

ICD [13]CVPR’20 V1 I. 61.2 60.9

BES [32]ECCV’20 V1 I. 60.1 61.1

GAIN [28]CVPR’18 V1 I.+S. 55.3 56.8

MCOF [40]CVPR’18 V1 I.+S. 56.2 57.6

SSNet [48]ICCV’19 V1 I.+S. 57.1 58.6

DSRG [20]CVPR’18 V2 I.+S. 59.0 60.4

SeeNet [19]NeurIPS’18 V1 I.+S. 61.1 60.7

MDC [44]CVPR’18 V1 I.+S. 60.4 60.8

FickleNet [27]CVPR’18 V2 I.+S. 61.2 61.9

OAA [21]ICCV’19 V1 I.+S. 63.1 62.8

ICD [13]CVPR’20 V1 I.+S. 64.0 63.9

Multi-Est. [14]ECCV’20 V1 I.+S. 64.6 64.2

Split. & Merge. [50]ECCV’20 V2 I.+S. 63.7 64.5

SGAN [47]ACCESS’20 V2 I.+S. 64.2 65.0

Our EPS
V1 I.+S. 66.6 67.9

V2 I.+S. 67.0 67.3

Table 5. Segmentation results (mIoU) on PASCAL VOC 2012. All

results are based on VGG16. The best score is in bold throughout

all experiments.

achieved by the existing state-of-the-art models were ap-

proximately 1%. Meanwhile, our method achieves more

than 3% higher gains than the previous best record. Figure 5

visualizes the qualitative examples of our segmentation re-

sults on PASCAL VOC 2012. These results confirm that

our method provides accurate boundaries and successfully

resolves the co-occurrence problem.

In Table 7, we further evaluate our method in the COCO

2014 dataset. We use VGG16 based DeepLab-V2 as the

segmentation network to compare with SGAN [47], which

is the state-of-the-art WSSS model in the COCO dataset.

Our method achieves 35.7 mIoU in the validation set, and it

is 1.9% higher than SGAN [47]. Consequently, we achieve

the new state-of-the-art accuracy in the COCO 2014 dataset.

These outstanding performances over the existing state-of-

the-arts on both datasets confirm the effectiveness of our
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(a)

(b)

(c)

Figure 6. Qualitative examples of segmentation results on MS COCO 2014. (a) Input images, (b) groundtruth and (c) our EPS.

Method Seg. Sup. val test

ICD [13]CVPR’20 V1 I. 64.1 64.3

SC-CAM [5]CVPR’20 V1 I. 66.1 65.9

BES [32]ECCV’20 V2 I. 65.7 66.6

LIID [31]TPAMI’20 V2 I. 66.5 67.5

MCOF [40]CVPR’18 V1 I.+S. 60.3 61.2

SeeNet [19]NeurIPS’18 V1 I.+S. 63.1 62.8

DSRG [20]CVPR’18 V2 I.+S. 61.4 63.2

FickleNet [27]CVPR’18 V2 I.+S. 64.9 65.3

OAA [21]ICCV’19 V1 I.+S. 65.2 66.4

Multi-Est. [14]ECCV’19 V1 I.+S. 67.2 66.7

MCIS [38]ECCV’20 V1 I.+S. 66.2 66.9

SGAN [47]ACCESS’20 V2 I.+S. 67.1 67.2

ICD [13]CVPR’20 V1 I.+S. 67.8 68.0

Our EPS
V1 I.+S. 71.0 71.8

V2 I.+S. 70.9 70.8

Table 6. Segmentation results (mIoU) on PASCAL VOC 2012. All

results are based on ResNet101.

Method Seg. Sup. val

SEC [25]ECCV’16 V1 I. 22.4

DSRG [20]CVPR’18 V2 I.+S. 26.0

ADL [9]TPAMI’20 V1 I.+S. 30.8

SGAN [47]ACESS’20 V2 I.+S. 33.6

Our EPS V2 I.+S. 35.7

Table 7. Segmentation results (mIoU) on MS COCO 2014. All

results are based on VGG16.

method; by fully utilizing both localization maps and the

saliency map, it successfully captures the integral of target

objects correctly and remedies the shortcomings of existing

models. Figure 6 shows the qualitative examples of seg-

mentation results on the COCO 2014 dataset. Our method

performs well when a few objects appear without occlusions

but less effective in handling many small objects. More ex-

amples and failure cases of our method are provided in the

supplementary material.

Effect of saliency detection models. To investigate the ef-

fect of different saliency detection models, we adopt three

saliency models; PFAN [51] (our default), DSS [18] used by

OAA [21] and ICD [13], and USPS [34] (i.e., the unsuper-

vised detection model). The segmentation results (mIoU)

under Resnet101 based DeepLab-V1 are 71.0/71.8 with

PFAN, 70.0/70.1 with DSS, and 68.8/69.9 with USPS (val-

idation set and test set), respectively. These scores sup-

port that our EPS using any of three different saliency mod-

els is still more accurate than all the other methods in Ta-

ble 6. Notably, our EPS using the unsupervised saliency

model outperforms all existing methods using the super-

vised saliency model.

6. Conclusion

We propose a novel weakly supervised segmenta-

tion framework, namely explicit pseudo-pixel supervision

(EPS). Motivated by the complementary relationship be-

tween the localization map and the saliency map, our

EPS learns from pseudo-pixel feedback combining with

the saliency map and the localization map. Owing to our

joint training scheme, we successfully complement noise

or missing information on both sides. Consequently, our

EPS can capture precise object boundaries and discard co-

occurring pixels of non-target objects, remarkably improv-

ing the quality of pseudo-masks. Extensive evaluations and

various case studies demonstrate the effectiveness of our

EPS and the outstanding performances, the new state-of-

the-art accuracies for WSSS on both PASCAL VOC 2012

and MS COCO 2014 datasets.
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