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Abstract

With increasing fields of application for neural networks

and the development of neural networks, the ability to ex-

plain deep learning models is also becoming increasingly

important. Especially, prior to practical applications, it

is crucial to analyze a model’s inference and the process

of generating the results. A common explanation method

is Class Activation Mapping(CAM) based method where it

is often used to understand the last layer of the convolu-

tional neural networks popular in the field of Computer Vi-

sion. In this paper, we propose a novel CAM method named

Relevance-weighted Class Activation Mapping(Relevance-

CAM) that utilizes Layer-wise Relevance Propagation to

obtain the weighting components. This allows the expla-

nation map to be faithful and robust to the shattered gradi-

ent problem, a shared problem of the gradient based CAM

methods that causes noisy saliency maps for intermediate

layers. Therefore, our proposed method can better explain

a model by correctly analyzing the intermediate layers as

well as the last convolutional layer. In this paper, we visu-

alize how each layer of the popular image processing mod-

els extracts class specific features using Relevance-CAM,

evaluate the localization ability, and show why the gradi-

ent based CAM cannot be used to explain the intermedi-

ate layers, proven by experimenting the weighting compo-

nent. Relevance-CAM outperforms other CAM-based meth-

ods in recognition and localization evaluation in layers of

any depth. The source code is available at: https:

//github.com/mongeoroo/Relevance-CAM

1. Introduction

Recently, deep learning is producing remarkable results

with the development in GPUs and the advancements of

new neural net architectures[10, 12, 13]. In this context,

the field of interpretable deep learning is also being ar-

dently studied[1, 24, 36, 4], especially in medical image

processing [15, 7]. There are many methods for analyzing

models in Computer Vision, and such as Class Activation
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Figure 1. Visualization results of Grad-CAM[25], Grad-

CAM++[6], Score-CAM[30] and proposed Relevance-CAM. The

label of the input is a admiral butterfly. Relevance-CAM makes

the high resolution heatmaps even in the shallow layer.

Map(CAM) based methods [36, 25, 6, 30] and the decom-

position based methods [27, 33, 9, 14, 19, 34, 4, 21, 3, 26].

CAM-based method calculates the weighted linear summa-

tion of the last convolutional feature map to visualize a

model decision. The weights of fully connected layer be-

tween global average pooling output and target class out-

put nodes are multiplied to the activation maps of the cor-

responding channels, and the sum of the weighted activa-

tion maps along the channel axis is the Class Activation

Map. It can be understood as generating heatmaps describ-

ing the model decision by localizing where the model looks

at. However, although CAM[36] can localize a target class,

it is heavily constrained to the model architecture where the

model must consist of Global Average Pooling(GAP) and

one fully connected layer as its classifier. Grad-CAM[25]

and Grad-CAM++[6] explain a model without the con-

straint to the model architecture. These gradient based

CAMs use gradients of the target class output scores with

respect to the last convolutional layer as the weighting com-

ponents of activation maps. These methods are based on the
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idea that the sensitivity of activation to a target class can be

understood as the importance of the activation map to the

class.

Layer-wise Relevance Propagation(LRP)[4] is a

decomposition-based method. LRP redistributes the model

class output scores into input image through specific rele-

vance propagation rule. It has a theoretical background on

Deep Taylor Decomposition[19], and with this theoretical

base, it is proved that LRP is robust to the shattered gradient

problem[5] and show great performances[4, 20].

In this paper, we propose the novel explanation method

which can analyze the model not only at the last convo-

lutional layer but also at intermediate layers. Specifically,

we propose the Relevance-weighted Class Activation Map

(Relevance-CAM). As shown in Fig 1,Relevance-CAM out-

performs other methods in visualizing target objects.

The contributions of this paper are as follows.

1. We propose the novel CAM-based method which

is faithful and robust to shattered gradient problem.

Therefore, it can operate well even at the intermedi-

ate layers. Relevance-CAM helps you to analyze the

model in detail that other CAM-based method cannot.

With Relevance-CAM, we find the surprising fact that

the shallow layers which have small receptive fields

can even extract the class specific features in some net-

works.

2. Through visualization using heatmaps, we show that

our Relevance-CAM works effectively at any layer.

Relevance-CAM especially outperforms other meth-

ods in localizing target objects in shallow layers.

3. We objectively evaluate faithfulness and localization

ability of Relevance-CAM through Average Drop, Av-

erage Increase, and Intersection over Union. The

proposed method outperforms the other CAM-based

methods especially at the intermediate layers.

4. We demonstrate class sensitivity not only in deep lay-

ers but also in shallow layers. Relevance-CAM shows

that even shallow layers can extract class specific in-

formation.

2. Background

2.1. CAM

Class Activation Mapping(CAM)[36]is an explanation

method for visualizing class specific regions through a lin-

early weighted combination of the last convolutional layer

output before the global pooling layer. However, this re-

stricts the application of CAM to the models with specific

architectures.

2.2. GradCAM

Grad-CAM[25] is similar to CAM except for the method

of calculating the weight values. It is designed to generalize

CAM and can be applicable to all CNN models. The mo-

tivation of Grad-CAM is that activation maps are the fea-

ture maps extracted by a certain convolutional layer, and

the importance of each activation map to a class can be de-

fined as the gradients of the activation maps. Grad-CAM,

Lc
Grad−CAM , is defined as:

Lc
Grad−CAM =

∑

k

αc
kAk (1)

where

αc
k = GP (

∂yc

∂Ak

) (2)

where Ak denotes the activation map in the k -th channel of

the last convolutional layer, yc denotes the model output for

the class c, αc
k denotes the weighting component of Grad-

CAM and GP(·) represents Global Pooling function.

2.3. Layerwise Relevance Propagation(LRP)

LRP[4] incorporates divide & conquer strategy. In gen-

eral, it can be difficult to define the relevance between a

model’s input pixels and output scores. But the task be-

comes easy in cases of single layer models. LRP ex-

plains a model through layer wise decomposition of its

structure[19], propagating the relevance score from the out-

put to the input in layerwise manner. The propagation of the

score is proceeded while meeting the following definitions.

Definition 1 A relevance score is conservative if the sum

of assigned relevance in the pixel space corresponds to the

total relevance detected by the model:

∀x : fc(x) =
∑

p

Rl
p(x). (3)

Definition 2 A relevance score is positive if all values

forming the heatmap are greater or equal to zero:

∀x, p : Rp(x) ≥ 0 (4)

where Rl
p(x ) denotes the relevance score of the pixel p on

l -th layer.

Based on the conservative definition 1, the total redis-

tributed relevance is always same to fc(x ) which denotes

the output score for the target class c. The relevance score

is interpreted directly as the value of contribution to the out-

put score.
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The general relevance propagation rule is the z-

rule, which has theoretical basis on the Deep Taylor

Decomposition[19]. When propagating the relevance score

from the j-th layer to the i-th layer, the z-rule can be written

as:

Ri =
∑

j

z+ij
∑

i z
+
ij

Rj (5)

where

z+ij = xiw
+
ij (6)

where Ri , Rj denote the i -th layer relevance and the j -th

layer relevance, respectively, xi denotes the activation out-

put of the i -th layer, and w+
ij denotes the positive part of

weight between the i -th and the j -th layer. While the z-

rule performs successfully on model explanation tasks[4],

the drawback of the z-rule is that it is less sensitive to the

target class in multi object image[9, 14].

2.4. Contrastive Layerwise Relevance Propaga
tion(CLRP)

Contrastive Layer-wise Relevance Propagation (CLRP)

[9] was proposed to resolve LRP’s drawback: low sensi-

tivity to the target class. CLRP subtracts the relevance of

the non-target classes from the relevance of the target class.

As a result, the heatmaps generated by CLRP become more

sensitive to the target class.

The relevance score of the final layer in CLRP is:

R(L)
n =

{

z
(L)
t n = t

−
z
(L)
t

N−1 otherwise
(7)

where z
(L)
t denotes the model output value for the target

class index t on L-th layer and N denotes the number of

class. By assigning the relevance in this way, the relevance

pixels of the non-target class are removed from the gener-

ated saliency map.

2.5. Gradient Issue

Noisiness and discontinuity: There are many studies

raising questions to the faithfulness of gradients as a model

explanation tool[30, 20, 5, 16]. As a network deepens, gra-

dients become noisy and discontinuous. This problem is

called the shattered gradient problem[5]. The noisiness of

gradients comes from the saturation of gradients in activa-

tion functions; when passing through activation functions

such as ReLU or Sigmoid, gradients can become saturated,

vanishing or exploding in value as a result. Moreover, the

piece-wise linearity of gradients causes discontinuity. Be-

cause gradients are calculated by the weights of the con-

nected layers, relations to the next pixels are lost.

Explanation to sensitivity: In Grad-CAM, the impor-

tance of an activation map is measured by the gradient of

output w.r.t the activation map. This indicates that Grad-

CAM does not take account for the activation value in as-

signing the importance. Thus, Grad-CAM measures the

sensitivity of an activation map towards the model output.

But what we want to explain is how much an activation map

contributes to a target class output and not how sensitive an

activation map is. This issue is called False Confidence[30].

Relevance Score: On the contrary, the LRP is robust

to the gradient issue, as proven by experiments [20]. LRP

shows continuity and less noisy characteristics as a target

class score changes. For these reasons, we consider the rel-

evance score of LRP as the weighting components of class

activation mapping.

3. Relevance-weighted Class Activation Map

Before Relevance-CAM, the other previously mentioned

methods concentrated on analyzing activation maps of the

last convolutional layer as it is known that the last convo-

lutional layer has high-level semantics. Also, the fact that

the heatmaps of intermediate layers created by the previous

methods are noisy and show non-class specific result further

encouraged such approach.

However, it is not only the last convolutional layer that

affects a model output. Effects of deep and intermediate

layers to a model outputs are to be analyzed as well. But

as gradients become noisy and discontinuous in deep lay-

ered models, the quality of gradients as a weighting com-

ponent become questionable. Therefore, we devise the new

CAM-based method namely Relevance- CAM, and as a re-

sult, we are able to obtain meaningful information from the

model even from layers of shallower depth that was not for-

mally found in the previous methods. What we found with

Relevance-CAM is that the intermediate layers also can ex-

tract class specific information as well as the last convolu-

tional layer. Our findings are detailed in section 4.

Considering the gradient issue mentioned in section 2,

the relevance score obtained through LRP are used as the

weighting component of our proposed method. In addition,

when performing this procedure, CLRP is applied to get the

class sensitivity. The pipeline of Relevance CAM is shown

in fig 2.

Relevance-CAM equation is as follows:

L
(c,i)
Relevance−CAM =

∑

k

α
(c,i)
k Ac

k (8)

where

α
(c,i)
k =

∑

x,y

R
(c,i)
k (x, y) (9)
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Figure 2. Relevance-CAM pipeline. Activation maps, Ac
k , are extracted during forward propagation and Relevance Maps, R(c,i), are

calculated by Relevance propagation process. And the weighting components are obtained by global average pooling of relevance map.

Finally, Relevance-CAM is obtained by weighted linear summation of activation maps

R
(c,i)
k denotes the relevance map of the i -th layer feature

map k for the target class c that can be obtained through the

LRP process. α
(c,i)
k , namely the weighting component, is

calculated by global average pooling of the relevance map,

R
(c,i)
k . Since Relevance-CAM can be obtained through ac-

tivation maps and relevance maps, it can be calculated with

only one forward propagation and one backpropagation.

Also, looking at the meaning of the relevance weight,

since LRP is a deep taylor decomposition of output scores,

the relevance value itself can be interpreted as the contri-

bution to a target class output. Therefore, the sum of the

relevance, α
(c,i)
k , represents the importance or contribution

of the k -th channel activation map to the target class output

score.

4. Experiment

In section 4, we evaluate our post-hoc attention method

through various experiments. First, we visualize the depth-

wise heatmap made by various CAM-based method to com-

pare the effectiveness of our method and measure the faith-

fulness of generated heatmap through Average Drop(A.D.)

and Average Increase(A.I.). Second, we demonstrate

the difference between Grad-CAM and Relevance-CAM.

Third, we evaluate the localization ability through Intersec-
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Figure 3. Comparison of various methods. The columns are divided by the explanation methods. The rows are divided along the layer

depth. layer 2 is the intermediate layer and layer 4 is the last convolutional layer. In the deep layer, layer4, the heatmaps are similar for the

various methods. But in the shallow layer, layer2, the quality of Relevance-CAM is better than that of the other methods in localizing the

target objects. And Relevance-CAM shows high resolution heatmaps at low level layer.

tion over Union(IoU). Finally, we assess the class sensitivity

of our proposed method.

4.1. Depthwise visualization

We visualize the depth-wise heatmap through the various

explanation methods on fig 3. All of the explanation meth-

ods localize the target object well in layer 4. But in layer

2, gradient-based methods such as Grad-CAM and Grad-

CAM++ cannot localize class specific regions even though

Score-CAM and Relevance-CAM localize well. Since the

gradients becomes noisy as it pass through the layers,

the gradient-based CAM cannot accurately assign weights

to the activation map. On the other hand, Score-CAM

and Relevance-CAM that are robust to the gradient prob-

lems can work well even in shallow layers, although the

heatmaps of Relevance-CAM are clearer than the heatmaps

of Score-CAM. When using gradient-based CAM to ana-

lyze intermediate layers, it may be judged that the inter-

mediate layers cannot extract class semantic information

since the generated saliency maps cannot localize the class

object[25]. However, the saliency maps generated through

Relevance-CAM localize the target class well even from the

intermediate layers. This indicates that the shallow layers

also can extract class specific information.

We further evaluate the objective faithfulness of our

method through Average Drop(A.D.) and Average Increase(

A.I.) as adopted in [6, 30]. The two metrics measure how

well an attention map explains a model through observing

the change of a target class score. In this experiment, top

50% pixels of the attention map are used as the mask. Av-

erage Drop is expressed as:

N
∑

i=1

max(0, Y c
i −Oc

i )

Y c
i

×
100

N
(10)

Average Increase is expressed as:

N
∑

i=1

Sign(Y c
i < Oc

i )

N
(11)

where N is the number of dataset, Y c
i is the output soft-

max value for class c on image I and Oc
i is the output

softmax value for class c with the attention masked im-

age as the input. Sign(·) denotes the indicator function that

return 1 if input is positive. we experiment the explana-

tion methods on 2000 randomly selected images from the

ImageNet(ILSVRC2012) validation set, but only the cases

which the labels and the model predictions match are con-

sidered to measure the contribution exactly.

As shown in Table 1 and Table 2, in both ResNet 50 and

VGG16, the values of A.D. and A.I. have almost similar

values in the deepest layers of the models. However, the

differences in the evaluation values between each explana-

tion methods increase in the lower level layers.

For ResNet 50, in the case of Relevance- CAM, the dif-

ference in evaluation between layer 2 and layer 4 is not
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Figure 4. Evaluation of the selectivity. First column and second column show the results for layer3 and layer4 respectively. (a), (b) show the

weighting component for each method. (c), (d) show the activation maps of the top 3 weighted channel for each method and the generated

attention maps at the end.

Layer2 Layer4

Method A.D. A.I. A.D. A.I.

Grad-CAM 74.91 4.45 23.13 24.05

Grad-CAM++ 71.15 4.85 22.03 25.35

Score-CAM 56.59 8.8 21.89 24.65

Relelvance-CAM 39.02 16.6 21.53 25.7

Table 1. Lower Average Drop(A.D.) and higher Average In-

crease(A.I.) indicate better performance. Evaluation for ResNet

50. Layer 2 is the low level layer and, Layer 4 is the last convolu-

tional layer.

large, which shows that layer 2 of ResNet 50 also can ex-

tract class specific features.

Table 2, VGG 16, also shows similar aspects to Table 1.

In deeper layers, the evaluation values are similar, and in the

shallower layers, Relevance-CAM outperforms other meth-

ods. However, it should be noted that the differences in

the evaluation values of Relevance-CAM between layers in

VGG 16 is larger than that of ResNet 50. This shows that

in the case of ResNet 50, class specific information can be

extracted from the intermediate layers, whereas in VGG 16,

the ability to extract class specific features from the inter-

mediate layers are insufficient.

layer23 layer43

Method A.D. A.I. A.D. A.I.

Grad-CAM 85.43 1.5 23.15 22.35

Grad-CAM++ 86.77 1.3 22.98 22.35

Score-CAM 76.11 3.2 21.22 23.5

Relelvance-CAM 72.25 3.9 22.42 24.95

Table 2. Lower Average Drop(A.D.) and higher Average In-

crease(A.I.) indicate better performance. Evaluation for VGG 16

with batch normalization. Layer 23 is the 3-th maxpooling layer

and layer 43 is the 5-th and last maxpooling layer.

4.2. Evaluation for selectivity

In this section we visualize the weighting components

to show how the shattered gradient problem damages the

localization ability of Grad-CAM along with the top 3

weighted activation maps and to compare the selectivity of

Grad-CAM to that of Relevance-CAM. The results of the

two models in layer 3 and layer 4 are demonstrated for com-

parision.

In fig 4, (a), (b) shows the weighting component for each

method along the channels. Here, we normalize the weight-

ing components for a constant scale. The shattered gradi-

ent problem occurs at the gradient weight in layer 3. The

gradient weights become noisy and flatten in layer 3 com-
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Figure 5. Visualization of weakly supervised localization. (a), (c),

(e), and (f) are images for hen, brambling bird, gold fish and ring-

neck snake, respectively. (b), (d), (f), and (h) are segmentation

image through Relevance-CAM

pare to that of layer 4. On the other hand, the relevance

weights prove its robustness to the shattered gradient prob-

lem, showing sparsity in both layer 3 and layer 4.

And we demonstrate the selectivity of Grad-CAM and

Relevance-CAM in (c), (d) of fig 4 where the top 3

weighted activation maps and generated saliency maps of

each method are displayed. The top 3 weighted activa-

tion maps of both Grad-CAM and Relevance-CAM local-

ize the target class object, a tench, well in layer 4. But in

layer 3, Grad-CAM shows a noisy heatmap. Even the most

weighted activation map cannot extract the target class fea-

tures. This means that the noisy weighting component of

Grad-CAM cannot select the important feature maps. On

the other hand, Relevance-CAM is clearly localizing the

tench, and the top 3 weighted activation maps are also high-

lighting the target object in higher resolution. This indicates

that Relevance-CAM provides good weights for the impor-

tant channels. Through this demonstration, we show that

Relevance-CAM is robust to gradient shattered problem and

shows high selectivity in all layers.

4.3. Evaluation for Localization

The localization ability of attention map is important be-

cause the saliency map can be applied to localization tasks,

such as the attention mechanism[8, 18, 29, 32] or the self

erasing system[11, 35]. For this need, we evaluate the lo-

calization ability of Relevance-CAM in this section. Im-

ageNet (ILSVRC2012) validation set and ResNet 50 pre-

trained on ImageNet classification task are used for this ex-

periment. We conduct segmentation with Relevance-CAM

using a mask, where its area consists of pixels of the gen-

erated saliency map higher than average + 1*standard devi-

ation of the saliency map, on the segmented input image at

the layer 2 of ResNet 50, in fig 5. Relevance-CAM sepa-

Figure 6. Class sensitivity test of Relevance-CAM on ResNet 50

for multi objects

Figure 7. Class sensitivity test of Relevance-CAM on ResNet 50

for single object. The label of the input is a magpie.

rates the objects from the background well, and even small

objects like goldfish are localized with high precision.

Next, we experiment the localization ability quantita-

tively. The performance is evaluated using Intersection over

Union (IoU) metric, which is the ratio of the intersection

area to union area between the pixels of generated attention

map for a class and bounding box pixels. If the saliency map

localizes the target object tightly, the value of IoU would be

high. Experiment is conducted on the randomly selected

2000 images that the model predicted correctly, Table 3.

Almost similar performance results from the last convolu-

tional layer. But in the shallow layer, Relevance-CAM out-

performs the other methods. And it should be noted that

Relevance-CAM has fewer changes in IoU even when the

target layer becomes shallower.

4.4. Class Sensitivity Test

In fig 6, we visualize the masked image for each class

to qualitatively test the class sensitivity of our proposed

method. First row shows the masked images for class ‘ze-

bra’ along different layer depths. Second row shows the

masked images for class ‘elephant’ along different layer

depths. Here, we use the identical mask described in sec

4.3

The masked images show amazing class sensitivities. As

the layer becomes shallower, it can be seen that the localiza-

tion performance is slightly degraded but still creates suffi-

ciently class sensitive high resolution heatmaps. It should

be noted that the model already separates the elephant and

the zebra from the layer 1.

Another phenomenon can be seen in fig 7 - where only

the magpie is localized in layer 3 and 4, and the bar next to

the magpie starts to be localized in layer 2. In layer 1, the
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layer 1 layer 2 layer 3 layer 4

Grad-CAM 0.12 0.18 0.22 0.34

Grad-CAM++ 0.13 0.19 0.22 0.34

Score-CAM 0.21 0.25 0.28 0.34

Relevance-CAM 0.30 0.32 0.32 0.34

Table 3. IoU of the various explanation methods along the layer

depth of ResNet 50

Figure 8. Sanity Check for Relevance-CAM of layer 2 of

ResNet50 model

magpie and the rod on which the magpie are sitting are lo-

calized together very clearly. Recognizing the bar together

at the low level layer can be understood as localizing the

rods similar to the branches, which the magpies in the im-

agenet dataset are observed to sit on often. In other words,

magpie and rod are considered as the same class in the shal-

low layer, and as the layer deepens, the magpie and rod are

separately extracted as different features.

To summarize the findings in fig 6 and fig 7. Relevance-

CAM creates a class specific heatmap on layer 1 of ResNet

50. Through this, it can be seen that not only general fea-

tures or local features are extracted from layer 1, but also

class specific information is extracted. In addition, as the

layer deepens, the channel of the activation map increases,

and accordingly, the features are further subdivided within

the scope initially extracted from the shallow layers.

4.5. Sanity check for RelevanceCAM

We evaluate our method with cascading randomization

test which is proposed in [2]. The experiment is a very

important work when it comes to the explainable atten-

tion map. Fig 8 is Relevance-CAM results for layer 2 of

ResNet50 model obtained by progressively randomizing the

parameters from logit to layer 1. As we can see, the saliency

map is destroyed with the parameter randomization. Thus,

our method is sensitive to model parameters.

5. Evidence that class specific information is

extracted from shallow layers

Someone can raise a question for the argument that the

class specific information is extracted from shallow layers.

When obtaining Relevance-CAM, the forward path infor-

mation of shallower layers and the backward path infor-

mation of the deeper layers are required. However, since

Relevance-CAM uses LRP only for channel-wise weights,

there is no effect on spatial-wise weights. For example, if

the shallow layer only extracts general features such as edge

or texture, there would be no feature map that localizes only

objects of a particular class. In that situation no matter the

channel-wise weighting done through LRP, we would not

be able to create a class sensitive attention map. In fig 6 of

our paper, Relevance-CAM results of ResNet50 show that

objects of different classes are localized separately even in

shallow layers. We can infer that there are feature maps that

separately localize objects of different classes and those fea-

ture maps have a great influence on the class output score.

However, Relevance-CAM results of deeper layers can ex-

tract class specific features more explicitly than that of the

shallow layer as shown in fig 7. Thus, we argue that class

specific features can be extracted from the shallow layers,

but higher level features are extracted as the layer deepens.

6. Conclusion

In this paper, we proposed a novel Class Activation Map-

ping method called Relevance-CAM for faithful and accu-

rate explanation of deep learning models and its layers of

various depths. Our proposed Relevance-CAM is robust to

the problems other explanation methods share, such as the

shattered gradient problem and False Confidence. Due to

these advantages, Our Relevance-CAM enables analysis of

shallow layers, and we find that class specific features can

be extracted even in shallow layers which have small re-

ceptive fields. This insight can be used in various fields

such as transfer learning [22, 28, 23], model pruning[31],

and weakly supervised segmentation [35, 17]. As an ex-

ample, in the case of transfer learning, rather than selecting

layers to be fine-tuned empirically, it is possible to select a

layer through layer-wise analysis. We believe that our pro-

posed Relevance-CAM allows other researchers to deepen

their analysis of deep learning models.
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