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Abstract

In this study, we propose a self-supervised video denois-

ing method called “restore-from-restored.” This method

fine-tunes a pre-trained network by using a pseudo clean

video during the test phase. The pseudo clean video is ob-

tained by applying a noisy video to the baseline network.

By adopting a fully convolutional neural network (FCN) as

the baseline, we can improve video denoising performance

without accurate optical flow estimation and registration

steps, in contrast to many conventional video restoration

methods, due to the translation equivariant property of the

FCN. Specifically, the proposed method can take advantage

of plentiful similar patches existing across multiple con-

secutive frames (i.e., patch-recurrence); these patches can

boost the performance of the baseline network by a large

margin. We analyze the restoration performance of the

fine-tuned video denoising networks with the proposed self-

supervision-based learning algorithm, and demonstrate

that the FCN can utilize recurring patches without requir-

ing accurate registration among adjacent frames. In our

experiments, we apply the proposed method to state-of-the-

art denoisers and show that our fine-tuned networks achieve

a considerable improvement in denoising performance.

1. Introduction

Video restoration, which aims to recover the high-quality

video frames from the low-quality video, is one of the oldest

research fields in video processing. Video denoising, which

removes noise in the video frames, has been investigated

considerably. However, estimating a clean image from a

corrupted frame is a well-known inverse problem. To solve

such an ill-posed problem, various types of approaches, in-

* Corresponding author.

Code is available at https://github.com/shlee0/RFR-

video-denoising.

cluding prior model, likelihood model, optimization, and

deep learning techniques, have been introduced.

A common natural image property used for image

restoration is patch-recurrence in which similar patches ex-

ist within a single image. Particularly, patch-recurrence has

been considerably studied in single-image super-resolution

(SR) methods [9, 11, 12]. Although these patches can be de-

formed by camera and/or object motion in a video, patch-

recurrence over neighboring video frames is much richer

than that of a single image and can further improve the qual-

ity of the restored frames [19, 18]. Moreover, rich patch-

recurrence information can greatly help in the fine-tuning

of video restoration networks during the test stage, without

using ground-truth clean images.

Lehtinen et al. [16] proposed single-image denoising

method (noise-to-noise), which allows the training of the

restoration network without ground-truth clean images.

Ehret et al. [7] proposed a frame-to-frame training tech-

nique, which extends the noise-to-noise training algorithm

for video restoration; the frame-to-frame training algorithm

can also perform fine-tuning without using the ground-truth

clean video by aligning noisy patches among consecutive

frames using optical flow. However, estimating accurate

optical flow under large displacements, occlusion, and se-

vere degradation (e.g., noise and blur) is a challenging task.

Thus, in this work, we propose a new training algorithm

called “restore-from-restored,” which allows fine-tuning of

pre-trained networks without using the ground-truth clean

video and accurate optical flow for registration.

Our proposed method updates the parameters of pre-

trained networks using pseudo clean images, which are out-

puts of the pre-trained baseline networks from noisy input

frames. Our algorithm is simple yet effective for removing

noise in video frames and works particularly well with the

existence of numerous recurring patches. That is, we gen-

erate pairs of training images, which are composed of the

pseudo clean video and its noisy versions, to fine-tune the

network. In practice, pixel locations of the same patches in

different video frames vary due to motions, but with the aid
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of the translation equivariant property of a fully convolu-

tional network (FCN), our algorithm can update the network

parameters without using optical flow to align the translated

patches only if they are fully convolutional. We demonstrate

the superiority of the proposed algorithm by applying it to

state-of-the-art video denoising networks and providing im-

proved denoising results. The contributions of this study are

summarized as follows:

• We propose a novel self-supervised training algorithm

to fine-tune fully pre-trained networks without using

the clean ground-truth video.

• We explain why and how the proposed training scheme

works with the patch-recurrence property.

• The proposed method can be easily integrated with

state-of-the-art denoising networks and yields state-of-

the-art denoising results on the benchmark datasets in-

cluding not only synthetic but also real noise.

2. Related Works

In this section, we provide a brief overview of recent

works that are related to the proposed restoration algorithm,

in terms of training with and without using ground-truth

clean data.

Training with ground-truth clean data. When a set of

high-quality images is available, we can generate synthetic

degraded images, and train deep neural networks with these

images and restore them to their original high-quality state.

In the case of image denoising, Xie et al. [26] applied

deep neural networks to model the mapping of clean images

from noisy input images. They generated pairs of noisy and

clean images to train the neural networks. Since then, nu-

merous studies on the image denoising task have been con-

ducted using deep CNN with train pairs of clean and syn-

thetically noisy images [28, 29, 30, 32, 15, 17, 31, 10, 1].

Several studies have adopted residual learning schemes

to allow deep neural networks and extend the receptive

field [28, 32]. Moreover, to incorporate long-range de-

pendencies among pixels, several studies utilized non-local

networks [31, 17]. Recent efforts have attempted to deal

with unknown noise in real photographs (blind restoration).

Guo et al. [10] proposed a two-stage method that consists

of noise estimation and non-blind denoising steps. Gao and

Grauman [8] proposed an on-demand learning method to

handle various corruption levels for each restoration task

including denoising, inpainting, and deblurring. These re-

search trends have also been applied to video restoration

problems. For instance, Davy et al. [6] not only incorpo-

rated non-local information with a non-local patch search

module but also adopted a residual learning scheme for

video denoising. FastDVDnet [25] proposed a cascaded

two-step architecture with a modified multi-scale U-Net.

FastDVDnet exhibits fast runtimes by avoiding costly ex-

plicit motion compensation and handling motion implicitly

due to the attributes of its dedicated architecture. Yue et

al. [27] proposed RViDeNet to restore real noisy video

frames in raw image spaces and achieved state-of-the-art

denoising performance. RViDeNet adopts deformable con-

volution [5] to align consecutive frames and utilizes spatio-

temporal fusion stages to reconstruct the result. Moreover,

Yue et al. provided a new video denoising dataset, namely,

Captured Raw Video Dataset (CRVD).

Regardless of the techniques used in previous works

(e.g., residual learning, non-local network, and model-blind

approaches), these studies require the generation of syn-

thetic images for network training. Thus, these supervised

approaches hardly deal with datasets where clean images

can be rarely obtained (e.g., medical imaging system).

Training without ground-truth clean data. Several at-

tempts have been made recently to learn restoration net-

works without using ground-truth clean data. Lehtinen et

al. [16] trained a network with pairs of noisy patches un-

der the assumption that the average of many differently cor-

rupted pixels is close to clean data. Then, Krull et al. [14]

and Baston and Royer [2] introduced self-supervised sin-

gle image denoising methods without relying on clean data.

Ehret et al. [7] introduced a frame-to-frame training method

to learn video restoration networks without clean images by

extending the strategy proposed in [16] to videos. For re-

moving noise in a certain patch, their method searches cor-

responding patches among adjacent frames by using optical

flow and then warps the patches to create pairs of aligned

noisy patches for network training. Frame-to-frame training

enables the exploitation of patch-recurrence property within

input video frames and fine-tune the pre-trained networks

using test inputs. This approach can boost the performance

of the existing pre-trained networks because networks can

be further optimized without the ground-truth targets at the

test stage.

However, one disadvantage of this method [7] is that ac-

curate optical flow, which is difficult to estimate under large

displacements, occlusions and serious damages, is required

to fine-tune network. In this study, we overcome the limita-

tions of [7] by using a new training scheme called “restore-

from-restored.” Technically, pseudo clean images are gen-

erated from a pre-trained video restoration network and then

used as train targets for fine-tuning during the test phase. It

produces a synergy effect with the patch-recurrence prop-

erty that appears repeatedly over consecutive video frames.

In the following sections, we provide detailed analysis on

the proposed method and show the proposed method can

boost the performance of the fully pre-trained denoising

networks with the help of the patch-recurrence property.

To the best of our knowledge, the proposed method is the

first neural approach to boost the performance of pre-trained
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convolutional video restoration networks without using ac-

curate registration or non-local operation while using recur-

ring patches in the test-phase.

3. Self-Supervised Video Restoration

Patch-recurrence within the same scale is rich in natural

images [24, 22] and becomes more redundant when multi-

ple neighboring video frames are available [23]. To utilize

this space-time recurring information among given video

frames, conventional restoration methods require accurate

correspondences between adjacent frames and thus need to

compute the optical flow to align the neighboring frames to

the reference frames [3, 21, 13].

In this work, we present a novel yet simple training al-

gorithm (test-time fine-tuning) that can be applied to video

restoration networks. Our fine-tuning algorithm is based

on self-supervision and does not require ground-truth clean

images. Moreover, the proposed algorithm allows restora-

tion networks to exploit patch-recurrence without accurate

optical flow estimation and registration steps while improv-

ing performance by a large margin. Many convolutional

video restoration networks, including state-of-the-art meth-

ods, can be easily fine-tuned using our self-supervised train-

ing algorithm without changing their original network ar-

chitecture if they are fully convolutional.

3.1. Restore­from­restored

In this section, we explain how we can fine-tune and im-

prove the performance of the pre-trained video restoration

networks without using the clean video frames during the

test stage.

In general, conventional video restoration networks are

trained with labeled ground-truth clean images; these net-

works learn a function fθ, which maps a corrupted input

frame Y to a clean target frame X, where θ denotes the

function parameters. Specifically, the network parameter

θ is trained by minimizing the loss function L between the

network outcome and the training target as

Loss(θ) = L(fθ(Y),X). (1)

For the loss function L, common choices are L1 and L2

losses in many denoising approaches [2, 16]. Although

image restoration networks trained by minimizing the dis-

tance between the network output and the training target

can produce highly satisfactory results, these networks can

be further upgraded by utilizing redundant spatio-temporal

information (e.g., patch-recurrence) over neighboring video

frames [13, 6]. However, optical flow estimation net-

works or non-local operation modules to exploit the recur-

ring patches among different frames are expensive and re-

quire additional resources to extract the temporal informa-

tion [3, 6, 21, 17, 31].

Therefore, we develop a simple and effective fine-

tuning algorithm that can exploit patch-recurrence in space-

time without explicitly searching similar patches/features

through optical flow estimation or non-local operation. To

achieve this goal, we assume that we have a fully pre-

trained network fθ0 and use initially denoised video frames

{X̃1, ..., X̃T } as train targets for the fine-tuning, where

X̃t = fθ0(Yt) and t denotes the frame index. Although

these denoised images are not clean ground-truth images

and may include some artifacts, they can be used as pseudo

clean targets to fine-tune the network parameter in our

study. Using the pseudo clean images, we can synthe-

size pseudo noisy images by adding random noise N to

the pseudo clean images, and the pairs of pseudo clean and

pseudo noisy images can be used to fine-tune the denoising

networks by minimizing the loss as follows:

Loss(θ) =

T∑

t=1

L(fθ(X̃t +N), X̃t), (2)

Notably, the ground-truth frames and motion flows are not

used during our fine-tuning process. Nevertheless, under

an assumption that the distributions of the original noisy

input and the corresponding pseudo noisy images are sim-

ilar, we can update the network parameter θ by minimiz-

ing the proposed loss with the initially denoised frames and

their synthetically corrupted counterparts if the networks

are fully convolutional. Assume that we have self-similar

noisy patches ya and yb where yb is a translated version of

ya by a translational motion A (i.e., A(ya) = yb). Then,

we can generate pseudo clean patches x̃a and x̃b with a pre-

trained network, and we see that A(x̃a) = x̃b when the

network is an FCN, and it yields,

L(fθ(x̃a +N), x̃a) ≈ L(fθ(A(x̃a +N)), A(x̃a))

≈ L(fθ(x̃b +N), x̃b).
(3)

Therefore, overall loss in (2) does not depend on loca-

tions of self-similar patches over multiple frames during

the back-propagation with FCNs, and our fine-tuned net-

work predicts the averaged version of denoised self-similar

patches with L2 loss when one of the self-similar noisy

patches is given as input. We call this process “restore-

from-restored” training, since the proposed method is re-

lying on the initially restored (denoised) frames. We re-

peat our training algorithm several times until convergence

and achieve considerable improvement over the fully pre-

trained initial network.

3.2. Frame­to­frame vs. Restore­from­restored

The notion of our “restore-from-restored” algorithm

is based on recent noise-to-noise training mechanism by

Lehtinen et al. [16]. Noise-to-noise demonstrated that

image restoration networks can be trained without using
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ground-truth clean data for certain types of noise (e.g., zero-

mean noise, such as Gaussian noise and Bernoulli noise)

and can be extended into the frame-to-frame approach by

Ehret et al. [7] to process a video.

Exploiting space-time patch-recurrence. The frame-to-

frame training algorithm [7] allows the network to train with

self-supervision during the test-stage. Specifically, the net-

work is fine-tuned with two aligned noisy frames by mini-

mizing the loss as

Loss(θ) =

T∑

t=1

L(fθ(Yt),Yw

t−1), (4)

where Yw

t−1 denotes the warped version of the noisy frame

Yt−1 and is aligned to the reference frame Yt. Thus, the cal-

culation of optical flow for registration is necessary in (4).

However, the accurate estimation of optical flow is difficult

to achieve in some conditions, such as severe degradation,

large displacement between frames.

By contrast, our proposed loss in (2) does not need warp-

ing and alignment. If the denoising network fθ is an FCN,

then our method can maintain the performance without ac-

curate registration due to the translation equivariant nature

of FCN [4]. That is, our “restore-from-restored” approach

is not disturbed by the existence of large translational mo-

tions compared with optical flow-based methods.

Noise reduction. Assume that a set of perfectly aligned

images {Y1, ...,YT } (e.g., burst mode images from a cam-

era on a tripod) is given, and these images are corrupted by

zero-mean Gaussian random noise whose standard devia-

tion is σ. Using the frame-to-frame training algorithm [7],

the denoised frames become an averaged version of noisy

inputs (= 1

T

∑T

t=1
Yt) with the fine-tuned parameter, and the

noise variance of the denoised frame is reduced to 1

T
σ2 (re-

fer to the Appendix in [16] for details).

By contrast, the latent frame predicted from a fine-tuned

parameter by minimizing the L2 version of the proposed

loss in (2) is 1

T

∑T

t=1
X̃t. Thus, the noise variance of our

denoising result becomes 1

T
σθ0

2, where σθ0
denotes the

mean standard deviation of the remaining noise in X̃t. In

general, as fθ0 is a fully pre-trained network, the noise level

of the residual noise σθ0
is much lower than the original

noise level σ (i.e., σθ0
<< σ). Therefore, the noise vari-

ance of the latent frame from our “restore-from-restored”

algorithm is much lower than that from the frame-to-frame

training. Notably, our algorithm can achieve better results

when there is a rich patch-recurrence, and our algorithm can

show space-time varying denoising performance. For ex-

ample, noisy regions where structures are highly repeating

can be restored much better than regions with slightly re-

peating or unique patterns.

4. Proposed Method

Algorithm 1: Offline video denoising algorithm

Input: degraded video frames {Y1, ...,YT }

Output: denoised video frames X̃
K

Require: pre-trained network fθ0 , iteration number

K, learning rate α

1 i← 0

while i ≤ K do

2 foreach t do

3 Restore: X̃
i

t ← fθi(Yt)

end

4 X̃
i

← {X̃
i

1, ..., X̃
i

T }

5 Loss(θi) =
∑T

t=1
L(fθi(X̃

i

t + N), X̃
i

t) +∑T

t=1
L(fθi(X̃

0

t + N), X̃
0

t )

6 θi+1 ← θi − α∇θi
Loss(θi)

7 i← i+1

end

8 Return: X̃
K

Algorithm 2: Online video denoising algorithm

Input: degraded frame Yt at time-step t

Output: restored frame X̃t, fine-tuned network fθt

Require: fine-tuned network fθt−1
, restored frame

at the previous time-step X̃t−1, learning rate α

1 Loss(θt−1) = L(fθt−1
(X̃t−1 + N), X̃t−1)

2 θt ← θt−1 − α∇θt−1
Loss(θt−1)

3 Restore: X̃t ← fθt(Yt)

Return: X̃t, fθt // Will be reused in

the next time step

By minimizing the proposed loss function in (2), we can

restore clean images from degraded ones in offline and on-

line manners, similar to [7]. In the offline video denoising

mode, we can take advantage of all the given frames for

fine-tuning the network parameter. In the online denoising

mode, fine-tuning and denoising are conducted successively

in a sequential fashion (frame-by-frame).

Offline denoising. The offline video denoising algorithm

is elaborated in Algorithm 1. For offline fine-tuning at each

train step i, we remove the noise in the input noisy images

{Y1, ...,YT } using denoising network fθi and obtain de-

noised images {X̃
i

1, ..., X̃
i

T }. Next, we use pairs of training
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images {(X̃
i

1 +N, X̃
i

1), ..., (X̃
i

T +N, X̃
i

T )} to fine-tune the

network parameter by minimizing the loss function in (2).

To avoid over-fitting and generating over-smoothed results,

we use the initially denoised frames {X̃
0

1, ..., X̃
0

T } as addi-

tional train targets during the fine-tuning stages. In our sup-

plementary material, we demonstrate the effect of the sec-

ond loss term in Algorithm 1 by comparing results with and

without using the initial frames during offline fine-tuning

when K is large.

Online denoising. We can also adapt the network param-

eter in a sequential manner. Our online video denoising al-

gorithm is given in Algorithm 2. In contrast to the offline

denoising mode, our online denoising algorithm uses only

a previous frame for the update at each time step. To do so,

we slightly modify the proposed loss function in (2) for the

time step t, to take a single pair of images (X̃t−1+N, X̃t−1)
which is previous pseudo clean and noisy frames. In Algo-

rithm 2, temporally varying parameter θt denotes the fine-

tuned network parameter at time t; thus, each frame is de-

noised with a different network parameter.

5. Experiments

In our experiments, we apply our offline and online de-

noising algorithms to conventional denoising networks, in-

cluding state-of-the-art video denoising methods, and eval-

uate the denoising performance quantitatively and qualita-

tively. Please refer to our supplementary material for addi-

tional experimental results, including video clips.

5.1. Implementation Details

We use officially available fully pre-trained network pa-

rameters for our baseline denoisers. During the fine-tuning

period, we minimize the L2 loss for the proposed offline and

online denoising algorithms. We also use Adam for the up-

dates, with a learning rate of 1e-5. We measure the perfor-

mance in terms of PSNR and SSIM on RGB color channels

for the objective evaluation.

First, for Gaussian noise removal, we use VNLnet [6]

and FastDVDnet [25]. VNLnet is a state-of-the art video de-

noising method and shows the best denoising performance.

Although VNLnet is integrated with the non-local operation

module, we show that our algorithm can be easily applied

to networks with the non-local module and can further im-

prove the performance of the baseline networks. For the

evaluation, we use 7 video clips consisting of 100 sequences

each on the Derf database 1 and additional 7 video clips

in the DAVIS video segmentation challenge dataset [20].

We use down-scaled video frames (960×540), and generate

noisy input videos by adding Gaussian random noise with

different noise levels (σ=15, 25, 40).

1https://media.xiph.org/video/derf/
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Figure 1: Performance gains from our online and offline de-

noising algorithms. Baseline network is FastDVDnet [25].

Differences of PSNR values before and after fine-tuning are

measured on Derf datasets on σ = 15. Number i in “of-

fline i” denotes the number of steps (i.e., K). Note that the

rapid rise and drop of performance at the very first and last

time step are due to a usability of adjacent frames.

Next, for real noise removal, we use RViDeNet [27] and

evaluate on the CRVD dataset [27]. We improve the base-

line performance with the proposed fine-tuning algorithm in

the sRGB space. To handle real noise, we synthesize ran-

dom noise N with the noise model used in the pre-training

process of RViDeNet. Refer to our supplementary material

for detailed settings.

5.2. Denoising Performance

Quantitative results. First, we fine-tune FastDVD-

net [25] on the Derf dataset with the proposed offline and

online denoising algorithms to evaluate the Gaussian de-

noising performance; the performance gains are depicted

in Fig. 1. We achieve consistently improved denoising per-

formance over the baseline as the number of iterations (i.e.,

K) increases with the offline denoising algorithm. Mean-

while, we obtain improved results as the frame number in-

creases with our online denoising algorithm because the

proposed online method enables sequential parameter up-

date. In Tab. 1 and Tab. 2, we provide the PSNR and SSIM

values of the denoising results from our algorithms on the

Derf and DAVIS testsets. These results show that the on-

line and offline denoising algorithms can produce steadily

better results than the baseline models, and the offline de-

noising algorithm with 10 updates (i.e., K = 10) achieves

the best performance. In Tab. 3, we add quantitative denois-

ing results on the real noise dataset, CRVD [27]. As CRVD

includes only short sequences (T = 7), we only evaluate the

performance of the offline restoration algorithm; the results
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ground-truth noisy pre-trained online offline

Figure 2: Denoising results with FastDVDnet [25] on Derf testsets corrupted by Gaussian noise (σ = 40). Visual comparisons

with our online and offline (K = 10 in Algorithm 1) update procedures.

show that the proposed learning algorithm can effectively

remove real noise remarkably and enhance the denoising

results.

Visual results. In Fig. 2, we provide qualitative compari-

son results. The input images are corrupted with high-level

Gaussian noise (σ = 40), and FastDVDnet is fine-tuned by

our offline and online restoration algorithms. We also pro-

vide real noise denoising results with fine-tuned RViDeNet

in Fig. 3. Our methods can produce much better visual re-

sults and restore tiny details compared with the initially pre-

trained network.

Run-time. We report the run-time for a single update step

on the NVIDIA Tesla V100 graphics unit. FastDVDnet and

VNLnet take approximately 0.16 and 0.4 second to handle

a 960×540 input frame with our online denoising algorithm

in Algorithm 2; RViDeNet takes approximately 3.0 second

to process the 256×256 input frame with our offline denois-

ing method in Algorithm 1.

5.3. Comparison with the frame­to­frame

We compare our online denoising method with the

frame-to-frame training algorithm [7], and their official

code and parameters are used for the fine-tuning. As the

baseline, a fully pre-trained DnCNN [28], which is trained

with the Gaussian random noise (σ = 25) on the large exter-

nal dataset is used, and then fine-tuned on the Derf dataset

using frame-to-frame and our algorithms. For fair compar-

ison, the same hyper-parameters (e.g., optimizer, learning

rate, number of updates for each frame) are used to run

the both frame-to-frame and our restoration algorithms; the
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Method σ crowd park joy pedestrian station sunflower touchdown tractor Average

FastDVDnet

15

31.17/0.9208

31.32/0.9233

31.57/0.9263

30.46/0.8959

30.72/0.9058

30.95/0.9108

38.00/0.9522

38.20/0.9537

38.44/0.9549

36.65/0.9323

36.83/0.9338

37.10/0.9363

37.95/0.9525

38.38/0.9554

39.03/0.9596

35.98/0.9109

36.06/0.9123

36.23/0.9138

34.03/0.9263

34.26/0.9283

34.63/0.9320

34.89/0.9273

35.11/0.9304

35.42/0.9334

25

29.01/0.8813

29.32/0.8892

29.59/0.8943

28.34/0.8373

28.79/0.8610

29.06/0.8719

35.76/0.9328

36.27/0.9369

36.62/0.9393

34.96/0.9050

35.12/0.9076

35.38/0.9107

34.96/0.9306

36.14/0.9389

37.00/0.9455

33.97/0.8667

34.09/0.8678

34.33/0.8703

31.99/0.8946

32.32/0.8990

32.78/0.9051

32.71/0.8926

33.15/0.9000

33.54/0.9053

40

26.43/0.8159

27.21/0.8375

27.67/0.8509

25.80/0.7441

26.82/0.7927

27.27/0.8192

32.44/0.9003

33.93/0.9118

34.74/0.9190

32.89/0.8634

33.34/0.8709

33.42/0.8717

30.66/0.8884

33.39/0.9129

34.93/0.9263

31.78/0.8022

32.18/0.8095

32.56/0.8140

29.69/0.8490

30.32/0.8594

30.98/0.8697

29.95/0.8376

31.03/0.8564

31.69/0.8679

VNLnet

15

32.68/0.9373

32.83/0.9386

33.00/0.9401

32.19/0.9200

32.47/0.9279

32.72/0.9328

38.85/0.9567

38.94/0.9570

39.05/0.9576

38.51/0.9501

38.60/0.9508

38.72/0.9515

39.58/0.9628

39.87/0.9640

40.22/0.9661

37.37/0.9347

37.41/0.9348

37.52/0.9350

35.12/0.9378

35.30/0.9393

35.54/0.9416

36.33/0.9428

36.49/0.9446

36.68/0.9464

25

30.07/0.9013

30.34/0.9063

30.58/0.9105

29.48/0.8651

30.00/0.8849

30.33/0.8970

36.15/0.9353

36.58/0.9375

36.93/0.9397

36.57/0.9263

36.69/0.9280

36.83/0.9293

36.06/0.9430

37.37/0.9494

38.02/0.9539

35.21/0.8976

35.32/0.8991

35.49/0.8994

32.83/0.9072

33.11/0.9106

33.41/0.9142

33.77/0.9108

34.20/0.9165

34.51/0.9206

40

27.09/0.8366

27.85/0.8536

28.35/0.8648

26.51/0.7724

27.61/0.8153

28.18/0.8425

32.48/0.8992

33.78/0.9078

34.71/0.9154

33.91/0.8817

34.36/0.8879

34.64/0.8910

31.01/0.8975

34.09/0.9231

35.62/0.9343

32.33/0.8122

32.71/0.8199

33.06/0.8220

30.09/0.8569

30.71/0.8672

31.33/0.8760

30.49/0.8509

31.57/0.8678

32.27/0.8780

Table 1: Denoising results with FastDVDnet [25] and VNLnet [6] on the Derf testset with different Gaussian noise levels

(σ = 15, 25, 40). For each network architecture and each noise level, the PSNR and SSIM results of the baseline, online

learning (Algorithm 2) and offline learning (Algorithm 1) are listed in each box from top to bottom. The best average results

are written in bold letters.

Method σ chamaleon giant-slalom girl-dog hoverboard monkeys-trees salsa subway Average

FastDVDnet

15

36.65/0.9697

36.73/0.9702

36.92/0.9711

40.79/0.9685

41.08/0.9708

41.29/0.9717

34.25/0.9183

34.29/0.9202

34.35/0.9214

39.55/0.9613

39.63/0.9617

39.71/0.9616

31.59/0.9567

31.63/0.9569

31.75/0.9578

33.41/0.9440

33.62/0.9519

33.84/0.9626

37.56/0.9246

39.20/0.9601

40.03/0.9741

36.26/0.9490

36.60/0.9560

36.84/0.9601

25

33.98/0.9534

34.22/0.9550

34.53/0.9567

38.67/0.9550

38.94/0.9577

39.16/0.9588

31.61/0.8590

31.73/0.8639

31.88/0.8679

37.36/0.9486

37.54/0.9494

37.82/0.9504

28.71/0.9161

28.74/0.9164

28.84/0.9184

30.17/0.9002

30.59/0.9143

30.93/0.9328

33.48/0.8737

36.32/0.9334

37.95/0.9637

33.43/0.9151

34.01/0.9272

34.44/0.9355

40

30.97/0.9263

31.58/0.9311

32.30/0.9364

36.53/0.9384

36.84/0.9410

37.16/0.9428

29.01/0.7785

29.44/0.7907

29.84/0.7985

34.82/0.9315

35.32/0.9338

35.92/0.9361

26.29/0.8506

26.32/0.8529

26.38/0.8546

26.76/0.8162

27.65/0.8500

28.26/0.8819

28.83/0.8070

32.88/0.8885

35.85/0.9505

30.46/0.8640

31.43/0.8840

32.25/0.9001

VNLnet

15

37.30/0.9724

37.37/0.9725

37.50/0.9734

42.31/0.9751

42.32/0.9751

42.40/0.9753

35.68/0.9407

35.73/0.9418

35.81/0.9428

39.83/0.9626

39.82/0.9621

39.88/0.9621

34.87/0.9792

34.94/0.9794

35.02/0.9798

34.04/0.9461

34.21/0.9517

34.39/0.9616

37.60/0.9188

39.42/0.9522

40.41/0.9720

37.37/0.9564

37.69/0.9621

37.97/0.9667

25

34.46/0.9567

34.66/0.9576

34.98/0.9595

39.75/0.9604

39.81/0.9606

39.91/0.9610

32.76/0.8887

32.93/0.8947

33.09/0.8973

37.58/0.9501

37.66/0.9497

37.89/0.9500

31.96/0.9591

32.02/0.9596

32.09/0.9598

30.60/0.9015

31.03/0.9134

31.40/0.9314

32.88/0.8642

35.66/0.9085

37.98/0.9598

34.28/0.9258

34.83/0.9349

35.33/0.9456

40

31.26/0.9302

31.81/0.9338

32.57/0.9391

37.23/0.9425

37.41/0.9431

37.65/0.9438

29.71/0.8061

30.24/0.8224

30.71/0.8306

34.96/0.9335

35.31/0.9343

35.93/0.9366

29.13/0.9208

29.23/0.9236

29.30/0.9242

27.05/0.8198

27.99/0.8510

28.69/0.8798

28.55/0.8052

32.05/0.8639

35.65/0.9433

31.13/0.8797

32.01/0.8960

32.93/0.9139

Table 2: Denoising results with FastDVDnet [25] and VNLnet [6] on the DAVIS testset with different Gaussian noise levels

(σ = 15, 25, 40). For each network architecture and each noise level, the PSNR and SSIM results of the baseline, online

learning (Algorithm 2) and offline learning (Algorithm 1) are listed in each box from top to bottom. The best average results

are written in bold letters.

comparison results are provided in Fig. 4.

First, we show that the frame-to-frame algorithm cannot

outperform the baseline network when the noise distribution

of the test video is identical to that in the large external train

set (i.e., σ = 25). By contrast, our online restoration algo-

rithm can still elevate the denoising performance compared

with the fully pre-trained baseline by adapting the network

parameter to the specific input video (Fig. 4 (a)). Next, com-

pared with the baseline, the frame-to-frame algorithm and

our approach can improve denoising quality by a large mar-

gin when the noise distribution of the input video (i.e., σ =

40) is different from that of the training dataset (Fig. 4 (b)).

However, when the input video includes large motion dis-

placement, the frame-to-frame algorithm fails in estimating

accurate optical flow and thus can show worse performance

than the baseline; by contrast, our algorithm predicts consis-

tently better results because ours does not rely on the optical

flow (solid blue lines in Fig. 4 (c)).

In the comparison with the frame-to-frame method, our

algorithm uses additional information regarding the noise
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noisy-free noisy

pre-trained offlinenoisy input

Figure 3: Denoising results with RViDeNet on the

CRVD [27] dataset which includes real noise. We use K

= 10, for our offline denoising algorithm.

Noisy RViDeNet Ours

PSNR 31.79 39.95 40.13

SSIM 0.7517 0.9792 0.9795

Table 3: Denoising results with RViDeNet on the

CRVD [27] dataset with real noise. The proposed offline

learning method (Algorithm 1) show the quantitatively bet-

ter results than the baseline (RViDeNet) and the results are

written in bold letters.

distribution of the test input but shows considerably bet-

ter denoising results. By contrast, the frame-to-frame al-

gorithm requires additional resources and longer run-time

to compute optical flow among video frames.

6. Conclusion

In this work, we present a new training algorithm for

video denoising; this algorithm is straightforward and easy

to train and produces state-of-the-art denoising results. Our

training approach is based on the self-supervision and thus

allows the network to adapt its pre-trained parameter for

the given specific input video without using ground-truth

clean frames. As we use the restored version of the input

noisy frames rendered by the pre-trained denoiser as our

fine-tuning target (pseudo clean images), we call the pro-

posed algorithm “restore-from-restored.” Moreover, in con-

trast to conventional video restoration approaches, we re-

store the clean images without using accurate optical flow.

We describe how the proposed training algorithm can ex-

ploit recurring patches among input video frames and im-

prove the denoising performance. We also demonstrate the

superiority of the proposed algorithm and show consider-

able improvements on the various benchmark datasets.
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Figure 4: Comparisons of restore-from-restored (RFR) and

frame-to-frame (F2F) online fine-tuning methods. The

number i in “F2F i” or “RFR i” indicates the number of

updates for each frame [7]. (a) Denoising results when the

test input noise level is higher (σ = 40) than that in training

(σ = 25). (b) Denoising results when noise level during the

test and training stages is identical. (c) Denoising results on

a video with large motions when noise level during the test

and training stages is identical.
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