
2D or not 2D? Adaptive 3D Convolution Selection for

Efficient Video Recognition

Hengduo Li1 Zuxuan Wu2* Abhinav Shrivastava1 Larry S. Davis1

1 University of Maryland 2 Fudan University

{hdli,abhinav,lsd}@cs.umd.edu zxwu@fudan.edu.cn

Abstract

3D convolutional networks are prevalent for video

recognition. While achieving excellent recognition perfor-

mance on standard benchmarks, they operate on a sequence

of frames with 3D convolutions and thus are computation-

ally demanding. Exploiting large variations among differ-

ent videos, we introduce Ada3D, a conditional computa-

tion framework that learns instance-specific 3D usage poli-

cies to determine frames and convolution layers to be used

in a 3D network. These policies are derived with a two-

head lightweight selection network conditioned on each in-

put video clip. Then, only frames and convolutions that

are selected by the selection network are used in the 3D

model to generate predictions. The selection network is

optimized with policy gradient methods to maximize a re-

ward that encourages making correct predictions with lim-

ited computation. We conduct experiments on three video

recognition benchmarks and demonstrate that our method

achieves similar accuracies to state-of-the-art 3D models

while requiring 20%− 50% less computation across differ-

ent datasets. We also show that learned policies are trans-

ferable and Ada3D is compatible to different backbones and

modern clip selection approaches. Our qualitative analysis

indicates that our method allocates fewer 3D convolutions

and frames for “static” inputs, yet uses more for motion-

intensive clips.

1. Introduction

Videos are expected to make up a staggering 82% of In-

ternet traffic by 2022 [1], which demands approaches that

can understand video content like actions and events accu-

rately and efficiently. Key to video recognition is temporal

modeling to capture relationships among different frames.

Towards this goal, extensive studies have been conducted

with 3D convolutional networks by extending 2D convo-

lutions over time [33, 4, 35, 34, 9, 8, 45]. While of-

*Corresponding author.

Barbequing

Breakdancing

Golf driving

Figure 1: A conceptual overview of our approach.

Ada3D learns to adaptively keep/discard 3D convolutional

layers and frames conditioned on input clips for efficient

video recognition. Fewer 3D convolutions and frames are

kept for clips that contain discriminative static cues and

contextual information, while more are used for motion-

intensive clips, in pursuit of a reduced overall computational

cost without sacrificing recognition accuracy. Black mask

indicates the frame is discarded.

fering excellent recognition accuracy on standard bench-

marks [4, 13, 16], 3D models are often computationally ex-

pensive due to the costly convolution operations along the

temporal axis on a large number of stacked frames. For ex-

ample, at the clip-level 1, a standard ResNet50 [14] model

only requires 4.1 GFLOPs (giga floating-point operations)

to compute predictions for a single image, while a SlowFast

network [9] with the same ResNet50 backbone needs 16

times more computation (65.7 GFLOPs). Furthermore, the

computational cost linearly grows with the number of clips

uniformly sampled through the entire sequence for video-

level prediction aggregation.

But are 3D convolutions really important for recognizing

different types of videos? Do we really need them through-

1Here, we use “clip” in a broad sense; for 2D models, a clip is a single

RGB frame while for 3D models it is a stack of frames.

6155

out the network? Is it necessary to perform 3D convolution

on a fixed number of stacked frames for all different sam-

ples? Intuitively, 3D convolutions are critical for captur-

ing changing patterns among inputs. However, due to large

intra-class and inter-class variations, some videos are rela-

tively more “static” than others, for which using a computa-

tionally expensive 3D model on redundant inputs might be

unnecessary. This paper seeks to develop a computationally

efficient framework for video recognition by learning how

many frames to use and whether to use 3D convolutions in

3D networks. This is an orthogonal yet complementary di-

rection to existing work on fast video recognition, which

either designs lightweight 3D architectures [35, 44, 8, 34]

or develops clip selection schemes to use fewer clips for

classification [43, 20, 12, 41, 48].

With this in mind, we introduce Ada3D, an end-to-end

framework that learns adaptive 3D convolution usage con-

ditioned on each input clip sample for efficient video recog-

nition. For each clip, deriving a dynamic inference strat-

egy entails (1) learning how many frames are used as in-

puts to the 3D network; (2) conditioned on these selected

frames, determining how many 3D convolutional layers are

activated; (3) and most importantly, making correct pre-

dictions while only using a small number of input frames

and 3D convolutions. By doing so, Ada3D allocates more

computational resources to videos with complicated motion

patterns while performing economical inference for “easy

static” videos, enabling efficient video classification while

maintaining reliable classification accuracy. While appeal-

ing, learning whether to keep/discard input frames and 3D

convolutions is a non-trivial task, as it requires making bi-

nary decisions that are non-differentiable.

To this end, Ada3D is built upon a reinforcement learn-

ing framework [32]. In particular, given a video clip,

Ada3D trains a two-head selection network to produce a

frame usage policy and a convolution usage policy, indicat-

ing which frames in the input stack and which 3D convo-

lutions in the network should be kept or discarded, respec-

tively. Then, conditioned on the derived policies, dynamic

inference is performed on a pretrained 3D network with se-

lected frames and 3D convolutions for fast recognition. The

selection network is optimized with policy gradient meth-

ods [32] to maximize a reward function that is carefully de-

signed to incentivize using as few computational resources

as possible while making correct predictions. We further

jointly finetune the selection network with the 3D network

such that the 3D model is able to adapt to the adaptive infer-

ence paradigm. It worth nothing that the selection network

is designed to be lightweight so that its computational over-

head is negligible.

We conduct extensive experiments to evaluate Ada3D on

ActivityNet [16], FCVID [19], Mini-Kinetics-200 [44, 4],

and demonstrate that Ada3D is able to save 20% to 50%

computation on different datasets while maintaining simi-

lar recognition performance compared with baselines. We

show policies learned on Mini-Kinetics-200 can be further

transferred to the full Kinetics dataset [4]. In addition, we

show the approach is compatible with different 3D models

and it is also complementary to other clip-level selection

methods [20, 43, 41, 12, 48]. We also demonstrate quali-

tatively that our method learns to allocate fewer 3D convo-

lutions and frames for clips that are relatively more static,

while applying more computation to motion-intensive clips.

2. Related Work

Deep neural networks for video recognition. Existing

work typically designs video recognition architectures by

equipping state-of-the-art 2D models with the ability for

temporal modeling, and can be roughly categorized into

two directions. In particular, the first applies 2D models

on a per-frame basis and then model temporal relationships

across frames by aggregating features along the temporal

axis with operations such as pooling [38, 31, 10], recurrent

networks [6, 47, 23], and using inputs with explicit tem-

poral information such as optical flow [31, 10, 38]. The

other [4, 33, 29, 35, 9, 8] directly transforms 2D models

into 3D models with 3D convolutions applied on stacked

RGB frames (clips). While achieving state-of-the-art per-

formance on various benchmarks [4, 16, 13], 3D models

are computationally expensive, limiting their deployment in

real-world applications with limited resources. Our work

aims to reduce the computational cost of 3D models by

learning instance-specific 3D policies using fewer frames

and 3D convolutions in a 3D model conditioned on inputs

while making correct predictions at the same time.

Efficient video recognition. Extensive studies have been

conducted on designing efficient network architectures for

video recognition [50, 5, 35, 8, 49, 24, 34]. Recent advances

in efficient 2D ConvNets, e.g. group convolution [17, 30],

have been explored in 3D models [5, 35, 34]. In addition,

some lightweight temporal aggregation operations are intro-

duced to speed up inference such as a relational module in

TRN [49] and a shift module in TSM [24]. More recently,

X3D [8] expands a tiny model across several dimensions

for a good efficiency/accuracy trade-off. However, all these

approaches use a fixed input sampling scheme (i.e., number

of frames and frame rate) and compute predictions with a

“one-size-fits-all” model for all inputs clips, regardless of

the large temporal variations among them. In contrast, we

learn dynamic frame usage policies and convolution usage

policies conditioned on input clips, in pursuit of computa-

tional efficiency without sacrificing accuracy. It is worth

pointing out that our method is model-agnostic, and can be

used in tandem with these efficient networks.

Adaptive computation. Many adaptive computation

6156

......
......

Frame Policy

Spatial Downsampling

3D Convolution Policy

3D Video Model

Selection Network
3D2D 2D

Figure 2: An overview of our approach. Given an input clip, the selection network produces features for each frame in the

clip, which are further aggregated uniformly to derive a frame usage policy and a convolution usage policy simultaneously.

These policies activate a subset of frames and 3D convolutions in the 3D network for inference. Then, conditioned on the

prediction, two rewards are computed to evaluate the frame and convolution policy, respectively. See texts for more details.

(a.k.a, conditional computation) methods have been devel-

oped in the image domain, achieving reduced computation

by dynamically selecting channels [2, 25], skipping lay-

ers [42, 11, 40, 37], performing early exiting with auxil-

iary structures [22, 18, 3, 46], adaptively switching input

resolutions [27, 36, 46], etc. There are also a few recent

studies exploring adaptive computation for videos. These

approaches adaptively select salient clips for faster infer-

ence with one [43] or more [41] agents to aggregate video-

level predictions. Compressed video [20] and audio [12, 20]

are also utilized for further improvement in clip selection.

More recently, a dynamic resolution selection strategy is in-

troduced in [26].

Our method is closely related yet orthogonal to these

approaches. They focus on selecting informative clips

throughout the entire sequence to achieve fast inference,

aiming to improve the widely used uniform sampling base-

line for video recognition. For each selected clip, the same

amount of computational resource is used. In contrast, we

allocate computation conditioned on the complexity of the

input video clip. This can be considered as dynamic routing

in a network and is complementary to those clip-selection

methods (as will be shown empirically) [43, 12, 20], which

are a form of routing across different time steps in videos.

3. Approach

Ada3D reduces the computational cost of 3D networks

by learning instance-specific 3D usage policies that encour-

age using fewer computational resources, in the forms of

frames and 3D convolutions, while producing accurate pre-

dictions. To this end, we first revisit popular 3D networks

used for temporal modeling in Sec. 3.1, and then elaborate

different components of Ada3D in Sec. 3.2

3.1. 3D Networks for Video Recognition

Operating on stacked RGB frames, 3D video models typ-

ically extend state-of-the-art 2D networks by replacing a

number of 2D convolutions with 3D convolutions for tem-

poral modeling over time. Formally, taking as inputs an

input clip V with T frames {v1, v2, ..., vT }, 3D models ob-

tain final predictions through a stack of 2D (k1×d×d) and

3D (kt×d×d) convolutional layers, where t denotes the tem-

poral extent of 3D convolutional filters which is typically

set to 3 and 5 in practice, and d denotes the spatial height

and width. In common instantiations of 3D video mod-

els [33, 35, 4, 44, 9, 8], 3D convolutions are inserted into

the building blocks of 2D networks, and these 3D blocks

are organized based on heuristics such as using them in

early [44, 35] or late [9, 44, 45] stages of the network, if

not applied in all stages [4, 8, 35, 33]. Note that state-of-

the-art frameworks usually perform temporal convolutions

in a non-degenerate form [9, 8], i.e., taking in T frames and

outputting T convolved frames. While achieving state-of-

the-art recognition performance, 3D video models are of-

ten computationally expensive since a number of costly 3D

convolutions are applied on a sequence of stacked frames.

3.2. Ada3D: Adaptive 3D Convolution Selection

Ada3D learns 3D convolution usage policies conditioned

on input video clips to reduce the computational cost of 3D

6157

models. We achieve this with a lightweight selection net-

work that is trained to determine which frames to use as in-

puts to a pretrained 3D model and which convolution layers

to activate in the network for those selected frames. This in-

volves making binary decisions that are non-differentiable,

and thus not applicable for supervised frameworks. Instead,

we formulate learning the selection network as Markov De-

cision Process (MDP) [28]. We define the state space of the

MDP as the input video clip; actions in the model involve

keeping/discarding frames and 3D convolutions in 3D net-

works. The reward balances between recognition accuracy

and computation. The MDP is single-step: a video clip is

observed, actions are taken, and a reward is computed—this

can also be considered as a contextual bandit [21].

More formally, given an input clip V of length T and

a 3D ResNet video classifier F with K 3D convolution

stages2, the selection network fp, parameterized by w, com-

putes features for each frame in the input clip; these features

are then aggregated as inputs to two parallel branches, out-

putting two vectors m ∈ R
T and n ∈ R

K :

m,n = sigmoid(fp(V;w)). (1)

Here, each entry in m and n is normalized to be in the range

[0, 1] with the sigmoid(x) = 1
1+exp(−x) function, indicat-

ing the likelihood of keeping the corresponding frame and

3D convolution stage 2.

We then define a frame usage policy πf and a con-

volution usage policy πc with a T -dimensional and a K-

dimensional Bernoulli distribution, respectively:

πf (u | V) =

T
∏

t=1

m
ut

t (1−mt)
1−ut (2)

πc(v | V) =

K
∏

k=1

n
vk

k (1− nk)
1−vk . (3)

where u ∈ {0, 1}T and v ∈ {0, 1}K are actions based on

m and n, and ut = 1 indicates the t-th frame in V is used;

similarly vk = 1 means the k-th 3D convolution stage in

the 3D model is activated. Zero entries in u and v repre-

sent inactive frames and convolutions, respectively. During

training, u and v are produced by sampling from the corre-

sponding policy, and a greedy approach is used at test time.

Given these actions, a subset V ′ of the full clip V is

formed based on u. Similarly, according to v, certain 3D

convolution layers are changed to 2D by taking only the

center channel of its 3D convolutional filter along the tem-

poral axis, i.e., the slicing operation kt×d×d[
⌊

t
2

⌋

, :, :] in Py-

Torch style. Then, conditioned on V ′, we run a forward pass

with the 3D network where certain 3D convolutions are de-

graded, and a prediction is then computed. To encourage

2We consider turning off an entire 3D convolution stage that contains

multiple 3D convolutional layers to save more computation.

correct predictions with limited computation, we evaluate

these actions with a reward function:

R(x) =

{

1−O(x) for correct prediction

−γ else
(4)

where O(x) represents the normalized computational cost

of the action and x ∈ {u,v}. Based on Eqn. 4, we compute

two rewards for frame actions and convolution actions re-

spectively, encouraging using as little computation as possi-

ble when making correct predictions while penalizing incor-

rect predictions with a negative reward, i.e., −γ. Note that

γ also balances the speed-accuracy trade-off with different

values. While we instantiateO(u) andO(v) as (||u||0
T

) and

(||v||0
K

)2—the normalized usage of the number of frames

and 3D convolutions—there are also other options such as

FLOPs [26, 15]. The selection network is then optimized to

maximize the expected reward:

max
w

L = Eu∼πf ,v∼πc
[R(u) +R(v)]. (5)

We use policy gradient methods [32] to learn the param-

eters w for the selection network and the expected gradient

can be derived as:

∇wL = E [R(u)∇wlog πf (u | V)

+R(v)∇wlog πc(v | V)]. (6)

Eqn. 6 can be estimated with many samples at a time, and

thus we use samples in mini-batches to compute the ex-

pected gradient and then Eqn. 6 is approximated by:

∇wL ≈
1

B

B
∑

i=1

[R(ui)∇wlog πf (ui | Vi)

+R(vi)∇wlog πc(vi | Vi)], (7)

where B is the total number of samples in the mini-batch.

The gradient is then propagated back to train the policy net-

work with SGD. We further reduce variance by adding a

baseline function to the reward [32].

So far we have only trained the selection network while

keeping the pretrained video model fixed. The selection net-

work is able to learn decent policies that use fewer frames

and 3D convolutions while maintaining prediction accura-

cies. However, input distributions to the 3D model are no

longer the same as those used to train the original network,

where all frames and 3D convolutions are used. As a re-

sult, the 3D model is not equipped with the ability to deal

with inputs with varying number of frames and 3D convo-

lutions that are adaptively turned on/off. To remedy this,

we further jointly fine-tune the 3D model with the selection

network such that it is able to accustomed to such adaptive

inference paradigm. The objective function then becomes:

min
w,θ
−
∑

j=1

yj log(F(V;θ)j)− L(w) (8)

6158

Algorithm 1: Training algorithm of our approach.

Input: An input video clip V , the number of epochs

of for training the selection network E1, the

number of epochs of joint fine-tuning E2

1 Obtain a pretrained video classifier F

2 Randomly initialize selection network w

3 for e← 0 to E1 do

4 m,n = sigmoid(fp(V;w))
5 u,v ∼ πw(u|V), πw(v|V) // Eqn. 3

6 p = F(V|u,v) // Apply actions on F and forward

7 R = R(u) +R(v) // Eqn. 4

8 w = w −∇wL // Eqn. 6

9 end

10 for e← 0 to E2 do

11 Repeat Line 4-7
12 w = w −∇wL // Eqn. 6

13 θ = w −∇θLcls // Eqn. 8

14 end

where θ denotes the weights of the 3D network F and the

first term is the cross-entropy loss for an input clip V with

one-hot label y for classification training. Algorithm 1 sum-

marizes algorithm of Ada3D.

4. Experiments

4.1. Experimental Setup

Datasets and evaluation metrics. We evaluate our

approach on three video recognition datasets: Ac-

tivityNet (ACTIVITYNET) [16], Fudan-Columbia Video

Datasets (FCVID) [19] and Mini-Kinetics-200 (MINI-

KINETICS) [44]. ACTIVITYNET contains around 20K
Youtube videos of 200 action classes, with an average du-

ration of 117 seconds. We use the latest version 1.3 and its

official split with 10, 024 training videos, 4, 926 validation

videos and 5, 044 testing videos. We report results on the

validation set as the labels of testing videos are not publicly

available. FCVID consists of 91, 223 Youtube videos be-

longing to 239 categories, with an average duration of 167
seconds. The official split is adopted with a training set of

45, 611 videos and a testing set of 45, 612 videos. MINI-

KINETICS is a publicly released subset of KINETICS [4]

initially introduced in [44], consisting of 200 classes with

the most training samples in Kinetics; 400 and 25 videos are

sampled from each action class for training and validation,

forming a training set with 80, 000 videos and a validation

set with 5, 000 videos. Here we use the identical samples

as [44]. To demonstrate the transferability of the selection

network, we experiment with the Kinetics full set, which

contains 240K training videos and 20K validation videos.

Following official instructions, we report mean aver-

age precision (mAP) on ACTIVITYNET and FCVID. For

MINI-KINETICS and KINETICS, we report Top-1 accuracy.

Network architectures. We use an I3D [4] with a backbone

of ResNet-50 [14] as the 3D video model if not mentioned

otherwise, due to its popularity and competitive recogni-

tion performance across various benchmarks [4, 13, 16].

Our implementation follows [7], where 3D convolutions

are factorized spatially and temporally in a similar way as

R(2+1)-D [35], which is already a more efficient architec-

ture than original I3D. In addition, we also experiment with

the Slowonly model introduced in [9] to demonstrate the

compatibility of our approach with more recent networks.

We use a lightweight architecture for the selection net-

work with negligible computational overhead. Specifically,

we use MobileNetV2 [30] as the backbone of the selection

network. The inputs to the network are downsampled to

112 × 112 per frame, and it only requires 0.08 GFLOPs to

compute features for each frame.

Implementation details. All 3D networks are fine-tuned

from models provided by [7], which are pre-trained on Ki-

netics. We fine-tune 3D models for 40 epochs on FCVID

and ACTIVITYNET and 20 epochs on MINI-KINETICS,

with a cosine learning rate schedule starting at 0.01 and a

batch size of 64. The MobileNetV2 backbone of the se-

lection network is also pre-trained on these datasets with

the same schedules to speed up convergence. We first fix

the pretrained 3D models and train the selection network

for 40 epochs with a learning rate of 0.0001 and a batch

size of 256. Finally, the whole pipeline is jointly fine-tuned

for 60 epochs with the same learning rate described above.

SGD with momentum 0.9 is used for optimization. We use

8 GPUs for all experiments.

Regarding network inputs during training, we follow [9,

8] by randomly sampling a clip with 8/16 frames using a

temporal stride of 8 (sampling rate) from a given video. For

the spatial domain, 224× 224 pixels are randomly cropped

from the sampled clip during training. For inference, we

follow the common practice [9, 8, 39] and uniformly sam-

ple 10 clips with a spatial size of 256 × 256 from a testing

video. Video-level prediction is obtained by averaging the

clip-level predictions.

4.2. Main Results

We compare our proposed method with various baselines

under different input settings (8/16 frames per clip) and re-

port results in Table 1. The baselines we use include:

• Random: Based on the frame usage and convolution

usage produced by Ada3D, we generate random poli-

cies that use a similar amount of computational re-

sources compared to Ada3D.

• Random FT: The 3D model is further jointly fine-tuned

with the random policies.

6159

FCVID ACTIVITYNET MINI-KINETICS

mAP GFLOPs # 3D # Frame mAP GFLOPs # 3D # Frame Acc GFLOPs # 3D # Frame

8-frame per clip

Upper 82.1 58.6 5.0 8.0 82.6 58.6 5.0 8.0 79.0 58.6 5.0 8.0
Random 78.1 36.1 2.2 5.8 79.2 42.9 3.0 6.6 74.0 42.2 2.0 6.9
Random FT 80.7 36.1 2.2 5.8 81.1 42.9 3.0 6.6 77.4 41.5 1.9 6.8
Ours 81.9 35.6 2.2 5.7 82.6 42.2 3.1 6.6 78.9 42.4 1.9 6.9

16-frame per clip

Upper 84.4 117.3 5.0 16.0 84.4 117.3 5.0 16.0 79.6 117.3 5.0 16.0
Random 79.2 63.2 2.1 10.3 80.4 73.3 3.0 11.2 75.2 75.8 2.9 11.8
Random FT 82.0 65.3 2.1 10.6 82.8 71.3 3.0 11.1 78.2 78.0 2.9 12.0
Ours 84.3 66.6 2.1 10.7 84.0 70.1 3.0 11.1 79.2 73.8 2.9 11.8

Table 1: Recognition performance and computational cost of our method vs. baselines. Two input settings are experi-

mented, i.e. 8-frame setting (Top) and 16-frame setting (Bottom). # 3D and # Frame denote the number of 3D convolutions

and frames usage per input clip respectively, averaged over the entire test set. See texts for more details.

• Upper: The original pretrained 3D model with all 3D

convolutions and all frames used, which can be viewed

as a performance “upperbound” of our method.

As shown in Table 1, under the 8-frame input setting,

Ada3D obtains an mAP (accuracy for MINI-KINETICS) of

81.9%, 82.6% and 78.9%, requiring an average of 35.6,

42.2 and 42.4 GFLOPs per clip on FCVID, ACTIVITYNET,

MINI-KINETICS respectively. Ada3D achieves compara-

ble recognition performance but brings 40%, 28% and 27%
computational savings. This confirms that Ada3D is able to

learn effective 3D convolution and frame usage policies by

saving computational resources and preserving accuracies

at the same time across different datasets. Similar patterns

are also observed under the 16-frame input setting for all

three datasets.

Using similar computational resources, Ada3D improves

the Random baseline by 3.5% to 5% mAP/accuracy on

three datasets. Ada3D also outperforms Random FT by

1% to 2.5%. These results verify that Ada3D produces

adaptive polices and allocates computational resources on

a per-input basis to maintain recognition performance. It

is worth noting that there are slightly differences in com-

putational savings on different datasets. This results from

the fact that video categories in these datasets are dif-

ferent. For example, FCVID contains some classes of

static objects and scenes like “bridge” and “temple”, and

thus we observe more computational savings than ACTIV-

ITYNET and MINI-KINETICS, which are more activity-

focused; on MINI-KINETICS, where categories are motion-

intensive, more computational resources are needed com-

pared to FCVID and ACTIVITYNET.

Recognition with varying computational budgets. As

discussed in Section 3.2, the choice of γ in Eqn. 4 adjusts

the amount of penalty on policies that produce incorrect pre-

dictions, and thus it controls the speed/accuracy trade-off.

Here we report recognition accuracies of Ada3D under dif-

ferent computational budgets. As demonstrated in Fig. 3,

our method is able to cover a wide range of speed/accuracy

trade-offs and consistently outperforms Random FT with

different computational budgets. For example, on ACTIV-

ITYNET, Ada3D obtains an mAP of 82.6%, 81.9% and

80.9% with an average of 42.2, 30.1 and 24.4 GFLOPs per

clip respectively, while Random FT obtains 81.1%, 80.7%
and 79.8% with 42.9, 32.6 and 25.4 GFLOPS per clip on

average. Same patterns are also observed on FCVID.

Extension to clip selection. As mentioned in Sec. 2, our

method is orthogonal and thus could be complementary to

the line of clip selection methods [41, 43, 20, 12] for ef-

ficient video recognition. We validate our hypothesis by

combining our method with AdaFrame [43]. Specifically,

we use Ada3D as the backbone of AdaFrame to dynami-

cally allocate computational resources conditioned on each

input clip, as opposed to the original AdaFrame that uses the

Figure 3: Recognition performance under different compu-

tational budgets controlled by γ.

6160

Van→ Ada Van→ Ada Van→ Ada

Clip 3.0→ 2.9 5.0→ 4.2 10.0→ 7.4

mAP 77.8→ 78.1 80.3→ 80.5 81.9→ 82.0

Table 2: Extension to clip-level selection. Combining

Ada3D with AdaFrame [43] offers computational savings

for video-level aggregation. # Clip denotes number of clips

used per testing video; Van (Vanilla) and Ada denote our

method without and with AdaFrame, respectively.

same amount of computation with a fixed backbone for all

clips. Following [43], we train three variants of AdaFrame

which operates on 3, 5, and 10 clips for different compu-

tational budgets. As demonstrated in Table 2, extending

our approach with adaptive clip selection further decreases

the computational cost while producing comparable perfor-

mance with the Upper. For example, it reduces the number

of clips sampled from each testing video from 10 to 7.4 and

obtains an mAP of 82.0% that is on par with Upper (82.1%).

Additionally, we believe our method is also complementary

to other clip selection methods leveraging multi-modal in-

puts such as audio [20, 12], as well as adaptive spatial reso-

lution modulating methods [26, 36, 46].

Method Acc GFLOPs # 3D # Frame

Upper 73.1 58.6 5.0 8.0

Ours 72.8 43.7 2.3 6.9

Table 3: Transferring learned policies. We fine-tune a

Kinetics pretrained model on Kinetics full training set, with

policies learned on Mini-Kinetics, and evaluate on Kinetics

validation set.

Transferring learned policies. We now analyze whether

the policies learned by our method can be transferred to

novel action categories. To this end, we take the selection

network trained on MINI-KINETICS and fine-tune a pre-

trained I3D model with a ResNet-50 as its backbone on

full Kinetics. We keep the weights of the selection net-

work fixed during fine-tuning. Details of training and test-

ing are the same as joint fine-tuning as described in Sec. 4.1.

As shown in Table 3, policies learned on MINI-KINETICS

can reduce the overall computational cost of the fine-tuned

video model by 25% on Kinetics with negligible difference

in recognition accuracy compared to the Upper baseline,

indicating that our method learns strategies that are trans-

ferable to unseen classes and videos. It is worth noting that

the I3D baseline we use obtains superior recognition perfor-

mance on Kinetics that is higher than [4, 44] and compet-

itive compared to results reported in [39] using 32 frames

per input clip.

Compatibility with different 3D architectures. Next, we

evaluate the compatibility of our approach with different 3D

networks. We use a more efficient 3D network architecture

recently introduced in [9] termed as Slowonly and evaluate

our approach. In particular, it only uses 3D convolutions in

the 4-th and 5-th stage of a ResNet50, resulting in compet-

itive recognition performance with less computational cost.

As shown in Table 4, our method still obtains 20% to 40%
savings in GFLOPs with similar recognition performance,

indicating Ada3D is compatible with different 3D models.

Our method by design is model-agnostic, for which we be-

lieve it could be complementary to recent work on designing

efficient 3D models such as X3D [8] as well.

Method mAP GFLOPs # 3D # Frame

Upper 82.6 54.5 2.0 8.0

Ours 82.4 42.1 1.3 6.6

Upper 83.5 109.1 2.0 16.0

Ours 83.4 61.8 1.4 9.5

Table 4: Results on FCVID [19] using Slowonly [9] archi-

tecture as 3D model. Top: 8-frame input setting. Bottom:

16-frame input setting.

Qualitative analysis. In addition to the quantitative results

presented above, we also qualitatively analyze our method.

In particular, we observe that our method produces policies

with fewer 3D convolutions and frames for input clips that

are more “static”, while uses more for motion-intensive in-

stances. As shown in Fig. 4, a smaller number of 3D convo-

lutions and frames are applied on clips with discriminative

static cue. For instance, the presence of “bass” and “book

binder” for class “playing bass guitar” and “book binding”

suffice to produce correct predictions, and the scene of a

“court” serves as a strong contextual signal for “hurling”.

On the other hand, for motion-intensive action classes and

instances, especially those related to human movement such

as “breakdancing”, “somersaulting” and “Tai Chi”, more

computational resources are allocated by our method to cap-

ture finer temporal relationships among frames.

4.3. Discussion

Impact of joint finetuning. Recall that we first train the

seletion network with the 3D model fixed and then jointly

fine-tune both of them. Here we analyze the performance of

our method without the first selection network training stage

(Tr) or the joint fine-tuning stage (FT). For faster evaluation,

we uniformly sample 3 clips from each test video. Results

are shown in Table 5.

As can be seen, joint fine-tuning is crucial to further im-

prove the recognition performance (75.9 vs. 77.8). This

indicates that fine-tuning the video model together with

learned policies indeed helps the 3D model to adapt to the

adaptive inference paradigm brought by the selection net-

work. It is worth noting that skipping the first training

6161

Hurling

Book Binding

Barbequing Dancing macarena

Capoeira

Somersaulting

Tai Chi

Playing Bass Guitar

3D usage: 2 Frame usage: 3

3D usage: 1 Frame usage: 4

3D usage: 2 Frame usage: 4

3D usage: 2 Frame usage: 3

3D usage: 4 Frame usage: 8

3D usage: 4 Frame usage: 7

3D usage: 5 Frame usage: 8

3D usage: 4 Frame usage: 8

Figure 4: Qualitative results. Black mask indicates the frame is discarded. Left: Fewer 3D convolutions and frames are used

for action classes and instances that are more “static”, i.e. containing discriminative static cue and contextual information.

Right: For motion-intensive instances, more computation is allocated for probing finer temporal information.

FCVID ACTIVITYNET

Tr FT mAP GFLOPs mAP GFLOPs

Upper 78.1 58.6 76.4 58.6

72.3 36.1 71.1 42.9

X 75.9 34.7 74.3 38.1

X 76.5 34.9 75.1 37.6

X X 77.8 35.6 76.1 42.2

Table 5: Ablation on the effectiveness of two training

stages.

stage (i.e., directly training the selection network with the

3D model jointly) leads to a lower recognition performance

(76.5 vs. 77.8). We posit the reason is that adding another

objective (the classification loss) while training the selec-

tion network from random initialization further increases

the instability of network learning under such a reinforce-

ment learning setting; and thus the selection network con-

verges to sub-optimal policies.

FCVID ACTIVITYNET

3D Frame mAP GFLOPs mAP GFLOPs

Upper 78.1 58.6 76.4 58.6

75.5 35.6 74.3 42.3

X 76.8 35.3 75.3 41.1

X 76.3 35.5 74.8 43.5

X X 77.8 35.6 76.1 42.2

Table 6: Ablation on the usefulness of 3D convolution usage

and frame usage policies.

Contributions of convolution and frame usage policies.

To demonstrate the effectiveness of 3D convolution usage

and frame usage policies learned by the two-head selection

network, we conduct experiments to analyze contributions

of the two components. In particular, we replace each/both

components with randomly generated policies similar to

Random FT. Here we use 3-clip testing as well. As shown

in Table 6, applying either 3D or frame usage policy im-

proves recognition performance under the same computa-

tional budget, while using both achieves the best perfor-

mance with 1% improvement over the single-component

settings, indicating the double-head architecture can learn

to produce policies cooperatively.

5. Conclusion

We presented Ada3D, a framework that learns to de-

rive adaptive 3D convolution and frame usage policies—

determining which 3D convolutions in a pretrained 3D

video model and which frames in the input clip to use

on a per-input basis—for efficient video recognition. In

particular, a two-head selection network is trained with

policy gradient methods to produce these policies, reduc-

ing overall computational cost while maintaining recogni-

tion performance. Extensive experimental results on three

large-scale video recognition datasets indicate that Ada3D

achieves 20%-50% computational savings on state-of-the-

art 3D video models while achieving similar accuracies.

We further demonstrate Ada3D is compatible with different

backbones of 3D model and other clip selection methods,

and qualitatively show that more computational resource is

allocated on motion-intensive instances but less on static

ones by Ada3D.

Acknowledgement This work is supported by IARPA via

Department of Interior/Interior Business Center (DOI/IBC) con-

tract number D17PC00345.

6162

References

[1] The state of online video for 2020. https : / /

www.forbes.com/sites/tjmccue/2020/02/05/

looking-deep-into-the-state-of-online-

video-for-2020/. 1

[2] Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max

Welling. Batch-shaping for learning conditional channel

gated networks. In ICLR, 2020. 3

[3] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh

Saligrama. Adaptive neural networks for fast test-time pre-

diction. In ICML, 2017. 3

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 1, 2, 3, 5, 7

[5] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng

Yan, and Jiashi Feng. Multi-fiber networks for video recog-

nition. In ECCV, 2018. 2

[6] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In CVPR, 2015.

2

[7] Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and

Christoph Feichtenhofer. Pyslowfast. https://github.

com/facebookresearch/slowfast, 2020. 5

[8] Christoph Feichtenhofer. X3d: Expanding architectures for

efficient video recognition. In CVPR, 2020. 1, 2, 3, 5, 7

[9] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

ICCV, 2019. 1, 2, 3, 5, 7

[10] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, 2016. 2

[11] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li

Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan

Salakhutdinov. Spatially adaptive computation time for

residual networks. In CVPR, 2017. 3

[12] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo

Torresani. Listen to look: Action recognition by previewing

audio. In CVPR, 2020. 2, 3, 6, 7

[13] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-

ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

Mueller-Freitag, et al. The” something something” video

database for learning and evaluating visual common sense.

In ICCV, 2017. 1, 2, 5

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 5

[15] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In ECCV, 2018. 4

[16] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In CVPR,

2015. 1, 2, 5

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2

[18] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q Weinberger. Multi-scale dense

networks for resource efficient image classification. In ICLR,

2018. 3

[19] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Ex-

ploiting feature and class relationships in video categoriza-

tion with regularized deep neural networks. IEEE TPAMI,

2018. 2, 5, 7

[20] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:

Sampling salient clips from video for efficient action recog-

nition. In ICCV, 2019. 2, 3, 6, 7

[21] John Langford and Tong Zhang. The epoch-greedy algo-

rithm for multi-armed bandits with side information. In

NIPS, 2008. 4

[22] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao

Huang. Improved techniques for training adaptive deep net-

works. In ICCV, 2019. 3

[23] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,

and Cees GM Snoek. Videolstm convolves, attends and flows

for action recognition. CVIU, 2018. 2

[24] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift

module for efficient video understanding. In ICCV, 2019. 2

[25] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In NIPS, 2017. 3

[26] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna

Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and

Rogerio Feris. Ar-net: Adaptive frame resolution for effi-

cient action recognition. In ECCV, 2020. 3, 4, 7

[27] Mahyar Najibi, Bharat Singh, and Larry S Davis. Autofocus:

Efficient multi-scale inference. In ICCV, 2019. 3

[28] Martin L Puterman. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons, 2014.

4

[29] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In ICCV, 2017. 2

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 2, 5

[31] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, 2014. 2

[32] Richard S Sutton and Andrew G Barto. Reinforcement learn-

ing: An introduction. MIT press Cambridge, 1998. 2, 4

[33] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. C3d: Generic features for video

analysis. In ICCV, 2015. 1, 2, 3

[34] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feis-

zli. Video classification with channel-separated convolu-

tional networks. In ICCV, 2019. 1, 2

[35] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

6163

convolutions for action recognition. In CVPR, 2018. 1, 2, 3,

5

[36] Burak Uzkent and Stefano Ermon. Learning when and where

to zoom with deep reinforcement learning. In CVPR, 2020.

3, 7

[37] Andreas Veit and Serge Belongie. Convolutional networks

with adaptive inference graphs. In ECCV, 2018. 3

[38] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks for action recognition in videos. IEEE TPAMI. 2

[39] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 5, 7

[40] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and

Joseph E Gonzalez. Skipnet: Learning dynamic routing in

convolutional networks. In ECCV, 2018. 3

[41] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and

Shilei Wen. Multi-agent reinforcement learning based frame

sampling for effective untrimmed video recognition. In

ICCV, 2019. 2, 3, 6

[42] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

In CVPR, 2018. 3

[43] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S Davis. Adaframe: Adaptive frame selection for

fast video recognition. In CVPR, 2019. 2, 3, 6, 7

[44] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning:

Speed-accuracy trade-offs in video classification. In ECCV,

2018. 2, 3, 5, 7

[45] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei

Zhou. Temporal pyramid network for action recognition. In

CVPR, 2020. 1, 3

[46] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and

Gao Huang. Resolution adaptive networks for efficient infer-

ence. In CVPR, 2020. 3, 7

[47] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In CVPR, 2015. 2

[48] Yin-Dong Zheng, Zhaoyang Liu, Tong Lu, and Limin Wang.

Dynamic sampling networks for efficient action recognition

in videos. IEEE TIP, 2020. 2

[49] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-

ralba. Temporal relational reasoning in videos. In ECCV,

2018. 2

[50] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In ECCV, 2018. 2

6164

