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Abstract

Scene graph generation is an important visual under-

standing task with a broad range of vision applications.

Despite recent tremendous progress, it remains challenging

due to the intrinsic long-tailed class distribution and large

intra-class variation. To address these issues, we introduce

a novel confidence-aware bipartite graph neural network

with adaptive message propagation mechanism for unbi-

ased scene graph generation. In addition, we propose an

efficient bi-level data resampling strategy to alleviate the

imbalanced data distribution problem in training our graph

network. Our approach achieves superior or competitive

performance over previous methods on several challenging

datasets, including Visual Genome, Open Images V4/V6,

demonstrating its effectiveness and generality.

1. Introduction

Scene graph generation, which aims to detect visual ob-

jects and their relationships (or triplets: <subject, pred-

icate, object>) in an image, is a fundamental visual un-

derstanding task. Such a compact structural scene repre-

sentation has potential applications in many vision tasks

such as visual question answering [41, 37, 11], image

captioning [54] and image retrieval [14]. Tremendous

progress has been made recently in scene graph genera-

tion [20, 50, 23, 59, 53, 22, 40, 3, 8, 60, 39, 27, 45], thanks

to learned visual representations and advances in object de-

tection. However, this task remains particularly challeng-

ing due to large variations in visual relationships, extremely
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Figure 1: The illustration of biased scene graph genera-

tion and empirical study on Visual Genome. As shown

in (D), the baseline (MSDN [23]) performance is dominated

by the head categories due to the imbalanced data. We es-

timate an upper-bound performance by ignoring negative

predicate-entity connections during message propagation,

as shown in (B). Its performance (shown in (D)) indicates a

large room for improvement in context modeling.

imbalanced object and relation distribution and lack of suf-

ficient annotations for many categories.

One primary challenge, which causes biased relation-

ship prediction, is the intrinsic long-tail data distribution.

A scene graph model has to simultaneously cope with im-

balanced annotations among the head and medium-sized

categories, and few-shot learning in the tail categories.

A naively learned model will be largely dominated by

those few head categories with much degraded performance

for many tail categories (as shown in Fig. 1-D). Early

work [1, 4] on re-balancing data distribution focus on data
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re-sampling or loss re-weighting. However, it is non-trivial

to directly apply the image-level re-balancing strategies for

such instance-level tasks. Recent efforts try to introduce the

re-balancing ideas into object detection [9, 38] and scene

graph generation [39], but it remains difficult to achieve a

satisfactory trade-off between head and tail categories.

Moreover, those non-head predicate categories typically

involve complex semantic meaning and large intra-class

variations (e.g. play, look) in images, which exacerbates the

problems in their representation learning and classification.

Many previous works [59, 50, 23, 40, 53, 27] attempt to ad-

dress this problem by developing context modeling mecha-

nisms, but often suffer from noisy information propagation

due to their use of fully connected graphs. More recent ef-

forts [33, 53, 40, 45] aim to improve context modeling by

designing a sparse structure, which also limits the model

flexibility. To illustrate the impact of noises in graph, we

further conduct an empirical analysis, as shown in Fig.1,

which indicates that a baseline model can achieve notable

performance improvement by removing the noisy subject-

object associations.

Based on these findings, we propose a novel confidence-

aware graph representation and its learning strategy for un-

biased scene graph generation. To this end, we first develop

a bipartite graph neural network (BGNN) with the adap-

tive message propagation for effective context modeling.

Specifically, our method takes the hypothesize-and-classify

strategy, which first generates a set of visual entity and pred-

icate proposals from a proposal generation network. Then

we compute a context-aware representation for those pro-

posals by passing them through a multi-stage BGNN. Our

graph network adopts directed edges to model different in-

formation flow between entity and relationship proposals

as a bipartite graph, and an adaptive message propagation

strategy based on relation confidence estimation to reduce

the noise in the context modeling. Finally, we use the re-

fined entity and predicate representations to predict their

categories with linear classifiers.

To train our multi-stage BGNN for unbiased prediction,

we also design a bi-level data resampling strategy to allevi-

ate the imbalanced data distribution problem. Our method

combines the image-level over-sampling and instance-level

under-sampling ideas [13, 9] for the structured prediction

task. Equipped with this strategy, we can achieve a better

trade-off between the head and tail categories and learn our

bipartite graph neural network more effectively.

We extensively validate our methods on three scene

graph generation datasets, including Visual Genome, Open

Images V4, and Open Images V6. The empirical results

and ablative studies show our method consistently achieves

competitive or state-of-the-art performance on all bench-

marks. The main contributions of our works are three-folds.

• We introduce a bipartite graph neural network with

adaptive message propagation to alleviate the error

propagation and achieve effective context modeling.

• We propose a bi-level data resampling to achieve a bet-

ter trade-off between head and tail categories for scene

graph generation.

• Our method achieves competitive or state-of-the-art

performance on various scene graph benchmarks.

2. Related Works

Scene Graph Generation. Traditional methods in scene

graph generation typically utilize graph-based context-

modeling strategies to learn discriminative representation

for node and edge prediction. Most of them either focus

on the graph structure design or leveraging scene context

via various message propagation mechanisms.

Several types of graph structure have been proposed for

context modeling in literature. A popular idea is to model

the context based on a sequential model (e.g., LSTM) [59]

or a fully-connected graph [50, 5, 23, 55, 48, 44, 27]. In

addition, recent works [40, 43, 54, 33] explore sparse graph

structures, which are either associated with the downstream

tasks (e.g. VQA) or built by trimming the relationship pro-

posals according to the category or geometry information

of subject-object pairs. However, these works often rely on

their specific designs based on the downstream tasks, which

limits the flexibility of their representations.

Another direction aims to incorporate context informa-

tion into existing deep ConvNet models by exploring differ-

ent message propagation mechanisms. A common strategy

is to perform message passing between the entities propos-

als [59, 40, 45, 48, 33, 44, 27, 3], while the other aggregates

the contextual information between the entities and predi-

cates [50, 23, 5, 22, 55, 53, 44, 56], which also produces

effective scene graph representations.

Our work considers both message passing and inferring

network connectivity in a single framework. In particu-

lar, we develop a generic Bipartite Graph Neural Network

(BGNN) to effectively model the context of the entity and

predicate proposals, and an adaptive message propagation

to compute a more flexible representation. The previous

SGG models [23, 50, 22, 53] can be considered as special

cases of the BGNN.

Long-tail Visual Recognition Previous works in visual

recognition typically utilize re-balancing strategies to al-

leviate biased prediction caused by long-tail distributions.

These re-balancing strategies include dataset resampling to

achieve balanced class prior [2, 6, 36, 31], and loss re-

weighting based on instance frequency or hard-example

mining [1, 4, 17, 38, 26, 28, 25, 30]. Recently, [13, 9]

propose an instance-level re-sampling strategy for the tasks

of object detection and instance segmentation. Other ap-

proaches also explore knowledge transfer learning from
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head categories for long-tail classification [29, 7] or develop

the two-stage learning scheme [63, 16]. However, it is non-

trivial to apply a naive re-balancing strategy for scene graph

generation. We propose a bi-level data sampling strategy by

combing the image-level over-sampling [9] and instance-

level under-sampling [13] to achieve a better trade-off be-

tween the head and tail categories.

For the task of scene graph generation, several strate-

gies have proposed to tackle the intrinsic long-tail problem.

Some researchers propose novel loss designs by leveraging

the semantic constraints of scene graph [19, 27, 52, 43].

Others develop new graph structure encoding the con-

text [40, 3, 27] or introduce external commonsense and

linguistic knowledge [57, 58, 32] for better representation

learning. Recently, Tang et al. [39] proposes an unbiased

inference method by formulating the recognition process as

a causal model. In this work, we aim to improve the con-

text modeling for tail-categories by design an novel graph

network and message propagation mechanism.

Graph Neural Network Our work is also related to

learning deep networks on graph-structure data. The Graph

Neural Network (GNN) is first proposed by [35], which is a

powerful method for handling the non-Euclidean data. Pre-

vious works have explored different graph structures (e.g.

directed graph [15], heterogeneous graph [62, 47] ) and ag-

gregation mechanism (e.g. convolutional [18, 10], atten-

tion [24, 46, 61, 42]) for various tasks. Several recent ef-

forts attempt to improve the quality of message propagation

in GNNs. Hou et al. [12] proposes a context-surrounding

GNN framework to measure the quality of neighborhood

aggregation. Xu et al. [51] introduces a dynamical subgraph

construction by applying a graphical attention mechanism

conditioned on input queries. In this work, we introduce

a novel bipartite graph network to learn a robust context-

aware feature representation for the predicates.

3. Our Approach

We aim to tackle scene graph generation, which parses

an input image into a structural graph representation of ob-

ject entities and their visual relationship in the scene. In

particular, we focus on addressing the challenge of biased

scene graph prediction, mainly caused by the intrinsic long-

tail distribution of visual relationship in a typical training

dataset and the large intra-class variation of predicate cate-

gories. To this end, we introduce an adaptive scene graph

generation strategy, which simultaneously learns a robust

entity/predicate representation and a calibrated classifier for

better balanced performance.

In this section, we first present the problem setting of

scene graph generation and an overview of our method in

Sec. 3.1. We then introduce the details of our predicate rep-

resentation in Sec. 3.2, followed by our learning strategy on

the predicate classifier and representation in Sec. 3.3.

3.1. Problem Setting and Overview

Problem Setting Given an image I, the task of scene

graph generation (SGG) aims to parse the input I into a

scene graph Gscene = {Vo, Er}, where Vo is the node set

encoding object entities and Er is the edge set that repre-

sents predicate between an ordered pair of entities. Typi-

cally, each node vi ∈ Vo has a category label from a set of

entity classes Ce and a corresponding image location rep-

resented by a bounding box, while each edge ei→j ∈ Er
between a pair of nodes vi and vj is associated with a pred-

icate label from a set of predicate classes Cp in this task.

Method Overview In this work, we adopt a hypothesize-

and-classify strategy for the unbiased scene graph genera-

tion. Our approach first generates a set of entity and pred-

icate proposals and then computes their context-aware rep-

resentations, followed by predicting their categories.

Concretely, we introduce a bipartite graph network that

explicitly models the interactions between entities and their

predicates in order to cope with unreliable contextual in-

formation from the noisy proposals. Based on the graph

network, we develop an adaptive message passing scheme

capable of actively controlling the information flows to re-

duce the noise impact in the graph and generate a robust

context-aware representation for each relationship proposal.

Taking this representation, we then learn predicate and

entity classifiers to predict the categories of predicate and

entity within relationship proposals. To alleviate the bias

effect of the imbalanced data, we also design an efficient bi-

level data resampling strategy for the model training, which

enables us to achieve a better trade-off between the head and

tail categories. An overview of our method is illustrated in

Fig. 2, and we will start from a detailed description of our

model architecture below.

3.2. Model Architecture

Our scene graph generation model is a modular deep net-

work consisting of three main submodules: 1) a proposal

generation network to generate entity and relationship pro-

posals and compute their initial representation (Sec. 3.2.1);

2) a bipartite graph neural network to encode the scene con-

text with adaptive message propagation and multi-stage iter-

ative refinement (Sec. 3.2.2); and 3) a scene graph predictor

to decode the scene graph from the context-aware represen-

tations of relationship proposals (Sec. 3.2.3).

3.2.1 Proposal Generation Network

Following [59, 60], we utilize an object detector network

(e.g., Faster R-CNN [34]) to generate a set of entity and re-

lationship proposals. The entity proposals are taken directly

from the detection output with their categories and classifi-

cation scores, while the relationship proposals are generated

by forming ordered pairs of all the entity proposals.
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Figure 2: Illustration of overall pipeline of our BGNN model. RCE denotes the relationship confidence estimation module.

CMP denotes the confidence-aware message propagation model. SG Predictor is the scene graph predictor for the final

prediction.

Given the relationship proposals, we then compute

an initial representation for both entities and predicates.

Specifically, for the i-th entity proposal, we denote its con-

volution feature as vi, its bounding box as bi and its de-

tected class as ci. The entity representation ei uses a fully-

connected network fe to integrate its visual, geometric and

semantic features as,

ei = fe(vi ⊕ gi ⊕wi) (1)

where gi is a geometric feature based on its bounding box

bi, wi is a semantic feature based on a word embedding of

its class ci, and ⊕ is the concatenation operation.

For the relationship proposal from entity i to j, we com-

bines the entity representations ei ⊕ ej with the convolu-

tional feature of their union region (denoted as u
p
i,j). For-

mally, we compute the predicate representation ri→j as

ri→j = fu(u
p
i,j) + fp(ei ⊕ ej) (2)

where fu and fp are two fully-connected networks.

3.2.2 Bipartite Graph Neural Network

Given the relationship proposals, we build a graph struc-

ture to capture the dependency between entities and predi-

cates. To this end, we introduce a bipartite graph Gb with

directed edges, which enables us to model the different in-

formation flow directions between entity and predicate rep-

resentations. Specifically, the graph consists of two groups

of nodes Ve,Vp, which correspond to entity representa-

tions and predicate representations respectively. Those two

groups of nodes are connected by two sets of directed edges

Ee→p and Ep→e representing information flows from the en-

tities to predicates and vice versa. Hence the bipartite graph

has a form as Gb = {Ve,Vp, Ee→p, Ep→e}.

To effectively model the context of the entity and predi-

cate proposals, we develop a Bipartite Graph Neural Net-

work (BGNN) on the graph Gb. Our BGNN conducts a

multi-stage message propagation and each stage consists

of 1) a relationship confidence estimation module to pro-

vide a confidence estimate on relationship; 2) a confidence-

aware message propagation to incorporate scene context

and semantic cues into the entity/predicate proposals. The

overview of our BGNN is illustrated in Fig. 2. We will focus

on a single stage of our network in the rest of this section.

Relationship Confidence Estimation (RCE) Module In

order to reduce the noise in context modeling, we introduce

a relationship confidence estimation (RCE) module. It pre-

dicts a confidence score for each relationship proposal to

control the information flow in the message propagation.

Concretely, for a predicate node from entity i to j, the

RCE module takes as input the predicate proposal features

ri→j and its associated entities’ class scores, and predicts a

confidence score for each predicate class as below,

smi→j = gx(ri→j ⊕ pi ⊕ pj) ∈ R
|Cp| (3)

where pi,pj ∈ R
|Ce| are the class probabilities for entity

ei and ej from the detection, and gx is a multilayer fully-

connected network. We then fuse those confidence scores

into a global confidence score for the predicate node as

sbi→j = σ(w⊺

b s
m
i→j), wb ∈ R

|Cp| (4)

where σ is the sigmoid activation function and wb are the

parameters for the fusion.

Confidence-aware Message Propagation We now intro-

duce our adaptive message propagation for capturing the

scene context. Specifically, we design two types of mes-

sage passing update, including an entity-to-predicate mes-

sage and a predict-to-entity message according to the edge

directions, as illustrated in Fig. 3. Below we consider an

iteration from l to l + 1 in the message passing.
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Figure 3: Two kinds of message propagation with con-

fidence gating of bipartite graph neural network. The

dashed arrows mean information flow is blocked when the

source is uncertain. The different alpha value stands for dif-

ferent aggregation weights for rest connections.

1) Entity-to-predicate Message Propgation: We update

the representation of a predicate node ri→j by fusing its

neighboring entity nodes:

r
(l+1)
i→j = r

(l)
i→j + φ(dsW

⊺

re
(l)
i + doW

⊺

re
(l)
j ) (5)

ds = σ(w⊺

s [r
(l)
i→j ⊕ e

(l)
i ]), do = σ(w⊺

o [r
(l)
i→j ⊕ e

(l)
j ]) (6)

where Wr is a linear transformation, φ is an activation

function (e.g. ReLU). and ds, do are learnable affinity func-

tions of entity and predicate, where ws and wo are their

parameters.

2) Predicate-to-entity Message Propagation: As the predi-

cate node set Vp typically includes a considerable amount of

false positive predicate proposals, we develop a confidence-

aware adaptive message propagation for entity nodes up-

date to alleviate such noise effect. Specifically, we first in-

troduce a confidence gating function to control the informa-

tion flow from an entity’s neighbor ri→j as:

γi→j = T (sbi→j), T (x) =







0 x ≤ β
αx− αβ β < x < 1/α+ β

1 x ≥ 1/α+ β

(7)

where α and β is learnable threshold parameters. The gating

function T (x) is designed for achieving a hard control for

the predicate proposals with high or low scores (confidently

positive or negative), and a soft control for the predicates

with intermediate scores.

For each entity node ei, we divide its neighboring predi-

cates into two sets: Bs(i) for ei as the subject and Bo(i) for

ei as the object. We update the entity representation ei by

aggregating its neighbors’ messages:

e
(l+1)
i = e

(l)
i + φ





1

|Bs(i)|

∑

k∈Bs(i)

γkdsW
⊺

er
(l)
k (8)

+
1

|Bo(i)|

∑

k∈Bo(i)

γkdoW
⊺

er
(l)
k



 (9)

where We is the parameter of a linear transformation.

In each stage, we typically perform Ni iterations of the

above two message propagations to capture context in a suf-

ficiently large scope.

3.2.3 Scene Graph Prediction

To generate the scene graph of the given image, we intro-

duce two linear classifiers to predict the class of the enti-

ties and predicates based on their refined representations.

Concretely, for each relationship proposal, our classifier

integrates the final representation of predicates proposal

from our BGNN, denoted as r̂i→j , and a class frequency

prior [59], p̂ri→j
, for classification:

pri→j
= softmax

(

W
⊺

relr̂i→j + log(p̂ri→j
)
)

∈ R
Cp (10)

For each entity, we introduce a learnable weight to fuse

the initial visual features vi and enhanced features êi output

by our BGNN. The final entity classification is computed as:

pei
= softmax(W⊺

ent(ρêi + (1− ρ)vi) ∈ R
Ce (11)

where ρ is a weight in [0, 1], and Wrel and Went are the

parameters of two classifiers.

3.3. Learning with Bi­level Data Sampling

We now present our learning strategy for unbiased scene

graph generation. We will first develop a bi-level data sam-

pling strategy to balance the data distribution of entities and

predicates, and then describe a multitask loss for learning

the adaptive BGNN.

Bi-level Data Resampling Unlike in other vision tasks,

the scene graph annotations have varying structures, which

makes it non-trivial to adopt either the instance-level replay

strategy [13] or images-level resampling method LVIS[9].

To tackle the intrinsic long-tail data distribution of entity

and relation, we design a two-level data sampling strategy

that integrates the above two ideas on rebalancing. Specifi-

cally, our data sampling strategy consists of two steps:

1) Image-level over-sampling: We adopt the repeat factor

sampling in [9] to sample images first. We start from a

class-specific repeat number, rc = max(1,
√

t/f c), where

c is the category, f c is its frequency on the entire dataset
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B Models
PredCls SGCls SGGen

mR@50 / 100 R@50 / 100 mR@50 / 100 R@50 / 100 mR@50 / 100 R@50 / 100
V

G
G

1
6

Motifs[59, 40] 14.0 / 15.3 65.2 / 67.1 7.7 / 8.2 35.8 / 36.5 5.7 / 6.6 27.2 / 30.3

FREQ [59, 40] 13.0 / 16.0 60.6 / 62.2 7.2 / 8.5 32.3 / 32.9 6.1 / 7.1 26.2 / 30.1

G-RCNN [53] - / - 54.2 / 59.1 - / - 31.6 / 29.6 - / - 11.4 / 13.7

VCTree[40] 17.9 / 19.4 66.4 / 68.1 10.1 / 10.8 38.1 / 38.8 6.9 / 8.0 27.9 / 31.3

RelDN[60] - / - 68.4 / 68.4 - / - 36.8 / 36.8 - / - 28.3 / 32.7

KERN [3] 17.7 / 19.2 67.6 / 65.8 9.4 / 10.0 36.7 / 37.4 6.4 / 7.3 29.8 / 27.1

GPS-Net[27] - / 22.8 66.9 / 68.8 - / 12.6 39.2 / 40.1 - / 9.8 28.4 / 31.7

PCPL[52] 35.2 / 37.8 50.8 / 52.6 18.6 / 19.6 27.6 / 28.4 9.5 / 11.7 14.6 / 18.6

X
-1

0
1

-F
P

N

RelDN† 15.8 / 17.2 64.8 / 66.7 9.3 / 9.6 38.1 / 39.3 6.0 / 7.3 31.4 / 35.9

Motifs[39] 14.6 / 15.8 66.0 / 67.9 8.0 / 8.5 39.1 / 39.9 5.5 / 6.8 32.1 / 36.9

Motifs∗[39] 18.5 / 20.0 64.6 / 66.7 11.1 / 11.8 37.9 / 38.8 8.2 / 9.7 30.5 / 35.4

VCTree[39] 15.4 / 16.6 65.5 / 67.4 7.4 / 7.9 38.9 / 39.8 6.6 / 7.7 31.8 / 36.1

G-RCNN† 16.4 / 17.2 65.4 / 67.2 9.0 / 9.5 38.5 / 37.0 5.8 / 6.6 29.7 / 32.8

MSDN† [23] 15.9 / 17.5 64.6 / 66.6 9.3 / 9.7 38.4 / 39.8 6.1 / 7.2 31.9 / 36.6

Unbiased[39] 25.4 / 28.7 47.2 / 51.6 12.2 / 14.0 25.4 / 27.9 9.3 / 11.1 19.4 / 23.2

GPS-Net† 15.2 / 16.6 65.2 / 67.1 8.5 / 9.1 39.2 / 37.8 6.7 / 8.6 31.1 / 35.9

GPS-Net†∗ 19.2 / 21.4 64.4 / 66.7 11.7 / 12.5 37.5 / 38.6 7.4 / 9.5 27.8 / 32.1

BGNN 30.4 / 32.9 59.2 / 61.3 14.3 / 16.5 37.4 / 38.5 10.7 / 12.6 31.0 / 35.8

Table 1: The SGG performance of three tasks with graph constraints setting. † denote results reproduced with the

authors’ code. ∗ denotes the resampling [9] is applied for this model.

H

B

T

Instances frequencySampling example

X N

Figure 4: Illustration of bi-level data sampling for one

image. The top row is the instance frequency of head(H),

body(B), and tail(T) categories in the image. The middle

row shows image-level oversampling with repeat factor N .

The bottom row shows the instance-level under-sampling

for instances of different categories.

and t is a hyper-parameter that controls when oversam-

pling starts. For i-th image, we set ri = maxc∈i r
c, where

{c ∈ i} are the categories labeled in i.

2) Instance-level under-sampling: Given the sampled im-

ages, we further design an instance-level sampling strategy

for predicates. Concretely, we compute a drop-out prob-

ability for instances of different predicate classes in each

image. The drop-out rate dci for instances in i-th image,

with category label c is calculated by dci = max((ri −

rc)/ri ∗ γd, 1.0), and γd is the hyper-parameter for adjust-

ing the drop-out rate. With this strategy, our two-level data

resampling can achieve an effective trade-off between the

head and tail categories.

Training Losses To train our BGNN model, we design a

multitaks loss that consists of three components, including

Lrce for relation confidence estimation module (RCE), Lp

for predicate proposal classification and Le for entity pro-

posal classification. Formally,

Ltotal = Lp + λrceLrce + λeLe (12)

where λrce, λe are weight parameters for calibrating the su-

pervision from each sub-task.

Here Lp,Le are the standard cross entropy loss for

multi-class classification (foreground categories plus back-

ground). The loss of RCE Lrce is composed by two terms:

Lrce = Lm+λ ·Lb, where λ is a weight parameter, and Lm

and Lb are losses for the class-specific and overall relation

confidence estimation sm, sb respectively. Both predictions

have explicit supervision as in the training of relationship

predictor in the graph refinement stage. We adopt the fo-

cal loss [26] to alleviate positive-negative imbalance in the

relationship confidence estimation.

4. Experiments

In this section, we conduct a series of comprehensive ex-

periments to validate the effectiveness of our method. Be-

low we first present our experimental analysis and ablative
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Figure 5: The per-group results on VG dataset (SGGen

task).

study on Visual Genome [20] dataset (in Sec. 4.1), then our

results on the Open Images V4/V6 [21] (In Sec. 4.2). In

each dataset, we first introduce the implementation details

of our method and then report comparisons of quantitative

results in detail.

4.1. Visual Genome

4.1.1 Experiments Configurations

Dataset Details For Visual Genome [20] dataset, we take

the same split protocol as [50, 59] The most frequent 150

object categories and 50 predicates are adopted for evalu-

ation. Following the similar protocol in [29], we divided

the categories into three disjoint groups according to the

instance number in training split: head (more than 10k),

body (0.5k ∼ 10k), tail (less than 0.5k), more details are

reported in Suppl.

Evaluation Protocol We evaluate the model on three sub-

tasks as[50, 59]: 1) predicate classification (PredCls), 2)

scene graph classification (SGCls), 3) scene graph gener-

ation (SGGen, also denote as SGDet). Following the pre-

vious works [3, 40, 39, 27] that concentrate on the long-

tail distribution of entity and predicate categories on Visual

Genome, we takes recall@K(R@K) and mean recall@K

(mR@K) as evaluation metrics, and also report the mR@K

on each long-tail category groups (head, body and tail).

Implementation Details Similar to Tang [39], we adopt

ResNeXt-101-FPN [49] as backbone network and Faster-

RCNN [34] as object detector, whose model parameters are

kept frozen in model training. In our resampling strategy,

we set the repeat factor t=0.07, instances drop rate γd=0.7,

and weight of fusion the entities features ρ=-5. The α, β are

initialized as 2.2 and 0.025 respectively.

4.1.2 Comparisons with State-of-the-Art Methods

As shown in Tab. 1, BGNN achieves the state of the art

in all three sub-tasks (PredCls, SGCls, SGGen) evaluated

by mR@50/100 on X-101-FPN backbone, and outperforms

Unbiased [39] with a significant margin of 5.0 and 4.2

on PredCls. Besides, BGNN shows a comparable perfor-

mance with previous SOTA in SGCls and SGGen sub-tasks

Module SGGen

B C M mR@100 R@100 Head Body Tail

✗ ✗ ✗ 9.7 34.1 32.1 9.3 3.0

✓ ✗ ✗ 10.5 34.8 32.4 10.7 4.5

✓ ✓ ✗ 11.7 35.3 33.6 11.4 5.2

✓ ✓ ✓ 12.6 35.8 34.0 12.9 6.0

Table 2: Ablation study of model structure. B: bi-

partite graph neural network with plain message passing;

C:confidence-aware message propagation mechanism;M:

multi-sage refinement

Resample
SGGen

mR@100 R@100 Head Body Tail

None 9.7 36.1 34.2 9.9 2.6

RFS[9] 10.7 34.6 33.2 9.7 3.5

BLS 12.6 35.8 34.0 12.9 6.0

Table 3: The ablation for the resampling strategy. RFS:

repeat factor sampling; BLS: bi-level data sampling.

on R@50/100, which demonstrate the effectiveness of our

methods.

On the VGG16 backbone, we achieves comparable re-

sult with the state-of-the-art, PCPL [52] on the SGCls and

PredCls sub-tasks by mR@50/100. However, BGNN out-

performs the PCPL on SGGen sub-tasks by a large margin,

which shows that our proposed BGNN is capable of han-

dling challenging SGGen task with more noisy proposals.

Moreover, as shown in Fig. 5, we compute the mean

recall on each long-tail category groups in SGGen sub-

task and find BGNN significantly outperforms the prior

works [27, 39] on tail group, as a result it achieves the high-

est mean recall over all categories. We provide more visu-

alization of our results and comparisons in the Suppl.

4.1.3 Ablation Study

Model Components We first evaluate the importance of

each component in our BGNN. As shown in Tab. 2, we

incrementally add one component to the plain baseline to

validate their effectiveness. We observe the plain mes-

sage propagation(without adaptive confidence-aware mech-

anism) on bipartite graph neural network improves the base-

line with 8% and achieves 10.5 on mR@100. Besides,

the confidence-aware message propagation mechanism pro-

motes the performance to 11.7, and multiple stages refine-

ment further improves the final results to 12.6.

Re-sampling Strategies We compare the widely-used re-

peat factor sampling [9] with BLS for validating the pro-

posed bi-level data sampling strategy (BLS). As shown in
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SGGen

Nt Ni mR@100 R@100 Head Body Tail

1 1 10.0 35.3 33.5 9.3 4.0

1 2 10.5 35.5 34.0 9.4 4.2

1 3 10.8 35.3 33.8 10.6 4.6

1 3 10.8 35.3 33.8 10.6 4.6

2 3 11.1 35.6 34.0 11.3 5.3

3 3 12.6 35.8 34.0 12.9 6.0

4 3 12.5 35.2 34.4 12.2 5.7

Table 4: The ablation for the different graph iteration

parameters. The ablation of different iteration number for

iterative refinement models in our methods.

D Models mR@50 R@50
wmAP

scorewtd

rel phr

V
4

RelDN[27] - 74.94 35.54 38.52 44.61

GPS-Net[27] - 77.27 38.78 40.15 47.03

RelDN † 70.40 75.66 36.13 39.91 45.21

GPS-Net† 69.50 74.65 35.02 39.40 44.70

BGNN 72.11 75.46 37.76 41.70 46.87

V
6

RelDN † 33.98 73.08 32.16 33.39 40.84

RelDN †∗ 37.20 75.34 33.21 34.31 41.97

VCTree† 33.91 74.08 34.16 33.11 40.21

G-RCNN† 34.04 74.51 33.15 34.21 41.84

Motifs† 32.68 71.63 29.91 31.59 38.93

Unbiased† 35.47 69.30 30.74 32.80 39.27

GPS-Net† 35.26 74.81 32.85 33.98 41.69

GPS-Net†∗ 38.93 74.74 32.77 33.87 41.60

BGNN 40.45 74.98 33.51 34.15 42.06

Table 5: The Performance table of Open Images Dataset.

∗ denotes the resampling [9] is applied for this model. †
denote results reproduced with the authors’ code.

in Tab. 3, we find our proposed BLS outperforms the base-

line and RFS with a large margin, especially on body and

tail categories. Besides, unlike other methods, BLS main-

tains the performance on head categories. This indicates our

sampling can balance the prediction on all category groups.

Stages and Iterations of BGNN To investigate the mul-

tiple stage refinement and iterative context encoding in

BGNN, we incrementally apply several sets of hyper-

parameters on number of stages Nt and iterations Ni in

model design. The quantitative results in Tab. 4 indicate

the message propagation with 3 iterations achieves the best

performance in one-stage BGNN. Furthermore, by freezing

the iteration number Ni as 3, we find the performance in-

creases with more stages, and will saturate when Nt=3.

4.2. Open Images

4.2.1 Experiments Setting

Dataset Details. The Open Images dataset [21] is a

large-scale dataset proposed by Google recently. Com-

pared with Visual Genome dataset, it has a superior anno-

tation quality for the scene graph generation. In this work,

we conduct experiments on Open Images V4&V6, we fol-

low the similar data processing and evaluation protocols

in [60, 21, 27].

The Open Images V4 is introduced as a benchmark for

scene graph generation by [60] and [27], which has 53,953

and 3,234 images for the train and val sets, 57 objects cate-

gories, and 9 predicate categories in total. The Open Images

V6 has 126,368 images used for training, 1813 and 5322

images for validation and test, respectively, with 301 object

categories and 31 predicate categories. This dataset has a

comparable amount of semantics categories with the VG.

Evaluation Protocol For Open Images V4&V6, we fol-

low the same data processing and evaluation protocols

in [60, 21, 27]. The mean Recall@50 (mR@50), Re-

call@50 (R@50), weighted mean AP of relationships (

wmAPrel), and weighted mean AP of phrase (wmAPphr)

are used as evaluation metrics. Following standard evalua-

tion metrics of Open Images refer to [21, 60, 27], the weight

metric scorewtd is computed as: scorewtd = 0.2× R@50+
0.4×wmAPrel +0.4×wmAPphr. Besides, we also report

mRecall@K like Visual Genome as a balanced metric for

comprehensive comparison.

4.2.2 Quantitative Results

Performance on these two datasets are reported in Tab. 5.

For Open Images V4, which includes only 9 predicate cat-

egories in total, make it constrained to explore the biased

scene graph generation tasks. Our method can still achieve

competitive results on weighted metric score, and outper-

form the previous work on mean recall with a significant

margin. For Open Images V6 with 31 predicate categories,

we reimplement several recent works [27, 39, 40, 59, 53] for

fair comparison. As shown in Tab. 5, our method achieves

the state-of-the-art performance on mean recall and com-

petitive results on weighted metric score. Results on both

datasets demonstrate the efficacy of our approach.

5. Conclusion

In this work, we have proposed a novel bipartite graph

neural network (BGNN) for unbiased scene graph genera-

tion. Compared to previous methods, our main contribution

consists of two key components as follows. We first de-

velop a confidence-aware message passing mechanism for

our BGNN to encode scene context in an effective manner;

Moreover, we design a bi-level resampling strategy to mit-

igate the imbalanced data distribution during the training.

The results evidently show that our BGNN achieves the su-

perior or comparable performances over the prior state-of-

the-art approaches on all three scene graph datasets.
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