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Abstract

Face synthesis, including face aging, in particular, has

been one of the major topics that witnessed a substantial im-

provement in image fidelity by using generative adversarial

networks (GANs). Most existing face aging approaches di-

vide the dataset into several age groups and leverage group-

based training strategies, which lacks the ability to provide

fine-controlled continuous aging synthesis in nature. In this

work, we propose a unified network structure that embeds

a linear age estimator into a GAN-based model, where the

embedded age estimator is trained jointly with the encoder

and decoder to estimate the age of a face image and pro-

vide a personalized target age embedding for age progres-

sion/regression. The personalized target age embedding

is synthesized by incorporating both personalized residual

age embedding of the current age and exemplar-face aging

basis of the target age, where all preceding aging bases are

derived from the learned weights of the linear age estimator.

This formulation brings the unified perspective of estimat-

ing the age and generating personalized aged face, where

self-estimated age embeddings can be learned for every sin-

gle age. The qualitative and quantitative evaluations on dif-

ferent datasets further demonstrate the significant improve-

ment in the continuous face aging aspect over the state-of-

the-art.

1. Introduction

Face aging, also known as age progression, aims to aes-

thetically render input face images with natural aging and

rejuvenating effects while preserving identity information

of the individual. With recent advances in deep learning,

face synthesis has also shown substantial improvement on

image fidelity and the age precision in the simulated face

images [10, 41, 24]. A major challenge to solve a variety

of remaining problems (e.g. continuous aging) is the lack

of data. For example, many research works of face aging

[20, 41, 43, 10] need to group images into 4-5 age groups

*This work is done during Zeqi Li’s full-time employment at ModiFace.

(such as <30, 30-40, 40-50, 50+) and can only generate im-

ages within a target age group, due to the limited amount

of data at each age. Another important problem is how to

maintain personal traits in age progression, as aging pat-

terns may differ for each individual.

Traditional face aging contains mainly two approaches:

physical model-based [3, 42] and prototype-based [37, 16].

The physical model-based methods often consist of com-

plex physical modeling, considering skin wrinkles, face

shape, muscle changes, and hair color, etc. This type of

method typically requires a tremendous amount of data and

is very expensive computationally. Prototype-based meth-

ods firstly explore group-based designs by computing an av-

erage face within the pre-defined age groups, which fails

to retain personalized aging information. Further, all those

methods are not applicable to continuous face aging.

Following the success of recent generative models, such

as variational autoencoders (VAEs) and generative adver-

sarial networks (GANs) [9], on the image translation tasks,

researchers have dedicated efforts in adapting those meth-

ods to face synthesis. IPCGAN [41] has shown significant

progress in generating face images with evident aging ef-

fects by enforcing an age estimation loss. Later variation

[43] creates a pyramid structure for the discriminator to im-

prove face aging understanding at multiple scales. Contin-

uous aging was not explored among these methods. He et

al. [10] introduced a multi-branch generator for the group-

based training and proposed the idea to approximate contin-

uous aging via linear interpolation of latent representations

between two adjacent age groups. The authors of [24] also

tackle the problem using a similar linear interpolation ap-

proach, which is performed on the learned age latent code

between two neighboring groups instead. These types of

methods make an assumption that the age progression is lin-

ear between the two adjacent groups and the learned group

embedding can be used directly as the median age embed-

ding. Consequently, this may result in a shift of target age

in the generated images. Intuitively, this nonlinearity can be

interpreted as: people do not age at the same speed for dif-

ferent stages. Moreover, such interpolation-based methods

may alter personal traits when disentanglement is imperfect.
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To address the aforementioned problems, we propose a

novel approach to achieve continuous aging by a unified

network where a simple age estimator is embedded into a

regular encoder-decoder architecture. This allows the net-

work to learn self-estimated age embeddings of all ages,

thus representing the continuous aging information without

manual efforts in selecting proper anchor age groups. Given

a target age, we derive a personalized age embedding which

considers two aspects of face aging: 1) a personalized resid-

ual age embedding at the current age, which preserves the

individual’s aging information; 2) exemplar-face aging ba-

sis at the target age, which encodes the shared aging pat-

terns among the entire population. We describe the detailed

calculation and training mechanism in Method. The cal-

culated target age embedding is then used for final image

generation. We experiment extensively on FFHQ [15] and

CACD2000 [5] datasets. Our results, both qualitatively and

quantitatively, show significant improvement over the state-

of-the-art in various aspects. Our main contributions are:

• We propose a novel method to self-estimate continu-

ous age embeddings and derive personalized age em-

beddings for face aging task by jointly training an age

estimator with the generator. We quantitatively and

qualitatively demonstrate that the generated images

better preserve the personalized information, achieve

more accurate aging control, and present more fine-

grained aging details.

• We show that our continuous aging approach generates

images with more well-aligned target ages, and better

preserves detailed personal traits, without manual ef-

forts to define proper age groups.

• Our proposed idea to self-estimate personalized age

embedding from a related discriminative model can

be easily applied to other conditional image-to-image

translation tasks, without introducing extra complex-

ity. In particular, tasks involving a continuous condi-

tion and modeling (e.g. non-smile to smile), can bene-

fit from this setup.

2. Related Work

2.1. Face Aging Model

Traditional methods can be categorized as physical

model-based approaches [3, 42, 34] and prototype-based

approaches [31, 37, 16, 17]. The physical model-based

methods focuses on creating models to address specific sub-

effects of aging, such as skin wrinkles [42, 2, 3], cranio-

facial growth [38, 27], muscle structure [34, 28], and face

components [35, 36]. These methods are often very com-

plicated, which typically require a sequence of face images

of the same person at different ages and expert knowledge

of the aging mechanism. The prototype-based approaches

[31, 37, 4] explore face progression problem using group-

based learning where an average face is estimated within

each age group. However, personalized aging patterns and

identity information are not well-preserved in such strate-

gies. In [40, 44, 33], sparse representation of the input im-

age have been utilized to express personalized face trans-

formation patterns. Though the personalized aging patterns

are preserved to some extent by such approaches, the syn-

thesized images suffer from quality issues.

Recently, deep learning approaches have been adopted to

model personalized aging transformations. Wang et al. [39]

proposed a recurrent neural network model, leveraging a se-

ries of recurrent forward passes for a more smooth transition

from young to old. Later GAN-based works [18, 41, 43]

have shown superior breakthroughs on the fidelity of im-

ages. Li et al. [18] designed three subnets for local patches

and fused local and global features to obtain a smooth syn-

thesized image. IPCGAN [41] enforces an age estimation

loss on the generated image and an identity loss to achieve

good face aging effects. More efforts have also been made

to address age accuracy and identity permanence. Yang et

al.[43] and Liu et al. [20] introduce a modification of dis-

criminator losses to guide a more accurate age of the output

images. Authors of [21] improved image quality of synthe-

sized images by using a wavelet packet transformation and

multiple facial attribute encoding. However, these methods

[41, 43, 20] condition the output image by concatenating

one-hot vector representing the target age groups. To obtain

a continuous aging condition, the vector will be extended

to a much larger dimension, which makes training unstable

and more complicated. Furthermore, it requires a tremen-

dous amount of training images.

Though some works [46, 1, 32], which aim to interpolate

features in the latent space, provided a direction to support

continuous aging, they have limited ability to produce high-

quality images while preserving the identity. In [10], the

authors proposed to linear interpolate feature vectors from

adjacent age groups upon group-based training to achieve

continuous aging progression. Similarly, [24] linearly in-

terpolates between two adjacent anchor age embeddings.

These methods follow the assumption that the embeddings

are aligned linearly between anchors, which makes the deci-

sion of anchor ages crucial. In this work, we present contin-

uous self-estimated age embeddings free of manual efforts

while achieving better continuous age modeling.

2.2. Generative Adversarial Networks

Generative adversarial networks [9] have been a popu-

lar choice on image-to-image translations tasks. CycleGAN

[47] and Pix2Pix [14] explored image translations between

two domains using unpaired and paired training samples

respectively. More recent works [6, 19] proposed training
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Figure 1. Model architecture: An age estimator is jointly trained

with an image generator, where E is the shared encoder and C

is branched off for the age estimation task. The personalized age

embedding transformation (PAT, Eq. (2)) is based on two com-

ponents: 1) residual aging basis at the current age; 2) exemplar-

face aging basis at the target age. Then the transformed identity

encoding is decoded by G. The whole model is learned with the

age losses, identity loss, and the adversarial loss.

techniques to enable multi-domain translation. In [22, 23],

authors firstly explored conditional image generation as ex-

tensions to basic GANs. Later works [7, 26] have further

shown superiority on many conditional image translation

tasks, by transforming and injecting the condition into the

model in a more effective manner.

2.3. Face Age Estimation

The task to predict apparent age refers to the regression

problem that estimates a continuous numerical value for

each given face image. Deep Expectation of Apparent Age

(DEX) [30] proposed a method to achieve a MAE of 3.25

on MORPH II [29], by combining classification loss and re-

gression loss. Pan et al. [25] proposed to use mean-variance

loss on the probability distribution to further improve the

MAE to 2.16 on MORPH II.

3. Method

3.1. Formulation

As shown in Fig. 1, our model consists of four com-

ponents: 1) identity encoding module E; 2) age estimation

module C; 3) personalized age embedding transformation

module PAT; 4) aged face generation module G. During

inference, we apply an encoder network E to extract the

identity information from the given image xi, where the en-

coding is denoted as ei = E(xi). Then an embedded age

estimator C is used to obtain the age probability distribu-

tion of the identity encoding. Based on the self-estimated

age distribution and the target age t, we apply a person-

alized age embedding transformation PAT on the identity

encoding ei. Lastly, the synthesized face is decoded from

the transformed identity encoding PAT(ei, t) by the gen-

erator G. All modules are optimized jointly end-to-end un-

der three objectives including the mean-variance age loss

[25] for accurate aging, the L1 reconstruction loss for iden-

tity preservation, and the adversarial loss for image real-

ism. Unlike many prior face aging works [41, 10] in which

require a pre-trained age classifier to guide the face aging

training, our model directly obtains a self-estimated age em-

bedding by utilizing a unified framework for achieving face

aging and age estimation at the same time. More favorably,

the embedded age estimator not only enables personalized

continuous age transformation in a more accurate manner,

compared to the interpolation-based approach, but also pro-

vides the guidance for face image generation.

Identity Age Estimation Module (C) In prior works

[41, 10], face aging and face age estimation are treated as

two independent tasks where an age estimation model, usu-

ally a classifier, is pre-trained separately and then used to

guide the generator to realize natural aging effects. As the

two mentioned tasks are intrinsically related, both goals can

be achieved with one unified structure by sharing an en-

coder E. The age estimator C, in our case containing a

global average pooling layer and a fully-connected layer, is

branched off from E. Finally, the age probability distribu-

tion pi ∈ RK can be obtained by performing the softmax

function, where K denotes the number of age classes.

Without introducing too much extra complexity, such

unified design also provides three advantages. Firstly, it

eliminates the need to acquire a well-trained age estimator

model beforehand. Secondly, age estimation on the identity

encoding helps the model to establish a more age-specific

identity representation. Thirdly, the weight WC in the fully-

connected layer is also used as the age embedding bases

(bias terms are set to zero) which encodes the exemplar-face

information from a metric learning perspective. In notation:

aj = WC [j], (1)

where WC ∈ R
K×D,aj ∈ R

D and D equals to the channel
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dimension of the identity encoding.

Personalized Age embedding Transformation (PAT)

Face aging is a challenging and ambiguous task in nature

as different facial signs/symptoms ages differently for dif-

ferent people at different stages. Thus, personalization is

desired in performing face aging. In our design, we charac-

terize this personalization by a residual age embedding cal-

culated from the age probability distribution pi ∈ R
K and

the exemplar-face aging basis aj ∈ R
D where i denotes the

sample i and j ∈ 1, 2, . . . ,K denotes the age. pi,j ∈ R

is the probability at age j for sample i. To obtain the per-

sonalized aging basis for any target age ti, we formulate the

process as the following operation:

ãi,ti = (
K∑

j=1

pi,jaj − aj=[mi]) + aj=ti , (2)

The
∑K

j=1 pi,jaj term represents the personalized aging

basis of the identity by taking the expected value of the ag-

ing basis based on the age probability distribution. Then

we can obtain the residual age embedding by subtracting

the exemplar-face aging basis at the current (self-estimated)

age aj=[mi] from the personalized aging basis. The resid-

ual age embedding preserves the identity’s personalized fac-

tors while removing the prevailing aging factors at the self-

estimated age. The final personalized target age embedding

ãi,ti is obtained by adding the exemplar-face aging basis

at the target aging basis aj=ti , which encodes the shared

aging factors at the target age among the entire popula-

tion. With the personalized target age embedding ãi,ti , we

then apply an affine projection transformation to derive the

scale and shift coefficients for the original identity encoding

E(xi) = ei, similar to Conditional BN [8] and AdaIN [13]:

PAT(ei, ti) = ei,ti = γθ(ãi,ti)ei + βφ(ãi,ti), (3)

In our experiments, we do not observe significant perfor-

mance difference w/wo βφ(ãi,ti).
Continuous Aging As the aging bases from the fully-

connected layer encode every single age, any integer tar-

get age is naturally supported. While some previous group-

based approaches only model a few anchor age groups and

achieving continuous aging via linear interpolation in the la-

tent space. Our proposed method, however, explicitly mod-

els a fine-controlled age progression for each age and also

supports float target age via a weighted sum of 2 neighbor-

ing integer age embedding bases.

3.2. Objective

The design of the objectives ensures the synthesized face

image reflects accurate age progression/regression, pre-

serves the identity, and looks realistic.

Mean-Variance Age Loss The age loss plays two roles

in our network: 1) it helps the estimator learn good ag-

ing bases for all ages; 2) it guides the generator by esti-

mating the age of the generated fake images. To achieve

both goals, we adopt the mean-variance age loss proposed

by [25]. Given an input image xi and an age label yi, the

mean-variance loss is defined as below:

Lmv = Ls + λmv1Lm + λmv2Lv

=
1

N

N∑

i=1

−logpi,yi
+

λ1

2
(mi − yi)

2 + λ2vi,
(4)

where mi =
∑K

j=1 jpi,j is the mean of the distribution

and vi =
∑K

j=1 pi,j ∗ (j −mi)
2 is the variance of the dis-

tribution.

In addition to being more effective than other losses on

the age estimation task, mean-variance loss also satisfies

our needs to learn a relatively concentrated age distribution

while capturing the age continuity for the adjacent aging

bases. The supervised age loss is formulated as below:

Lreal = Lmv(C(E(x)), y), (5)

For guiding face aging, we apply the embedded age es-

timator at both the transformed identity encoding level and

the generated image level (as shown in Fig. 1).

Lfake = λfake1Lmv(Ĉ(PAT (E(x), t)), t)+

λfake2Lmv(Ĉ(Ê(G(PAT (E(x), t)))), t),
(6)

When the age estimator Ĉ and encoder Ê are used on

the transformed identity encodings and fake images, their

weights are not updated during backpropagation.

L1 Reconstruction Loss Another important aspect is to

preserve the identity of the individual. We apply L1 pixel-

wise reconstruction loss on the synthesized face by setting

the target age to its self-estimated age. Specifically, it is

formulated as below:

Lidt =
1

N

N∑

i

||G(PAT (E(xi),mi))− xi||1, (7)

We have also experimented with a cycle-consistency loss

as proposed in StarGAN [6] to enforce the identity criteria

but found that the pixel-wise L1 reconstruction loss is suffi-

cient to achieve the goal without extensive efforts in tuning

the hyper-parameters.

Adversarial Loss To produce high fidelity images, we

apply GAN loss in the unconditional adversarial training
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Figure 2. Comparisons on FFHQ [15] among Lifespan[24], ours and ours (512x512). Lifespan does not have an explicit age group at 11-30

and 41-50 so images for these 2 groups are generated using linear interpolation between 2 neighboring anchor classes. As shown, our

generated images provide more aging details, such as skin wrinkles and color of the beard, on different parts of the face. In the example (f)

in particular, both of our models well preserve her personal traits (a mole), comparing to the Lifespan model.

Figure 3. Comparisons on CACD2000 [5] among CAAE[46] IPCGAN [41], S2GAN [10] and ours. The input images are wrapped in red

boxes.

Figure 4. Continuous aging from 21 to 65. The age gap is chosen as 4 due to the limited space. As shown, the linear interpolation-based

method used by Lifespan [24], some personal traits are altered (such as mouth shape, beard, hats). Further, our method generates more

realistic aging effects with minimal artifacts. Continuous aging of 1-year incremental change in Supplementary.
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manner. More specifically, we adopt PatchGAN [14] dis-

criminator and optimize on the hinge loss, formulated as

the following:

Ladv−D = Ez∼pdata(z)[max(1−D(z), 0)]+

E(x,t)∼pdata(x)[max(1 +D(G(PAT (E(x), t))), 0)],

(8)

where we denote the data distribution as x ∼ pdata(x) and

z ∼ pdata(z).

Ladv−G = E(x,t)∼pdata(x)[−D(G(PAT (E(x), t)))], (9)

In the experiment, we observe that sampling real exam-

ples of the age equal or close to the target age ti for training

the discriminator helps to stabilize the learning process.

All objectives are optimized jointly with different bal-

ancing coefficients as the following:

min
E,C,PAT,G

λage(Lreal +Lfake)+λidtLidt +λadvLadv−G,

(10)

min
D

Ladv−D, (11)

4. Experiments

Datasets We evaluated our model on FFHQ [15] and

CACD2000 [5]. FFHQ includes 70000 images with

1024x1024 resolution. Following the data preprocessing

procedures as [24], we take images with id 0-68999 as the

training set and 69000-69999 for testing and filter out im-

ages with low confidence in differentiating the gender, low

confidence in estimating the age, wearing dark glasses, ex-

treme pose, and angle based on the facial attributes anno-

tated by Face++1. As the annotation from [24] only in-

cludes the age group label, we acquire the age label in-

formation from [45]. To reconcile both age group labels

and age labels, we further filter out images in which the

age label disagrees with the age group label. This results

in 12488 male and 13563 female images for training, and

279 male and 379 female images for testing. CACD2000

consists of 163446 images where age ranges from 14 to 62

years old. We randomly take 10% of data for evaluation.

We use Face++ to separate the images into male and female

and extract the facial landmarks using Dlib2.

Implementation Since aging patterns are different be-

tween males and females, we train two separate models

1Face++ facial attribute annotation API: https : / / www .

faceplusplus.com/
2Dlib toolkit: http://dlib.net/

on the FFHQ dataset for both 256x256 and 512x512 res-

olutions. Model architecture is modified based on Cycle-

GAN [47]. Please refer to the Supplementary for the de-

tailed model architecture and optimization settings. λmv1

and λmv2 are set to 0.05 and 0.005 in Eq. (4). λfake1 and

λfake2 are set to 0.4 and 1 in Eq. (6). In Eq. (10), λage,

λidt , and λadv are set to 0.05, 1, and 1 respectively.

4.1. Qualitative Evaluation

Face Aging We present our test results on FFHQ, com-

paring with results from [24]. Images for [24] are gener-

ated using their provided code3. To illustrate the model per-

formance across different ages, we show 6 input examples

from 4 representative age groups (<30, 30-40, 40-50, 50+)

and generate the results for each group. The target ages for

our model are chosen as 25, 35, 45, and 55 respectively. As

can be seen in Fig. 2, the images generated by our model

result in fewer artifacts and exhibit more clear aging details,

such as beard color change (example a,c) and wrinkles on

different parts of the face (see example b,c,d,e). A convinc-

ing detail in example (f) shows that the personal traits (a

mole) are well preserved using our models.

We also directly generates images on CACD2000 using

the models trained on FFHQ in the resolution of 256x256

to compare with CAAE[46], IPCGAN [41], and S2GAN

[10] in Fig. 3. The demonstrated images are the pre-

sented examples in [11], which is the state-of-the-art work

on CACD2000. For all age groups, our model presents more

evident and fine-grained aging effects comparing with all

previous works.

Continuous Aging In Fig. 4, we illustrate some exam-

ples of continuous aging results comparing with [24]. We

choose an age step of 4 to present due to the limited space.

A gradual and smooth natural aging process (e.g. wrin-

kle depth change, beard, pigmentation on face) can be ob-

served from our images while retaining personal traits. The

interpolation-based method in Lifespan, however, lacks the

ability to generate images of well-aligned target ages and

does not preserve certain personalized information.

Aging Details Here, we show that the generated images

express a significant level of aging details on different parts

of the face. In Fig. 5, we demonstrate three enlarged face

crops from the generated images, which give a clear and

detailed view of enhanced wrinkles, skin smoothness, color

change of beard and eyebrow.

4.2. Quantitative Evaluation

Identity Preservation To evaluate identity preservation,

we adopt the face verification rate metric. Specifically, we

followed the evaluation protocol of [10] on an age group

basis for a fair comparison with prior works. We calculate

3Lifespan official code: https://github.com/royorel/

Lifespan_Age_Transformation_Synthesis
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Figure 5. Aging details: enlarged face crops to show details for

beard, wrinkle, and skin smoothness. Input images are in red

boxes.

the face verification rate between all combination of image

pairs, i.e. (test, 10-29), (test, 30-39), ...,(30-39, 40-49), (40-

49, 50-59). Face verification score is obtained from Face++

and the threshold is set as 76.5 (@FAR=1e-5). The com-

plete results are presented in Table 1 and 2 for CACD2000

and FFHQ respectively. As the results suggest, our model

achieves the highest face verification rate for both datasets

among all candidates, which indicates it best meets the iden-

tity preservation requirement of the task.

Average of All Pairs

CAAE [46] 60.88%

IPCGAN [41] 91.40%

S2GAN [10] 98.91%

Lifespan [24] 93.25%

Ours 99.97%

Table 1. Evaluation of identity preservation in terms of face verifi-

cation rates on CACD2000 [5]. Pair-wise results are presented in

Supplementary.

Average of All Pairs

Lifespan [24] 87.11%

Ours 99.98%

Table 2. Evaluation of identity preservation in terms of face ver-

ification rates on FFHQ [15]. Pair-wise results are presented in

Supplementary.

Aging Accuracy In terms of assessing aging accuracy,

we use an unbiased age estimator to infer the age of the

generated images. To be able to compare with prior group-

10-29 30-39 40-49 50+

CAAE [46] 29.6 33.6 37.9 41.9

S2GAN [10] 24.0 36.0 45.7 55.3

IPCGAN [41] 27.4 36.2 44.7 52.5

IPCGAN [41] (Face++) 42.4 47.1 51.9 56.0

Lifespan [24] (Face++) - 40.2 - 64.3

Ours (Face++) 30.5 38.7 46.9 60.0

Table 3. Comparison of the mean age of generated images in each

age group evaluated using Face++ on CACD2000 [5].

10-29 30-39 40-49 50+

Lifespan [24] - 38.4 - 63.8

Ours 30.7 38.4 47.7 62.1

Table 4. Comparison of the mean age of generated images in each

age group evaluated using Face++ on FFHQ [15].

based methods on CACD2000, we generate our images

aligning with their age group settings in which we adap-

tively increment/decrement by a factor of 10 (age group

size) from input image’s real age as the target age for gen-

eration, i.e. target age 33 is used for generating an image of

age group 30-40 given current age of 23. As we neither have

the access to [10]’s evaluation age estimator nor their pre-

trained model for assessing our model and doing a direct

comparison, we instead use Face++’s age estimation results

on our model and one of accessible prior work IPCGAN

[41], which is also evaluated in [10] to show relative com-

parison. Evaluation of FFHQ follows the same procedure

as CACD2000. The evaluation results are shown in Table 3

and 4 for CACD2000 and FFHQ respectively. As the results

suggest, our model evaluated using Face++ has a more rea-

sonable mean age at each age group than IPCGAN [41] and

Lifespan [24] on CACD2000 and has a similar performance

as Lifespan on FFHQ.

Image Fidelity Considering the image fidelity, we adopt

the Fréchet Inception Distance (FID) [12] metric to evalu-

ate our model. Similar to the image generation settings as

before, we calculated the FID on the generated images cor-

responding to the same age group as theirs on CACD2000.

For comparing with [24] on FFHQ, we calculate the FID on

the generated images, that share the same age group range.

The results are shown in the Table 5. On both datasets,

our model achieves the lowest FID, which quantitatively

demonstrates superiority in the image quality aspect.

4.3. Model Interpretability and Ablation Study

Continuous Aging To evaluate how well our model gen-

erates synthesized images in a continuous setting, we use an

age estimator to predict age on the generated fake images

from 25 to 65 of our approach and the linear interpolation

approach performed between anchor aging bases. The an-
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Figure 6. Linear interpolation between transformed identity encodings. Real images are in red boxes. From left to right, we linearly

interpolate between two images’ transformed identity encodings at the same target age 65. Personal traits, such as eye color and teeth

shape, smoothly change from one person to the other.

CACD2000 FFHQ

CAAE [46] 44.2 -

IPCGAN [41] 9.1 -

S2GAN [10] 8.4 -

Lifespan [24] 11.7 26.2

Ours 6.7 18.5

Table 5. FID evaluation: lower is better.

Figure 7. Confusion matrices of continuous face aging. Left: age

estimation on the self-estimated aging embeddings (proposed).

Right: age estimation on the linear interpolated aging embeddings.

The age step is chosen as 3 based on the MAE of the estimator.

chor basis is generated by taking the mean of every aging

bases within an age group. We calculate a confusion matrix

in terms of aging accuracy for each approach using the age

estimator jointly trained on the FFHQ dataset. Fig. 7 indi-

cates that our generated fake images express a more evident

continuous aging trend with much higher aging accuracy

than the linear interpolation approach.

Interpolation between Two Identities in Latent Space

In Fig. 6, we further illustrate that our proposed model also

learns a disentangled representation of age and identity in

latent space. We linearly interpolate between the two trans-

formed identity encodings of the same age and different

identities and then generate images for the interpolated en-

codings. As shown in the figure, the identity changes grad-

ually while maintaining the respective age.

Use of the Residual Embedding One of the key innova-

tive design of our model architecture is the formulation of

the personalized age embedding, which incorporates both

personalized aging features of the individual and shared ag-

ing effects among the entire population. To better illustrate

and understand the effectiveness of the design, we train a

model without adding the residual embedding (i.e. directly

applying the target age’s exemplar-face aging basis ai,j=ti ),

and compare with the proposed method.

In Fig. 8, we display a few examples with high-

lighted/enlarged regions comparing results w/wo residual

embeddings. Noticeably, more unnatural artifacts and a ten-

dency to examplar-face modification are observed in the im-

ages generated without residual embeddings.

Figure 8. Enlarged ablation examples. Top-row target age: 11-30.

The nose shape and beard were not preserved in the w/o residual

example (top). Artifacts in eyes are commonly seen in older age

groups w/o residual (bottom).

5. Conclusions

In this work, we introduce a novel approach to the task

of face aging with a specific focus on the continuous aging

aspect. We propose a unified framework to learn continu-

ous aging bases via introducing an age estimation module

to a GAN-based generator. The designed PAT module fur-

ther enhances the personalization of the exemplar-face ag-

ing bases, which results in more natural and realistic gen-

erated face images overall. The experiments qualitatively

and quantitatively show superior performance on the aging

accuracy, identity preservation, and image fidelity on two

datasets compared to prior works. Furthermore, the pro-

posed network structure can also be applied to other multi-

class domain transfer tasks to avoid group-based training

and achieve a more accurate continuous modeling.
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