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Abstract

We aim at constructing a high performance model for de-

fect detection that detects unknown anomalous patterns of

an image without anomalous data. To this end, we propose

a two-stage framework for building anomaly detectors us-

ing normal training data only. We first learn self-supervised

deep representations and then build a generative one-class

classifier on learned representations. We learn representa-

tions by classifying normal data from the CutPaste, a sim-

ple data augmentation strategy that cuts an image patch and

pastes at a random location of a large image. Our empirical

study on MVTec anomaly detection dataset demonstrates

the proposed algorithm is general to be able to detect vari-

ous types of real-world defects. We bring the improvement

upon previous arts by 3.1 AUCs when learning representa-

tions from scratch. By transfer learning on pretrained rep-

resentations on ImageNet, we achieve a new state-of-the-

art 96.6 AUC. Lastly, we extend the framework to learn and

extract representations from patches to allow localizing de-

fective areas without annotations during training.

1. Introduction

Anomaly detection aims to detect an instance contain-

ing anomalous and defective patterns that are different from

those seen in normal instances. Many problems from dif-

ferent vision applications are anomaly detection, including

manufacturing defect detection [9, 5], medical image anal-

ysis [50, 48], and video surveillance [2, 31, 53]. Unlike

a typical supervised classification problem, anomaly detec-

tion faces unique challenges. First, due to the nature of the

problem, it is difficult to obtain a large amount of anoma-

lous data, either labeled or unlabeled. Second, the differ-

ence between normal and anomalous patterns are often fine-

grained as defective areas might be small and subtle in high-

resolution images.

Due to limited access to anomalous data, constructing an

anomaly detector is often conducted under semi-supervised

or one-class classification settings using normal data only.

∗Equal contributions.

Since the distribution of anomaly patterns is unknown in

advance, we train models to learn patterns of normal in-

stances and determine anomaly if the test example is not

represented well by these models. For example, an autoen-

coder that is trained to reconstruct normal data is used to de-

clare anomalies when the data reconstruction error is high.

Generative models declare anomalies when the probability

density is below a certain threshold. However, the anomaly

score defined as an aggregation of pixel-wise reconstruction

error or probability densities lacks to capture a high-level

semantic information [42, 37].

Alternative methods using high-level learned represen-

tations have shown more effective for anomaly detection.

For example, deep one-class classifier [46] demonstrates

an effective end-to-end trained one-class classifiers pa-

rameterized by deep neural networks. It outperforms its

shallow counterparts, such as one-class SVMs [49] and

reconstruction-based approaches such as autoencoders [34].

In self-supervised representation learning, predicting geo-

metric transformations of an image [20, 24, 4], such as ro-

tation or translation, and contrastive learning [54, 52] have

shown to be successful in distinguishing normal data from

outliers. However, most existing works focus on detect-

ing semantic outliers (e.g., visual objects from different

classes) from object-centric natural images. In Section 4.1,

we show these methods do not generalize well in detecting

fine-grained anomalous patterns as in defect detection.

In this work, we tackle a one-class defect detection prob-

lem, a special case of image anomaly detection, where vari-

ous forms of unknown anomalous patterns present locally in

the high-resolution images. We follow the two-stage frame-

work [52], where we first learn self-supervised representa-

tions by solving a proxy task, then build a generative one-

class classifier on learned representations to distinguish data

with anomalous patterns from normal ones. Our innova-

tion is at designing a novel proxy task for self-supervised

learning of representations. Specifically, we formulate a

proxy classification task between normal training data and

the ones augmented by the CutPaste, the proposed data aug-

mentation strategy that cuts an image patch and pastes at a

random location of an image. CutPaste augmentation is mo-
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(a) Learning Self-Supervised Representation (b) Anomaly Detection and Localization

Figure 1: An overview of our method for anomaly detection and localization. (a) A deep network (CNN) is trained to

distinguish images from normal (blue) and augmented (green) data distributions by CutPaste (orange dotted box), which cuts

a small rectangular region (yellow dotted box) from normal data and pastes it at random location. Representations are trained

either from the whole image or local patches. (b, top) An image-level representation makes a holistic decision for anomaly

detection and is used to localize defect via GradCAM [51]. (b, bottom) A patch-level representation extracts dense features

from local patches to produce anomaly score map, which is then max-pooled for detection or upsampled for localization [32].

tivated to produce a spatial irregularity to serve as a coarse

approximation of real defects, which we have no access at

training. Rectangular patches of different sizes, aspect ra-

tios, and rotation angles are pasted to generate diverse aug-

mentations. Although CutPaste augmented samples (Fig-

ure 2(e)) are easily distinguishable from real defects and

thus might be a crude approximation of a real anomaly dis-

tribution, we show that representations learned by detecting

irregularity introduced by CutPaste augmentations general-

ize well on detecting real defects.

We evaluate our methods on MVTec anomaly detection

dataset [5], a real-world industrial visual inspection bench-

mark. By learning deep representations from scratch, we

achieve 95.2 AUC on image-level anomaly detection, which

outperforms existing works [25, 61] by at least 3.1 AUC.

Moreover, we report state-of-the-art 96.6 image-level AUC

by transfer learning from an ImageNet pretrained model.

Moreover, we explain how learned representations could

be used to localize the defective areas in high-resolution

images. Without using any anomaly data, a simple patch

model extension can achieve 96.0 pixel-level localization

AUC, which improves upon previous state-of-the-art [61]

(95.7 AUC). We conduct an extensive study using different

types of augmentation and proxy tasks to show the effec-

tiveness of CutPaste augmentations for self-supervised rep-

resentation learning on unknown defect detection.

2. A Framework for Anomaly Detection

In this section, we present our anomaly detection frame-

work for high-resolution image with defects in local re-

gions. Following [54], we adopt a two-stage framework for

building an anomaly detector, where in the first stage we

learn deep representations from normal data and then con-

struct an one-class classifier using learned representations.

Subsequently, in Section 2.1, we present a novel method for

learning self-supervised representations by predicting Cut-

Paste augmentation, and extend to learning and extracting

representations from local patches in Section 2.4.

2.1. Self-Supervised Learning with CutPaste

Defining good pretext tasks is essential for self-

supervised representation learning. While popular meth-

ods including rotation prediction [19] and contrastive learn-

ing [60, 12] have been studied in the context of semantic

one-class classification [20, 24, 4, 54, 52], our study in Sec-

tion 4.1 shows that naively applying existing methods, such

as rotation prediction or contrastive learning, is sub-optimal

for detecting local defects as we will show in Section 4.1.

We conjecture that geometric transformations [20, 24, 4],

such as rotations and translations, are effective in learning

representation of semantic concepts (e.g., objectness), but

less of regularity (e.g., continuity, repetition). As shown

in Figure 2(b), anomalous patterns of defect detection typi-

cally include irregularities such as cracks (bottle, wood) or

twists (toothbrush, grid). Our aim is to design an augmenta-

tion strategy creating local irregular patterns. Then we train

the model to identify these local irregularity with the hope

that it can generalize to unseen real defects at test time.

A popular augmentation method that could create a lo-

cal irregularity in image is Cutout [18] (Figure 2(c)), which

wipes out a randomly selected small rectangular area of

an image. Cutout is found to be a useful data augmenta-
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(a) Normal (b) Anomaly (c) Cutout (d) Scar (e) CutPaste (f) CutPaste (Scar)

Figure 2: Visualization of (a, green) normal, (b, red) anomaly, and (c–h, blue) augmented normal samples from bottle,

toothbrush, screw, grid, and wood classes of MVTec anomaly detection dataset [5]. Augmented normal samples are generated

by baseline augmentations including (c) Cutout and (d) Scar, and our proposed (e) CutPaste and (f) CutPaste (Scar). We use

red arrows in (f) to highlight the pasted patch of scar shape, a thin rectangle with rotation.

tion that enforces invariance, leading to improved accuracy

on multi-class classification tasks. In contrast, we start by

discriminating Cutout images from the normal ones. At

first glance, the task seems easy to solve by well-crafted

low level image filters. Surprisingly, as we will show in

Section 4, without the hindsight of knowing this, a deep

convolution network does not learn these shortcuts. Using

Cutout in the algorithm design for defect detection can also

be found in [32, 57]. We can make the task harder by ran-

domly choosing colors and the scale as shown in Figure 2(d)

to avoid naive shortcut solutions.

To further prevent learning naive decision rules for dis-

criminating augmented images and encouraging the model

to learn to detect irregularity, we propose the CutPaste aug-

mentation as follows:

1. Cut a small rectangular area of variable sizes and as-

pect ratios from a normal training image.

2. Optionally, we rotate or jitter pixel values in the patch.

3. Paste a patch back to an image at a random location.

We show the CutPaste augmentation process in the orange

dotted box of Figure 1 and more examples in Figure 2(e).

Following the idea of rotation prediction [19], we define the

training objective of the proposed self-supervised represen-

tation learning as follows:

LCP =Ex2X

�

CE(g(x), 0) + CE(g(CP(x)), 1)
 

(1)

where X is the set of normal data, CP(·) is a CutPaste aug-

mentation and g is a binary classifier parameterized by deep

networks. CE(·, ·) refers to a cross-entropy loss. In prac-

tice, data augmentations, such as translation or color jitter,

are applied before feeding x into g or CP.

2.2. CutPaste Variants

CutPaste-Scar. A special case of Cutout called “scar” us-

ing a long-thin rectangular box of random color, as in Fig-

ure 2(d), is proposed in [16] for defect detection. Simi-

larly, in addition to original CutPaste using a large rectan-

gular patch, we propose a CutPaste-Scar using a scar-like

(long-thin) rectangular box filled with an image patch (Fig-

ure 2(f)).

Multi-Class Classification. While CutPaste (large patch)

and CutPaste-Scar share a similarity, the shapes of an im-

age patch of two augmentations are very different. Empir-

ically, they have their own advantages on different types of

defects. To leverage the strength of both scales in the train-

ing, we formulate a finer-grained 3-way classification task

among normal, CutPaste and CutPaste-Scar by treating Cut-

Paste variants as two separate classes. Detailed study will

be presented in Section 5.2.

Similarity between CutPaste and real defects. The suc-

cess of CutPaste may be understood from outlier expo-

sure [23], where we generate the pseudo anomalies (Cut-

Paste) during the training. Apart from using natural images

as in [23], CutPaste creates examples preserving more local

structures of the normal examples (i.e., the pasted patch is
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(a) bottle (b) toothbrush (c) screw (d) grid (e) wood

Figure 3: t-SNE visualization of representations of models trained with 3-way CutPaste prediction task. We plot embeddings

of normal (blue), anomaly (red), and augmented normal by CutPaste (“Patch”, green) and CutPaste-scar (“Scar”, yellow).

from the same domain), which is more challenging for the

model to learn to find this irregularity.

On the other hand, CutPaste does look similar to some

real defects. A natural question is if the success of Cut-

Paste is from a good mimic of real defects. In Figure 3, we

show the t-SNE plots of the representations from the trained

model. Clearly, the CutPaste examples are almost not over-

lapped with real defect examples (anomaly), but the learned

representation is able to distinguish between normal exam-

ple, different CutPaste augmented samples and real defects.

It suggests (1) CutPaste is still not a perfect simulation of

real defects and (2) learning on it to find irregularity gener-

alizes well on unseen anomalies.

2.3. Computing Anomaly Score

There exist various ways to compute anomaly scores via

one-class classifiers. In this work, we build generative clas-

sifiers like kernel density estimator [52] or Gaussian den-

sity estimator [43], on representations f . Below, we explain

how to compute anomaly scores and the trade-offs.

Although nonparametric KDE is free from distribution

assumptions, it requires many examples for accurate esti-

mation [58] and could be computationally expensive. With

limited normal training examples for defect detection, we

consider a simple parametric Gaussian density estimator

(GDE) whose log-density is computed as follows:

log pgde(x)∝
�

−

1

2
(f(x)−µ)>Σ�1(f(x)−µ)

 

(2)

where µ and Σ are learned from normal training data.1

2.4. Localization with Patch Representation

While we present a method for learning a holistic repre-

sentation of an image, learning a representation of an im-

age patch would be preferred if we want to localize defec-

tive regions [38, 6, 61] in addition to image-level detection.

By learning and extracting representations from an image

1We note that a mixture of Gaussian, which is a middle ground between

KDE and GDE, can also be used for more expressive density modeling. We

do not observe significant performance gain empirically.

patch, we can build an anomaly detector that is able to com-

pute the score of an image patch, which then can be used to

localize the defective area.

CutPaste prediction is readily applicable to learn a patch

representation – all we need to do at training is to crop a

patch before applying CutPaste augmentation. Similar to

Equation (1), the training objective can be written as:

Ex2X

�

CE(g(c(x)), 0) + CE(g(CP(c(x))), 1)
 

(3)

where c(x) crops a patch at random location of x. At test

time, we extract embeddings from all patches with a given

stride. For each patch, we evaluate its anomaly score and

use a Gaussian smoothing to propagate the score to every

pixel [32]. In Section 4.2, we visualize a heatmap using

patch-level detector for defect localization, along with that

of an image-level detector using visual explanation tech-

niques such as GradCAM [51].

3. Related Work

Anomaly detection under one-class classification setting,

where we assume only the normal data is given during the

training, has been widely studied [49, 56, 46, 63, 66, 13, 42,

36, 27]. Recent success of self-supervised learning in com-

puter vision [39, 19, 8, 60, 40, 12, 21] has also been demon-

strated effective for one-class classification and anomaly de-

tection. One major family is by predicting geometric trans-

formations [20, 24, 4], such as rotation, translation or flips.

The other family includes variants of contrastive learning

with geometric augmentations [54, 52]. However, the suc-

cess has been limited to semantic anomaly detection bench-

marks, such as CIFAR-10 [28] or ImageNet [17], and as we

show in Section 4.1, methods relying on geometric transfor-

mations perform poorly on defect detection benchmarks.

Because of practical applications, such as industrial in-

spection or medical diagnosis, defect detection [9, 5] has

received lots of attention. The initial steps have been taken

with methods including autoencoding [9, 7, 25, 59], gener-

ative adversarial networks [48, 3], using pretrained models

on ImageNet [38, 45, 6, 14, 43, 44], and self-supervised

learning by solving different proxy tasks with augmenta-

tions [61, 47, 57, 15]. The proposed CutPaste prediction
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task is not only shown to have strong performance on de-

fect detection, but also amenable to combine with existing

methods, such as transfer learning from pretrained models

for better performance or patch-based models for more ac-

curate localization, which we demonstrate in Section 4.

3.1. Relation to Other Augmentations

Although Cutout [18] and RandomErasing [65] are sim-

ilar to CutPaste, they create irregularities by a small rect-

angular region filled with either zero or uniformly sampled

pixel values instead of a structural image patch as CutPaste.

Moreover, unlike typical use of augmentations for learning

invariant representations, we learn a representation that is

discriminative to these augmentations.

Scar augmentation [16] (Figure 2(d)) is a special case of

Cutout, which uses a long-thin rectangle with random col-

ors. While it demonstrates strong performance, we show

that CutPaste with the same scale (Figure 2(f)), which fills

a long-thin rectangle by a patch from the same image, im-

proves upon representations trained by predicting Cutout.

CutMix [62], which extracts a rectangular image patch

from an image and pastes at random location of another im-

age, is related to CutPaste in terms of pasting operations.

One main difference is CutMix leverages existing image la-

bels with MixUp [64] in the objective while CutPaste pre-

diction is a self-supervised learning without the need of im-

age labels. The other difference is CutMix studies standard

supervised tasks, while we aim for one-class classification.

[11] presents a denoising autoencoder with patch-swap

augmentation as noise process. [26] proposes to learn rep-

resentations by predicting local augmentations using GAN.

Our method is simpler (e.g., no need to train decoder or

GAN) while highly performant, thus more practical.

4. Experiments

We conduct most experiments on MVTec Anomaly De-

tection dataset [5] that contains 10 object and 5 texture cat-

egories for anomaly detection. The dataset is composed of

normal images for training and both normal and anomaly

images with various types of defect for testing. It also pro-

vides pixel-level annotations for defective test images. The

dataset is relatively small scale in number of images, where

the number of training images varies from 60 to 391, posing

a unique challenge for learning deep representations.

We follow one-class classification protocol, also known

as semi-supervised anomaly detection [10],2 where we train

a one-class classifier for each category on its respective nor-

mal training examples. Following [52], we learn the rep-

resentations by augmentation prediction from scratch with

2While previous works [5, 6] have used unsupervised to describe their

settings, it could be misleading as training data is curated to include normal

data only.

ResNet-18 [22] plus an MLP projection head on top of aver-

age pooling layer followed by the last linear layer. We con-

struct a Gaussian density estimation (GDE) as Equation (2)

for anomaly detector based on the top pooled features.

We train a model on 256×256 image. We note that the

same training strategy, such as the selection of hyperparam-

eters or data augmentations, is applied to all categories. De-

tailed settings of training can be found in Appendix A.

4.1. Main Results

We report the anomaly detection performance in Table 1.

We run experiments 5 times with different random seeds

and report the mean AUC and standard error for each cat-

egory. We also report the average of mean and standard

errors for texture, object, and all categories.

We test representations trained with different proxy tasks

of self-supervised learning, including baselines such as ro-

tation [20], Cutout or scar predictions, the proposed Cut-

Paste, CutPaste-Scar predictions, and using both with 3-way

classification. We also compare with previous works, in-

cluding deep one-class classifier (DOCC) [45], uninformed

student [5], and patch SVDD [61]. We note that some of

these methods use ImageNet pretrained model for transfer

learning, either by fine-tuning (DOCC) or distillation (un-

informed student). The results are in Table 1.

Rotation prediction is demonstrated to be powerful in se-

mantic anomaly detection [52]. However, it results in un-

satisfactory 73.1 AUC in defect detection compared with

the Scar prediction (85.0), a Cutout variant. Some fail-

ure of rotation prediction is due to the unaligned objects,

such as screw shown in Figure 2. For aligned objects, al-

though it performs well on toothbrush, it is sub-optimal

on capsule. Detailed ablation study of Cutout variants

can be found in Section 5.

CutPaste and CutPaste-Scar, which improve Cutout and

Scar prediction by avoiding potential naive solutions, out-

perform other augmentation predictions with 90.9 and 93.5
AUCs, respectively. With a finer-grained 3-way classifica-

tion to leverage different scale of CutPaste, we achieve the

best 95.2 AUC, which surpasses existing works on learning

from scratch, such as P-SVDD [61] (92.1 AUC). The pro-

posed data-driven approach via CutPaste is also better than

existing works leveraging pretrained networks, including

DOCC [45] (87.9 AUC) with pretrained VGG16 and Unin-

formed Student [6] (92.5 AUC) with pretrained ResNet18.

Last, we further improve the AUC to 96.1 by ensembling

anomaly scores from 5 CutPaste (3-way) models.

4.2. Defect Localization

We conduct anomaly localization experiments using our

representations trained with 3-way classification task. One

challenge to accurate localization of defect is that it is diffi-

cult to use a heatmap-style approach for localization as our
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Table 1: Anomaly detection performance on MVTec AD dataset [5]. We report AUCs of representations trained to classify

CutPaste, CutPaste (scar), both (3-way), and baseline augmentations such as rotation, Cutout, or scar. For comparison, we

report those of deep one-class classifier [45], uninformed student [6] and patch-SVDD [61]. We report mean and standard

error tested with 5 random seeds. Lastly, we report the AUC using ensemble of 5 CutPaste (3-way) models. The best

performing model and those within standard error are bold-faced.

Category
DOCC U-Student P-SVDD

Rotation Cutout Scar CutPaste
CutPaste CutPaste

Ensemble
[45] [6] [61] (scar) (3-way)

texture

carpet 90.6 95.3 92.9 29.7±1.4 35.3±2.3 92.7±0.4 67.9±1.8 94.6±0.6 93.1±1.1 93.9

grid 52.4 98.7 94.6 60.5±7.0 57.5±3.0 74.4±2.5 99.9±0.1 95.5±0.3 99.9±0.1 100.0

leather 78.3 93.4 90.9 55.2±1.4 67.7±1.5 99.9±0.1 99.7±0.1 100.0 ±0.0 100.0 ±0.0 100.0

tile 96.5 95.8 97.8 70.1±1.9 71.8±4.0 96.7±0.9 95.9±1.0 89.4±2.8 93.4±1.0 94.6

wood 91.6 95.5 96.5 95.8±1.1 92.0±0.8 98.9±0.2 94.9±0.5 98.7±0.3 98.6±0.5 99.1

average 81.9 95.7 94.5 62.3±2.6 64.9±2.3 92.5±0.8 91.7±0.7 95.7±0.8 97.0±0.5 97.5

object

bottle 99.6 96.7 98.6 95.0±0.7 88.7±0.8 98.5±0.2 99.2±0.2 98.0±0.5 98.3±0.5 98.2

cable 90.9 82.3 90.3 85.3±0.8 80.2±1.4 78.3±1.7 87.1±0.8 78.8±2.9 80.6±0.5 81.2

capsule 91.0 92.8 76.7 71.8±1.4 69.5±1.1 82.9±0.7 87.9±0.7 95.3±0.8 96.2±0.5 98.2

hazelnut 95.0 91.4 92.0 83.6±0.8 69.7±1.3 98.9±0.2 91.3±0.6 96.7±0.4 97.3±0.3 98.3

metal nut 85.2 94.0 94.0 72.7±0.5 84.6±0.7 86.9±1.5 96.8±0.5 97.9±0.2 99.3±0.2 99.9

pill 80.4 86.7 86.1 79.2±1.4 78.7±0.7 82.2±1.4 93.4±0.9 85.8±1.3 92.4±1.3 94.9

screw 86.9 87.4 81.3 35.8±2.9 17.6±4.4 11.3±2.2 54.4±1.7 83.7±0.7 86.3±1.0 88.7

toothbrush 96.4 98.6 100.0 99.1±0.2 98.1±0.6 94.8±1.0 99.2±0.2 96.7±0.4 98.3±0.9 99.4

transistor 90.8 83.6 91.5 88.9±0.4 82.5±1.2 92.0±0.7 96.4±0.7 91.1±0.6 95.5±0.5 96.1

zipper 92.4 95.8 97.9 74.3±1.6 75.7±1.0 86.8±0.9 99.4±0.1 99.5±0.1 99.4±0.2 99.9

average 90.9 90.9 90.8 78.6±1.1 74.5±1.3 81.3±1.1 90.5±0.6 92.4±0.8 94.3±0.6 95.5

average 87.9 92.5 92.1 73.1±1.6 71.3±1.6 85.0±1.0 90.9±0.7 93.5±0.8 95.2±0.6 96.1

Input

GT 
Mask

Grad
CAM

Patch 
Heatmap

Figure 4: Defect localization on bottle, hazelnut, metal nut, screw, wood and grid classes of MVTec datasets. From top to

bottom, input images, those with ground-truth localization mask in red, GradCAM results using image-level detector, and

heatmaps using patch-level detector. We provide more examples in Appendix B.

model learns a holistic representation of an image. Instead,

we use visual explanation techniques, GradCAM [51], to

highlight the area affecting the decision of anomaly detec-

tor. We show qualitative results in the second row of Fig-

ure 4, which are visually pleasing. We further evaluate the

pixel-wise localization AUC, achieving 88.3.

Instead, we learn a representation of an image patch us-

ing CutPaste prediction, as in Section 2.4. We train mod-

els of 64×64 patches from 256×256 image. At test time,

we densely extract anomaly scores with a stride of 4 and

propagate the anomaly scores via receptive field upsam-

pling with Gaussian smoothing [32]. We report a localiza-

tion AUC in Table 2. Our patch-based model achieves 96.0

AUC. Specifically, our model shows strong performance on

texture categories over previous state-of-the-art (96.3 AUC

compared to 93.7). We also outperforms the DistAug con-

trastive learning [52], which only results in 90.4 localiza-

tion AUC. Finally, we visualize representative samples for

localization in Figure 4, showing accurate localization even

when defects are tiny. More comprehensive results on de-

fect localization are given in Appendix B.

4.3. Transfer Learning with Pretrained Models

In Section 4.1, we have shown the proposed data-driven

approach is better than leveraging pretrained networks, such

as DOCC [45] and Uninformed Student [6]. It is consistent
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Table 2: Pixel-wise localization AUC on MVTec dataset.

The best and models within standard error are bold-faced.

Category FCDD [32] P-SVDD [61] CutPaste (3-way)

texture

carpet 96 92.6 98.3±0.0

grid 91 96.2 97.5±0.1

leather 98 97.4 99.5±0.0

tile 91 91.4 90.5±0.2

wood 88 90.8 95.5±0.1

average 93 93.7 96.3±0.1

object

bottle 97 98.1 97.6±0.1

cable 90 96.8 90.0±0.2

capsule 93 95.8 97.4±0.1

hazelnut 95 97.5 97.3±0.1

metal nut 94 98.0 93.1±0.4

pill 81 95.1 95.7±0.1

screw 86 95.7 96.7±0.1

toothbrush 94 98.1 98.1±0.0

transistor 88 97.0 93.0±0.2

zipper 92 95.1 99.3±0.0

average 91 96.7 95.8±0.1

average 92 95.7 96.0±0.1

Table 3: Detection performance on MVTec dataset using

representations of EfficientNet (B4) [55] pretrained on Im-

ageNet [17] and fine-tuned by the CutPaste (3-way). The

number is bold when it is better than its pretrained or fine-

tuned counterpart under the same feature (pool v.s. level-7).

Category
Pool Level-7

Pretrain Finetune Pretrain Finetune

texture

carpet 98.3 100.0±0.0 97.6 100.0±0.0

grid 96.4 98.8±0.1 98.2 99.1±0.0

leather 100.0 100.0±0.0 100.0 100.0±0.0

tile 99.9 98.9±0.2 99.9 99.8±0.2

wood 99.7 99.8±0.0 99.6 99.8±0.0

average 98.9 99.5±0.0 99 99.7±0.0

object

bottle 99.8 100.0±0.0 100.0 100.0±0.0

cable 91.2 93.9±0.1 96.5 96.2±0.3

capsule 93 94.3±0.3 94.7 95.4±0.1

hazelnut 96.6 99.7±0.0 100.0 99.9±0.0

metalnut 94.3 98.7±0.1 97.7 98.6±0.0

pill 81.9 91.3±0.2 91 93.3±0.2

screw 86.3 86±0.1 92.0 86.6±0.2

toothbrush 89.3 92.8±0.2 90.3 90.7±0.1

transistor 94.6 95.6±0.2 97.5 97.5±0.2

zipper 95.6 99.9±0.0 97 99.9±0.1

average 92.3 95.2±0.1 95.7 95.8±0.1

average 94.5 96.6±0.1 96.8 97.1±0.0

with the prior study on semantic anomaly detection [52].

On the other hand, pretrained EfficientNet [55] is found use-

ful for defect detection [43]. As shown in Table 3, without

fine-tuning, the representation from the pretrained Efficient-

Net (B4) results in 94.5 AUC, which is competitive with the

proposed CutPaste prediction (95.2 from Table 1).

Here we demonstrate that the proposed self-supervised

learning via CutPaste is versatile, which can also be used to

improve the pretrained networks to better adapt to the data.

We use pretrained EfficientNet (B4) as a backbone, and fol-

low the standard fine-tuning steps to train with the same

Table 4: Detection AUCs of representations trained to pre-

dict Cutout, with mean pixel value, with random color, Con-

fetti noise [32], or the proposed CutPaste.

Category Cutout
Cutout Cutout

Confetti CutPaste
(Mean) (Color)

texture 64.9±2.3 65.5±1.8 70.5±2.2 80.1±2.3 91.7±0.7

object 74.5±1.3 78.1±1.1 78.9±1.0 76.7±0.3 90.5±0.6

all 71.3±1.7 73.9±1.3 76.1±1.4 77.8±1.5 90.9±0.7

(a) Cutout
(Standard)

(b) Cutout
(Mean)

(c) Cutout
(Random Color) (d) Confetti (e) CutPaste

Figure 5: Visual comparison between the proposed Cut-

Paste and Cutout variants, including filling with grey color,

mean pixel values, random colors and Confetti noise [32].

CutPaste prediction (3-way) task. Detailed settings can be

found in Appendix A. We show the results in Table 3. After

fine-tuning via CutPaste, we achieve the new state-of-the-

art 96.6 AUC. Furthermore, CutPaste prediction is a gen-

eral and useful strategy to adapt to the data for most of the

situations. For example, CutPaste improves by a large mar-

gin on class pill (81.9→ 91.3). For many nearly perfect

situations, such as bottle, CutPaste is still able to im-

prove by a small margin. Last, as suggested by [30, 43], we

investigate the performance of various deep features. We

find that level-7 feature shows the best performance, and

we further improve the level-7 feature of EfficientNet from

96.8 (pretrained) to 97.1±0.0 with CutPaste.

5. Ablation Study

We conduct various additional studies to provide deeper

insights of the proposed CutPaste. We first compare Cut-

Paste with different Cutout variants in addition to the stan-

dard ones reported in Section 4.1. Second, we showcase the

representation learned via predicting CutPaste generalizes

well to more crafted unseen defects. Last, we compare with

the semantic anomaly detection.

5.1. From Cutout to CutPaste

We evaluate the performance of representations trained

to predict variants of Cutout augmentations whose areas are

filled by grey color (standard), mean pixel values, random

color, or image patch from different location, i.e., CutPaste.

We also test Confetti noise [32] that jitters a color of a local

patch. We show samples from considered augmentations in

Figure 5 and report the detection AUCs in Table 4. While
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Table 5: Detection AUCs of representations trained with

binary classification between normal and the union of Cut-

Paste and CutPaste-Scar examples and 3-way classification

among normal, CutPaste and CutPaste-scar examples.

Category CutPaste CutPaste (scar) Binary (Union) 3-Way

texture 91.7±0.7 95.7±0.8 97.3±0.3 97.0±0.5

object 90.5±0.6 92.4±0.8 92.8±0.5 94.3±0.6

all 90.9±0.7 93.5±0.8 94.3±0.5 95.2±0.6

achieving 71.3 AUC that already is significantly better than

random guessing, predicting a standard Cutout augmenta-

tion is still a simple task and the network may have learned

a naive solution from easy proxy task, as discussed in Sec-

tion 2. By gradually increasing the difficulty of proxy task

to avoid known trivial solutions with random color to the

patch, or with structures similar to local patterns of the nor-

mal data (Confetti noise, CutPaste), the network learns to

find irregularity and generalizes better to detect real defects.

5.2. Binary v.s. Finer-Grained Classification

In Table 1, although CutPaste-scar shows better perfor-

mance on average than CutPaste, there is no clear winner

that works the best for all. As there are diverse types of

defect in practice, we leverage the strength of both augmen-

tations for representation learning. In Section 2.2, we train

a model by solving a 3-way classification task between nor-

mal, CutPaste and CutPaste-scar. Alternatively, we train to

solve a binary classification task by discriminating normal

examples and the union of two augmentations.

The results, along with those of representations trained

with CutPaste and CutPaste-scar, are in Table 5. It is clear

that using both augmentations improve the performance.

Between binary with union of augmentations and 3-way,

we observe better detection performance with representa-

tions trained by 3-way classification task. A plausible hy-

pothesis on the superiority of 3-way formulation in our case

is that it is more natural to model CutPaste and CutPaste-

scar augmentations separately than together as there exists

a systematic difference between them in the size, shape, and

rotation angle of patches.

5.3. CutPaste on Synthetic Anomaly Detection

We further study the generalization of our models to un-

seen anomalies. Specifically, we test on synthetic anomaly

datasets created by patching diverse shape masks to normal

data, such as digits [29], square, ellipse, or heart [35], filled

with random color or natural images. Samples of synthetic

anomalies are shown in Figure 6 and detection results are in

Table 6. We first note that these datasets are not trivial – a

model trained by predicting Cutout augmentations achieves

only 81.5. Our proposed CutPaste (3-way) model performs

well on synthetic dataset, achieving 98.3 AUC on average.

We highlight that some shapes (e.g., ellipse, heart) or color

Figure 6: Synthetic defects on pill class. From left to right,

we use MNIST [29], square, ellipse, heart [35] with random

color, and those filled with natural image patches.

Table 6: Detection AUCs on synthetic data. Various shapes,

such as digit, square, ellipse, or heart, are patched to normal

images with random color or natural images (†).

Dataset MNIST Square Ellipse Heart Square† Ellipse† Heart† Avg

Cutout 52.3 90.6 89.3 87.5 86.4 84.0 80.7 81.5

CutPaste 96.1 98.4 98.2 97.9 99.3 99.2 99.0 98.3

statistics inside the patch (e.g., constant color, natural im-

ages) are not seen at training, but we can still generalize to

these unseen cases.

5.4. Application to Semantic Outlier Detection

We also conduct the semantic anomaly detection experi-

ment on CIFAR-10 [28] following the protocol in [20, 52],

where a single class is treated as normal and remaining 9

classes are anomalies. We make a comparison of Cutout,

CutPaste and rotation prediction [52]. Cutout results in 60.2
AUC, and CutPaste achieves 69.4 AUC, which significantly

improves upon Cutout (60.2). However, these are still far

behind that of rotation prediction (91.3 AUC) on CIFAR-10

semantic anomaly detection. On the other hand, in Sec-

tion 4.1, we have discussed the reversed situation that rota-

tion prediction is much worse than 3-way CutPaste predic-

tion. The results suggest the difference between semantic

anomaly detection and defect detection, which needs differ-

ent algorithm and augmentation designs.

6. Conclusion

We propose a data-driven approach for defect detection

and localization. The key to our success is self-supervised

learning of representations with CutPaste, a simple yet ef-

fective augmentation that encourages the model to find local

irregularities. We show superior image-level anomaly de-

tection performance on the real-world dataset. Furthermore,

by learning and extracting patch-level representations, we

demonstrate state-of-the-art pixel-wise anomaly localiza-

tion performance. We envision the CutPaste augmentation

could be a cornerstone for building a powerful model for

semi-supervised and unsupervised defect detection.
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Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised

anomaly detection with generative adversarial networks to

guide marker discovery. In IPMI, 2017. 1, 4

[49] Bernhard Schölkopf, Robert C Williamson, Alex J Smola,

John Shawe-Taylor, and John C Platt. Support vector method

for novelty detection. In NIPS, 2000. 1, 4
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