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Abstract

We present the first single-view 3D reconstruction net-

work aimed at recovering geometric details from an input

image which encompass both topological shape structures

and surface features. Our key idea is to train the network

to learn a detail disentangled reconstruction consisting of

two functions, one implicit field representing the coarse 3D

shape and the other capturing the details. Given an in-

put image, our network, coined D2IM-Net, encodes it into

global and local features which are respectively fed into two

decoders. The base decoder uses the global features to re-

construct a coarse implicit field, while the detail decoder re-

constructs, from the local features, two displacement maps,

defined over the front and back sides of the captured ob-

ject. The final 3D reconstruction is a fusion between the

base shape and the displacement maps, with three losses

enforcing the recovery of coarse shape, overall structure,

and surface details via a novel Laplacian term.

1. Introduction

Reconstructing 3D shapes from single-view RGB im-

ages is the prototypical ill-posed problem in computer vi-

sion. Recently, rapid advances in deep learning have pro-

pelled the development of data-driven single-view 3D re-

construction methods. In particular, the emergence of neu-

ral implicit models [5, 27, 22] for 3D shape representation

learning has led to much improved reconstruction quality

compared to methods designed for voxel grids, meshes, and

point clouds. However, while technically the implicit fields

could be sampled to an arbitrarily high spatial resolution,

state-of-the-art reconstruction methods still are unable to

adequately recover fine-level geometric details.

Implicit reconstruction networks such as IM-Net [5] and

Occupancy Network [22] learn to predict an implicit func-

tion, given a feature encoding of the input image, by min-

imizing a reconstruction loss. These networks generalize

well to new images, but only in terms of the coarse shapes;

they are not designed to recover geometric details which are

often of small scale and do not incur a sufficient penalty on

the loss terms. In a more recent work, DISN, Xu et al. [44]

Figure 1. Our network learns to reconstruct a detail disentangled

3D representation from single-view images. The disentangled de-

tails enable detail transfer and 3D reconstruction (shown in two

views) with the transferred details from image to another.

account for both global and local image features to predict

a combined signed distance field (SDF) so as to minimize

a single reconstruction loss like prior works. Their network

can better resolve structural details, such as the slats in the

back of a chair, that are well captured by local image fea-

tures. However, the rest of the details, in particular surface

details, which are just as important for visual perception

(e.g., of depth and material), are still not well recovered.

In this paper, we wish to develop an implicit single-view

3D reconstruction network which can recover both topolog-

ical structures and surface details from an input image. Our

key idea is that to best reconstruct the details, we ought to

train the network to learn a detail disentangled reconstruc-

tion consisting of two functions, one representing the coarse

3D shape and one capturing the details. However, the main

ensuing challenge is that geometric details are so varied that

there is no general and reliable way to define what the de-

tails are or what a coarse shape should be. The network

must learn the disentangled representations without direct

supervision using ground-truth training data.

Figure 2 illustrates the pipeline of our detail disentangled

implicit reconstruction network, coined D2IM-Net. Given a

single RGB input image, the network encodes it into global

and local features which are respectively fed into two de-

coders. The base decoder uses the global features to re-

construct a coarse (i.e., base) implicit field, while the detail

decoder reconstructs, from the local features, a pair of 2D
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Figure 2. The pipeline of our single-view 3D reconstruction network D2IM-Net consists of three stages. An encoder extracts global and

local features from the input image. This is followed by two decoder branches which respectively predict a base or coarse shape from

global features and two displacement maps (back and front) from local features. The final 3D reconstruction is a fusion between the base

shape and the displacement maps, with three losses enforcing recovery of coarse shape, overall structure, and surface details (Laplacian).

Figure 3. Illustration of a ground-truth (GT) shape+SDF (a) and

a disentanglement into a base shape+SDF (b) and a displacement

field (c). Bottom row plots SDF, displacement field, and Laplacian

values along the front surface (purple lines) of the GT shape. We

see close resemblance between the Laplacian of the displacement

field values and that of the GT SDF: blue vs. red curves in (e).

Note that at training, only the GT SDF is known (indicated by

orange borders in the figure); all other fields are to be learned.

displacement maps, defined over the front and back sides of

the captured object that are visible to the camera.

In the absence of any ground-truth displacement maps

for training, or coarse shapes for that matter, we must rely

on the original 3D shapes (e.g., from ShapeNet) or their as-

sociated SDFs to define the network losses. We first observe

that the Laplacian of the SDF of a shape near the shape

surface is sensitive to local geometry variations1, i.e., the

1The Laplacian of a signed distance function at a point x is proportional

to the mean curvature of the isosurface passing through x [8].

Figure 4. A visualization of 3D shapes reconstructed by the two

decoders of D2IM-Net demonstrates detail disentanglement: our

network learns to recover surface details via the front displacement

map and other details from the back map. The network was trained

on ShapeNet across 13 shape categories.

surface details. Furthermore, this Laplacian function resem-

bles the Laplacian of the front displacement map if the front

side of the coarse shape is mostly flat; see Figure 3. Based

on these observations, we define a corresponding Laplacian

loss to optimize the front displacement map.

In addition, we define a base loss and an SDF loss, both

with respect to the ground-truth SDF, where the SDF loss

is computed against a fusion between the predicted coarse

SDF and the predicted displacement maps, both the front

and the back. As the back displacement map is not fac-

tored into the Laplacian loss, it does not capture surface

details. However, with local image features as input, the

SDF loss does enforce the back map to help reconstruct the

overall shape structure, including topological details. Fig-

ure 4 visualizes the disentangled functions our network re-

constructs on two examples, where the predicted displace-

ment maps evidently represent shape details, encompassing
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both topological structures and surface features, while the

base decoder reconstructs the coarse shape.

We train our network on ShapeNet Core [3] across all

13 shape categories and test the network on single-view

reconstruction for a variety of 3D objects, including those

captured in “images in the wild”. We conduct various ab-

lation studies and present both qualitative and quantitative

comparisons between D2IM-Net and representative single-

view 3D reconstruction methods including IM-Net [5] and

DISN [44]. While the focus of our work is on reconstructing

shape details, evaluations are conducted on images contain-

ing objects with varying degrees of geometric details and

using different error metrics applicable to overall shapes

and edge revelation. Finally, we develop and demonstrate

a novel application of D2IM-Net, where the ability to learn

detail functions from images enables detail transfer from an

image onto a reconstructed 3D shape; see Figure 1.

2. Related work

Most learning-based methods for 3D reconstruction aim

to generalize to novel data [35, 43, 41, 29, 5, 22, 44, 9, 38, 6,

42, 10], while some recent networks are designed to “over-

fit” to specific inputs [1, 47, 33, 24, 18, 40]. In the lat-

ter case, a network is specifically trained to optimize the

reconstruction for a given input, typically multi-view im-

ages [47, 33, 24, 18] or a point cloud [1]. As expected,

such a specialization tends to produce much higher recon-

struction quality compared to methods from the first cate-

gory. However, with a new input, the network needs to be

re-trained. Our work belongs to the first category and in this

section, we mainly discuss related works in this category for

single-view 3D reconstruction, or SVR, for short.

Neural implicit models for SVR. Deep neural models

for SVR has gained significant improvements with various

3D shape representations, including voxels [6, 35, 41, 29,

42], meshes [38, 9], and structural primitives [26, 48]. Re-

cently, implicit representations [5, 22, 27, 44, 43, 23, 17]

have emerged as a desirable alternative due to the advan-

tages they offer at representing continuous surfaces with

higher visual quality and flexible topology.

Supervised by the ground-truth (GT) occupancy or SDF,

earlier implicit reconstruction methods such as IM-NET [5],

OccupancyNetwork [22], and DeepLevelSets [23] predict

the scalar value at each 3D point to approximate the GT. La-

tent features encoded from the input images are fed into an

MLP network together with 3D point coordinates to predict

their occupancy or signed distances. Littwin and Wolf [17]

take the encoded feature vectors as the network weights of

the MLP to attain a more accurate reconstruction. Instead

of predicting the implicit fields as a whole, PQ-NET [43]

separately predicts the SDFs for each structural part of the

captured object and then combines them together.

Unsupervised SVR. Along the lines of SVR without 3D

supervision, differentiable renderers [13, 37] have been de-

veloped to back-propagate the loss computed from the in-

put images. Liu et al. [20] propose a ray-based field prob-

ing technique to render the implicit surfaces to 2D silhou-

ettes, with the geometric details erased from the silhouettes.

Niemeyer et al. [25] account for both geometry and texture

during rendering and make use of rich 2D supervision in-

cluding RGB, depth, and normal images.

SVR with local image features. What is common about

all the SVR methods above is that they are trained to re-

construct from global image features. As a result, they can

successfully reconstruct coarse 3D shapes, but miss most

shape details. A recent work by Tatarchenko et al. [36]

reveals that such reconstructions could be easily outper-

formed by simple retrieval baselines, which may suggest

that the main role played by the global images features is

recognition rather than reconstruction. This naturally leads

to the incorporation of local image features for learning 3D

shapes [12, 28]. Representative networks along these lines

include PIFu [30] and its follow-ups [31, 11], which were

designed for detailed human shape reconstruction, but do

not perform well on man-made models e.g., from ShapeNet,

due to the greater geometric and structural variations.

Most closely related to our work is DISN [44] which ac-

counts for both global and local image features for SVR.

Specifically, it predicts the camera parameters to query the

local image feature for each point. Global and local features

are processed separately with the point coordinates to obtain

two predictions, which are combined and optimized against

a single SDF reconstruction loss. In addition, this loss is

weighted to place more emphasis on errors associated with

small SDF values. Qualitatively, the resulting reconstruc-

tion significantly improves the recovery of shape structures,

in particular, topological details, but still unable to recon-

struct surface details. In a more recent work, LadyBird, Xu

et al. [45] employ farthest point sampling and feature fusion

based on reflective symmetries to deal with self-occlusion.

However, geometric details are not taken into account.

Compared to DISN [44], our network is specifically de-

signed to learn a detail disentangled implicit shape repre-

sentation, as contrasted in Figure 4. The key technical dif-

ference is that our network defines a dedicated loss for each

reconstructed function (the based SDF and two displace-

ment maps) and then sums up the losses, leading to disen-

tanglement, while in DISN, there is only one loss. Spe-

cific to the recovery of surface details, we introduce a novel

Laplacian loss to learn from GT normal maps.

Laplacian-space processing. The Laplacian operator for

image or shape processing captures local variations. There

have been neural networks which employ Laplacian pyra-

mids to capture multi-scale image structures for coarse-
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to-fine image generation [7] and super-resolution [15, 34].

Also, Li et al. [16] develop a Laplacian loss for neural style

transfer to preserve detailed image structures. However, it

is non-trivial to extend Laplacian losses to the SVR frame-

work, where the predicted shape representation must en-

able the Laplacian computation, while providing alignment

to the GT surface. Applying Laplacian losses to surface

meshes, as in Pixel2Mesh [38], is more straightforward,

e.g., by means of minimizing the error between the pre-

dicted Laplacian coordinates before and after mesh defor-

mation. More recently, in ParseNet, Sharma et al. [32] ap-

ply the Laplacian loss on parametric surfaces, aligning the

GT and the predicted surfaces via Hungarian matching. For

implicit methods, existing works such as SoftRas [19] re-

sort to Laplacian regularization to obtain smooth surfaces,

rather than detail recovery. In our work, we define disen-

tangled detail functions as displacement maps, which are

aligned with the input images, making it possible to define

a proper Laplacian loss for SVR with surface details.

3. Method

Given a single RGB image of a 3D object, our goal is

to reconstruct that object with high-quality shape details, in

particular, geometry variations over its surfaces. The input

to our reconstruction network consists of the image as well

as a 3D point; the network outputs the signed distance from

the input point to the target 3D object. Network training is

supervised, taking multi-view projections from 3D objects

in a shape repository to form the ground-truth data pairs.

Our network learns a disentangled signed distance field

(SDF) reconstruction corresponding to the coarse shape and

the shape details, employing a novel Laplacian loss to re-

cover surface details. As shown in Figure 2, our network

starts with an encoder using a CNN architecture to extract

image features and two decoders to predict the coarse shape

and details separately. The coarse shape and details, both in

the form of scalar fields, are then fused together to obtain

the SDF of the reconstructed 3D object. Finally, we apply

Marching Cube [21] to extract the zero level set as the final

reconstructed 3D output mesh model.

The main challenges include how to disentangle (Sec-

tion 3.1) and how to define the Laplacian loss between net-

work predictions and the ground truth (Section 3.3).

3.1. Detail disentanglement formulation

The Laplacian of the SDF of a shape near the shape’s

surface can help detect rapid local geometry variations [8],

i.e., surface details. This motivates the use of Laplacians to

help formulate our detail disentanglement under the implicit

function setup. Specifically, we disentangle the ground-

truth SDF FSDF (i.e., the SDF of the ground-truth shape S)

as the sum of a base implicit field, for a coarse shape, and

the residual field which models displacements, as shown

along the top of Figure 3 and expressed as follows:

FSDF (p) = fB(p) + fD(p),

fB : R3 → R, fD : R3 → R,
(1)

where fB and fD denote the base and displacement fields,

respectively, which are learned. We follow the convention

that capitalization, e.g., F , refers to ground-truth functions,

while learned functions are given in lower-case.

We assume that the coarse shape is smooth and lies

close to the surface S. The smoothness herein implies that

the (residual) displacement field contains information about

surface details. Such information is connected to FSDF

through the Laplacian. Furthermore, near S, the Lapla-

cian of the displacement field fD would closely approx-

imate the Laplacian of FSDF , if the detail displacements

form a height field over a mostly flat surface (on the coarse

shape). The latter implies that △fB ≈ 0, hence, due to

linearity of the Laplacian operator, we have

△fD(p) = △FSDF (p), |dist(p, S)| < δ. (2)

With |dist(p, S)| < δ, only the Laplacian of points near S

within a threshold δ need to be sampled during training.

However, for single-view 3D reconstruction, it is diffi-

cult to infer occluded geometry in 3D space. Inspired by

recent works [46, 31] which treat the front and back sur-

faces separately, our network predicts a pair of 2D dis-

placement maps for the visible front surface and the oc-

cluded back surface respectively, instead of a 3D displace-

ment field. The front displacement map recovers details on

the visible front surface, by optimizing the Laplacian near

that surface against the ground-truth. The back displace-

ment map approximates the residual between the SDF and

base distance field to compensate for other details such as

topological structures. Putting things together, we have

FSDF (p) =

{

fB(p) + fDF (u(p)), p ∈ PF ,

fB(p) + fDB(u(p)), otherwise,

△ fDF (u(p)) = △FSDF (p), p ∈ PF ,

fB : R3 → R, fDF : R2 → R, fDB : R2 → R,

(3)

where fDF and fDB are the displacement maps for the front

and back surfaces. u(p) is the operation to project the 3D

point p to the pixel position on the image. The point set PF

contains the points near the front surface.

The advantages of using 2D displacement maps instead

of 3D fields are two fold. First, it enables us to learn the

small-scale details with contemporary CNN networks. Sec-

ond, it aligns the details with the input images to compute

the Laplacian loss, which we discuss in Section 3.3.

3.2. Network pipeline: encoder, decoder, fusion

Figure 2 shows the pipeline of our network D2IM-Net.

The encoding uses a CNN to extract the global feature vec-
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tor and local feature map from the input image. The base

decoder DecB , an MLP, takes the global feature vector with

a 3D point coordinate as input, and outputs the base value

of this point, i.e., the signed distance from this point to the

coarse shape. The detail decoder DecD contains the resid-

ual convolutional layers with the local feature map as input,

and outputs a front displacement map encoding surface de-

tails on the visible front surface, and a back map to com-

pensate for the topology details on the back surfaces. The

back displacement map is necessary since a pixel outside

the object mask should affect all the points along the ray.

The third stage is to fuse the base distance field with two

displacement maps. Similar to DISN, we train a separate

network to predict the camera parameters to query the dis-

placement values per point on the displacement maps. As in

equation (3), the base distance of a point is summed up with

its corresponding value queried from the front displacement

map, if this point is closer to the visible front surface. Other-

wise, we sum the base distance and the corresponding value

from the back displacement map. In the implementation, we

simply estimate the gradient of the SDF at each point with

central difference approximation. If the gradient direction is

close to the viewpoint direction and the ground-truth SDF

is smaller than a threshold, we classify the point as near

the front surface. Note that we use the ground-truth camera

parameters and the gradients estimated from ground-truth

SDF during training, and the predictions during testing.

3.3. Network losses

Our loss function is formulated as L = LB+Llap+Lsdf ,

where LB , Llap, and Lsdf denote the base loss, Laplacian

loss, and SDF loss, respectively. Specifically, LB is the L2-

distance between the predicted base distance field fB and

the ground-truth SDF FSDF over a set of sample points to

learn the coarse shape. The SDF loss term Lsdf is the L1-

distance between the fused implicit field f and the ground-

truth SDF FSDF ; this term serves as a regularization for the

displacement maps. Thus we have,

LB =
1

M

M
∑

i=1

‖fB(pi)− FSDF (pi)‖
2
2

Lsdf =
1

M

M
∑

i=1

|f(pi)− FSDF (pi)|

(4)

The Laplacian loss, Llap, aims to minimize the error be-

tween the Laplacian of the predicted (front) displacements

and the Laplacian of the ground-truth SDF. However, there

exists a mismatch between the two Laplacians since our

disentangled details are displacement maps defined in 2D

while the ground-truth SDFs are defined in 3D.

To solve this problem, we estimate the 2D projection

of the ground-truth Laplacian, i.e., the Laplacian of the

ground-truth SDF with respect to pixel positions on the im-

age. This is reasonable since the single-view images are not

sensitive to variations along the viewing direction. In ad-

dition, this enables us to obtain the ground-truth Laplacian

from 2D normal maps, instead of computing it in 3D.

To project a point p in 3D space, we first transform it

to p′ = (p′x, p
′
y, p

′
z) in the camera’s viewpoint, and then

project it to the pixel position u(p) = (ux, uy). The Lapla-

cian of the front displacement map is

△ fDF (u(p)) =
∂2fDF (u(p))

∂(ux)2
+

∂2fDF (u(p))

∂(uy)2
. (5)

If p lies on the visible front surface, the ground-truth normal

map provides its unit normal vector N(u(p)) = ∂FSDF (p)
∂p′

,

which equals to the gradient of the SDF with respect to the

point coordinates p′ in the camera view. With the camera

parameters in the projecting operation, we obtain the gradi-

ent of the coordinates p′ with respect to the pixel position

u(p), denoted by ∂p′

∂u(p) . Therefore, we have the projected

gradient of the SDF with respect to u(p) as

N ′(u(p)) = (N(u(p)) ·
∂p′

∂ux

, N(u(p)) ·
∂p′

∂uy

), (6)

and the projected Laplacian (the ground-truth Laplacian) is

l(u(p)) = N(u(p)) ·
∂p′

∂2ux

+N(u(p)) ·
∂p′

∂2uy

. (7)

Hence, the Laplacian loss is defined as

Llap =
1

|PF |

∑

pi∈PF

‖△fDF (u(pi))− l(u(pi))‖
2
2 . (8)

Weighted sampling. The loss terms are all defined on a

set of sampled points. Unlike previous works, e.g., [5, 44],

which randomly sample near object surfaces, we emphasize

the importance of small-scale (e.g., thin) structures. Assum-

ing a dense set of point-value pairs for an object, we define

the density at each point as the number of points in its neigh-

borhood with a prescribed radius. The interior points only

count their neighbor points inside the object, so do the exte-

rior points. During training, we sample an equal number of

interior and exterior points with their densities as sampling

weights. Such a weighted sampling strategy enables us to

have more interior point-value pairs for the thin structures

to better recover them during reconstruction.

4. Results, evaluation, and application

All the reconstruction networks are trained (over 13 cat-

egories) and tested on the ShapeNet Core dataset [3]. The

training set comes from the ground-truth SDFs provided by

DISN [44] and their rendered images including single-view
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CD IoU ECD-3D ECD-2D

Baseline 0.0417 0.523 0.0735 3.304

WSamp 0.0340 0.587 0.0624 2.626

NoBack 0.0306 0.589 0.0525 1.802

NoLap 0.0302 0.601 0.0524 1.653

Full 0.0297 0.613 0.0503 1.456
Table 1. Quantitative evaluation for ablation study.

images and 2D normal maps. The ground-truth SDFs were

randomly sampled on 32,768 points near the object surfaces

with their signed distance values. In each iteration during

training, we randomly select 2,048 points with our weighted

sampling strategy to compute the loss and update the net-

work. For the input images, we use all the views during

training but use the one showing most of the details during

testing to better evaluate the shape details.

4.1. Evaluation metrics

For all the implicit 3D reconstructions we test, the final

meshes are extracted via MarchingCubes in 1283 resolu-

tion. To measure the overall reconstruction quality, we use

Chamfer L1 Distance (CD) [22] with 20K sampled points

and Intersection of Union (IoU) in 323 resolution. It is

worth noting however that despite their popularity, CD and

IoU are not the best measures of visual reconstruction qual-

ity [14]. Also, they do not emphasize on small-scale details.

Since the focus of our work is on detail recovery, we em-

ploy the Edge Chamfer Distance (ECD) [4], which is de-

fined as the CD between the edge points on the ground-

truth shapes and the reconstructions. The “edgeness” of

each point pi is estimated as σ(pi) = minpj∈Ni
|ni · nj |,

where Ni contains neighbors of point pi, ni and nj are the

unit normal vectors for points pi and pj . From 20K sam-

pled points, we retrieve the nearest 10 neighbors for each

point and retain the points with σ(pi) < 0.8 to measure the

small-scale details. Similarly, we develop a 2D version of

the ECD metric, since we recover details observed from im-

ages. ECD-2D is defined as the CD between the edge pixels

on the corresponding renderings. We apply the Canny edge

detector [2] on the rendered 224 × 224 normal map of the

reconstructed objects to obtain the edge pixels. The orig-

inal ECD and its 2D version are denoted as ECD-3D and

ECD-2D in our quantitative evaluation.

4.2. Ablation study

We conduct an ablation study to show how each compo-

nent of D2IM-Net contributes to detailed single-view 3D re-

construction. For the study, the networks are trained on the

chair category from ShapeNet with the ground-truth camera

parameters assumed given. The network options are:

Figure 5. Qualitative results for ablation study: reconstructed ob-

jects rendered with the same camera parameters as input images.

• Baseline: no detail decoder from D2IM-Net and

trained with uniform sampling and with loss Lsdf de-

fined on the output of the base decoder.

• WSamp: weighted sampling to train the baseline.

• NoBack: no back displacement map prediction from

D2IM-Net; the predicted base distance field is fused

with only the front displacement map.

• NoLap: only removing Llap loss from D2IM-Net; both

NoBack and NoLap use weighted sampling.

• Full: all-component D2IM-Net as describe in Figure 2.

Figure 5 and Table 1 provide qualitative and quantitative

comparison results, respectively. As we can see, weighted

sampling helps reconstruct thin volumes, with the detail de-

coder providing even more improved results on topological

structures, while surface details are best recovered with the

Laplacian loss (see NoLap vs. Full or NoBack).

4.3. Comparison

In our comparison to the state of the art, we focus on

implicit models which have yielded the best reconstruction

quality so far. In addition to IMNET [5], which is a baseline

corresponding to the base decoder branch of D2IM-Net, we

focus on comparing to DISN [44], which is, to the best of

our knowledge, the top single-view reconstruction network

to date in terms of detail recovery. We also test a slight

variant to D2IM-Net, called D2IM-NetGL, which takes both

global and local features as input to its base decoder. All the

methods are trained and tested on the same dataset.

As shown in Figure 6, IMNET generally obtains good

coarse reconstruction, but misses most details. DISN does

a better job in terms of recovering topological structures

and shape boundaries, but typically blurs surface features.

Both versions of D2IM-Net visually outperform IMNET
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Figure 6. Qualitative comparison between reconstruction results by IMNET [5], DISN [44], D2IM-Net, and D2IM-NetGL.

plane bench box car chair display lamp speaker rifle sofa table phone boat Mean

IoU ↑ IMNET 0.5200 0.5133 0.4581 0.7653 0.5411 0.5185 0.4168 0.5194 0.5643 0.6386 0.5083 0.6701 0.5631 0.5536

DISN 0.5362 0.5403 0.4615 0.8105 0.5539 0.4879 0.3791 0.4958 0.7237 0.6520 0.5629 0.7071 0.6566 0.5821

D2IM-Net 0.5584 0.5495 0.4860 0.7980 0.5613 0.5272 0.4213 0.5175 0.6813 0.6535 0.5367 0.7616 0.6339 0.5912

D2IM-NetGL 0.5553 0.5425 0.4760 0.8114 0.5441 0.5112 0.4495 0.5031 0.6626 0.6437 0.5475 0.6966 0.6381 0.5832

CD ↓ IMNET 0.0426 0.0382 0.0503 0.0437 0.0376 0.0479 0.0557 0.0632 0.0329 0.0475 0.0432 0.0317 0.0443 0.0445

DISN 0.0398 0.0351 0.0412 0.0308 0.0326 0.0462 0.0770 0.0647 0.0199 0.0366 0.0316 0.0282 0.0312 0.0396

D2IM-Net 0.0358 0.0312 0.0385 0.0348 0.0329 0.0422 0.0557 0.0561 0.0244 0.0391 0.0356 0.0245 0.0339 0.0373

D2IM-NetGL 0.0358 0.0337 0.0386 0.0313 0.0308 0.0427 0.0549 0.0572 0.0242 0.0375 0.0310 0.0270 0.0339 0.0368

ECD-3D ↓ IMNET 0.0789 0.0685 0.0872 0.0872 0.0661 0.0820 0.0995 0.1080 0.0674 0.0790 0.0710 0.0724 0.0823 0.0807

DISN 0.0684 0.0573 0.0697 0.0680 0.0564 0.0765 0.1127 0.1077 0.0350 0.0606 0.0601 0.0708 0.0583 0.0694

D2IM-Net 0.0567 0.0477 0.0661 0.0728 0.0523 0.0674 0.0918 0.0909 0.0343 0.0642 0.0630 0.0609 0.0568 0.0634

D2IM-NetGL 0.0598 0.0516 0.0691 0.0646 0.0504 0.0713 0.0897 0.0973 0.0357 0.0602 0.0567 0.0660 0.0534 0.0635

ECD-2D ↓ IMNET 2.532 2.845 4.467 3.344 2.703 3.230 3.361 4.198 3.138 2.979 2.846 2.422 3.046 3.162

DISN 2.672 2.209 2.250 2.042 1.983 3.156 4.863 3.338 1.353 2.062 2.065 2.259 2.003 2.481

D2IM-Net 1.991 1.666 1.794 2.072 1.707 1.954 3.157 2.636 1.277 2.014 1.880 1.617 1.730 1.961

D2IM-NetGL 1.982 1.774 1.739 1.767 1.584 2.675 3.009 2.715 1.766 1.776 1.737 2.142 2.269 2.072

Table 2. Quantitative comparison results: IoU at 323 resolution; CD and ECD-3D on 20K sample points; ECD-2D on 224× 224 rendered

normal maps. Top numbers are in bold and second place is indicated in italic.

and DISN, especially over small-scale, high-frequency de-

tails. This is consistent with the quantitative results, pro-

vided by ECD-3D and ECD-2D measures, as shown in Ta-

ble 2. Overall, Table 2 shows that both versions of D2IM-

Net also outperform IMNET and DISN quantitatively, in

terms of both overall reconstruction quality (CD and IoU)

and edge feature recovery (ECD-3D and ECD-2D).

We generally find D2IM-Net to slightly outperform

D2IM-NetGL in visual quality (see Figure 6), especially in

terms of surface details. This may be due to the redundancy

in using latent (local) features in both the base and detail de-

coders by the latter. D2IM-NetGL appears to perform better

on thin structures. Results from Figure 7 support these find-

ings, where we show reconstructions from several online

images, with no 3D ground-truth shapes.

4.4. Application: detail transfer and reconstruction

With disentangled coarse shapes and details in the con-

text of 3D reconstruction, enabled by our work, it becomes

possible to transfer geometric details or features from im-

ages to images and then obtain a final 3D outcome.

Detail transfer. Given a pair of single-view images of

different objects (e.g., two chairs), our network predicts

their disentangled coarse shapes and details, respectively.

Detail transfer involves fusing the disentangled source de-

tails with the target coarse shape. In the fusion stage, for

each point p, we sum up its base distance fB(p) from the

target image and the queried source detail displacement

fDF (uS(q)) or fDB(uS(q)) with a learned 3D correspon-

dence q = CT→S(p), where uS is the projection operation
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Figure 7. Reconstruction results from single-view images “in the wild” using D2IM-Net (left) and D2IM-NetGL (right).

Figure 8. When a logo image, e.g., of “CVPR”, is “drag-n-

dropped” onto a chair image, we obtain a reconstructed 3D chair

model (shown in a view that is different from that of the input

image) with surface features resembling the input logo.

with camera parameters predicted from the source image.

Our method allows such a detail transfer for a specified

semantic part, by fusing the displacement values from the

source image for the points near this part, and displacement

values from the target image otherwise. Results in Figure

1 show surface detail transfer from the source chair images

(top row) to the target chair images (left column) on the

chairs’ backs while preserving the coarse shapes.

In the implementation, we use a pre-trained semantic

segmentation network [39] on the two coarse shapes to build

the correspondence q = CT→S(p). The corresponding seg-

mented parts imply a point-wise correspondence within the

local volumes. Specifically, for each point p, we compute

its local coordinates with respect to the frame defined by the

target part it belongs to, and then map it back to the world

coordinates q based on the frame of the source part. The

local frames are origined at the center of the axis-aligned

bounding boxes of each part with fixed axes directions.

“Paste-n-reconstruct”. Under the same spirit of image-

to-image detail transfer but in a slightly different task set-

ting, Figure 8 shows how a small image logo can be drag-

n-dropped onto another image, where the logo content is

pasted onto the target image and then a 3D shape can be

reconstructed with the pasted logo features.

To implement this, the target image (the chair in Fig-

ure 8) goes through the D2IM-Net encoder and base decoder

to provide the base distance field for the coarse shape. On

the other hand, both the target image and the (source) logo

image go through the same encoder and detail decoder to

predict their displacement maps. With the separately pre-

dicted (or pre-defined) camera parameters for each image,

we fuse the base distance field and all the displacement

maps (only front displacement maps of the logo images)

by the projection with their camera parameters. When the

foreground masks of the logo images are given, we can crop

the foreground displacements for a better visualization.

5. Conclusion, limitation, and future work

We tackle perhaps the “last mile” in single-view 3D re-

construction, i.e., to recover small-scale geometric details,

especially surface features. This is a deceptively difficult

problem as we seek a network that generalizes to shapes

across multiple categories (13 categories in ShapeNet in our

experiments), not a method that “overfits” to specific in-

puts. Note also that we do not rely on symmetry priors or

color/material cues. Our key idea is to learn a detail dis-

entangled representation with a dedicated loss for surface

details, defined in the Laplacian domain.

One main limitation of our current method is the assump-

tion that the surface details are defined by a height field over

a mostly flat surface. One implication of this is that geomet-

ric details corresponding to “overhangs” are precluded. An-

other implication is that, technically, our network would be

unable to recover surface details over surfaces that are suffi-

ciently curved. In practice, we have found that our network

is able to recover surface details over mildly curved sur-

faces, as the example at the bottom-left of Figure 7 demon-

strates. A second limitation is that our Laplacian loss is de-

fined only on the front surface of the recovered shape. Fur-

thermore, even on the front, we can notice that the recon-

structions obtained often look slightly worse when viewed

from an different angle as in the input image. Possible

remedies to this include more accurate view parameter in-

ference and consideration of symmetry priors [46].

In addition to addressing the above limitations, we are

also interested in expanding the use of neural Laplacian do-

main processing to other shape representations such as vox-

els, point clouds, and meshes, as well as exploring disen-

tangled learning of geometric details for a variety of other

applications including multi-modal detail transfer, 3D su-

perresolution, and generative shape modeling.
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