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Abstract

This paper presents DeepI2P: a novel approach for
cross-modality registration between an image and a point
cloud. Given an image (e.g. from a rgb-camera) and a
general point cloud (e.g. from a 3D Lidar scanner) cap-
tured at different locations in the same scene, our method
estimates the relative rigid transformation between the co-
ordinate frames of the camera and Lidar. Learning com-
mon feature descriptors to establish correspondences for
the registration is inherently challenging due to the lack
of appearance and geometric correlations across the two
modalities. We circumvent the difficulty by converting the
registration problem into a classification and inverse cam-
era projection optimization problem. A classification neu-
ral network is designed to label whether the projection of
each point in the point cloud is within or beyond the cam-
era frustum. These labeled points are subsequently passed
into a novel inverse camera projection solver to estimate
the relative pose. Extensive experimental results on Ox-
ford Robotcar and KITTI datasets demonstrate the feasi-
bility of our approach. Our source code is available at
https://github.com/lijx10/DeepI2P.

1. Introduction

Image-to-point cloud registration refers to the process of

finding the rigid transformation, i.e., rotation and translation

that aligns the projections of the 3D point cloud to the im-

age. This process is equivalent to finding the pose, i.e., ex-

trinsic parameters of the imaging device with respect to the

reference frame of the 3D point cloud; and it has wide ap-

plications in many tasks in computer vision, robotics, aug-

mented/virtual reality, etc.

Although the direct and easy approach to solve the regis-

tration problem is to work with data from the same modal-

ity, i.e., image-to-image and point cloud-to-point cloud,

several limitations exist in these same-modality registration

approaches. For point cloud-to-point cloud registration, it

is impractical and costly to mount expensive and hard-to-

maintain Lidars on large fleet of robots and mobile devices

during operations. Furthermore, feature-based point cloud-

to-point cloud registration [6, 43, 21, 40] usually requires

Figure 1. Illustration of feature based registration on the left, e.g.,

2D3D-MatchNet, and our feature-free DeepI2P on the right. In-

stead of detecting and matching features across modalities, we

convert the registration problem into a classification problem.

storage of D-dimensional features (D ≫ 3) in addition to

the (x, y, z) point coordinates, which increases the mem-

ory complexity. For image-to-image registration, meticu-

lous effort is required to perform SfM [37, 36, 12] and store

the image feature descriptors [29, 22] corresponding to the

reconstructed 3D points for feature matching. Additionally,

image features are subjected to illumination conditions, sea-

sonal changes, etc. Consequently, the image features stored

in the map acquired in one season/time are hopeless for reg-

istration after a change in the season/time.

Cross-modality image-to-point cloud registration can be

used to alleviate the aforementioned problems from the

same modality registration methods. Specifically, a 3D

point cloud-based map can be acquired once with Lidars,

and then pose estimation can be deployed with images

taken from cameras that are relatively low-maintenance

and less costly on a large fleet of robots and mobile de-

vices. Moreover, maps acquired directly with Lidars cir-

cumvents the hassle of SfM, and are largely invariant to

seasonal/illumination changes. Despite the advantages of

cross-modality image-to-point cloud registration, few re-

search has been done due to its inherent difficulty. To

the best of our knowledge, 2D3D-MatchNet [11] is the

only prior work on general image-to-point cloud registra-

tion. This work does cross-modal registration by learning to

match image-based SIFT [22] to point cloud-based ISS [45]

keypoints using deep metric-learning. However, the method

suffers low inlier rate due to the drastic dissimilarity in the

SIFT and ISS features across two modalities.

In this paper, we propose the DeepI2P: a novel approach

for cross-modal registration of an image and a point cloud
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without explicit feature descriptors as illustrated in Fig. 1.

Our method requires lesser storage memory, i.e., O(3N)
for the reference point cloud since we do not rely on feature

descriptors to establish correspondences. Furthermore, the

images captured by cameras can be directly utilized without

SfM. We solve the cross-modal image-to-point cloud regis-

tration problem in two stages. In the first stage, we design

a two-branch neural network that takes the image and point

cloud as inputs, and outputs a label for every point that in-

dicates whether the projection of this point is within or be-

yond the image frustum. The second stage is formulated

as an unconstrained continuous optimization problem. The

objective is to find the optimal camera pose, i.e., the rigid

transformation with respect to the reference frame of the

point cloud, such that 3D points labeled as within the cam-

era frustum is correctly projected into the image. Standard

solvers such as the Gauss-Newton algorithm can be used to

solve our camera pose optimization problem. Extensive ex-

perimental results on the open-source Oxford Robotcar and

KITTI datasets show the feasibility of our approach.

The main contributions of this paper are listed as follow:

• We circumvent the challenging need to learn cross-

modal feature descriptor for registration by casting the

problem into a two-stage classification and optimiza-

tion framework.

• A two-branch neural network with attention modules

to enhance cross-modality fusion is designed to learn

labels of whether a 3D point is within or beyond the

camera frustum.

• The inverse camera projection optimization is pro-

posed to solve for the camera pose with the classifi-

cation labels of the 3D points.

• Our method and the experimental results show a

proof-of-concept that cross-modal registration can be

achieved with deep classification.

2. Related Works

Image-to-Image Registration. Images-to-image regis-

trations [33, 32] are done in the P
2 space because of the

lack of depth information. This is usually the first step to

the computation of the projective transformation or SfM.

Typical methods are usually based on feature matching. A

set of features such as SIFT [22] or ORB [29] are extracted

from both source and target images. Correspondences are

then established based on the extracted features, which can

be used to solve for the rotation, translation using Bundle

Adjustment [36, 16], Perspective-n-Point solvers [12], etc.

Such techniques have been applied in modern SLAM sys-

tems [10, 25, 9]. However, such methods are based on fea-

ture descriptors in the image modality to establish corre-

spondences, and do not work for our general image-to-point

cloud registration task.

Point Cloud-to-Point Cloud Registration. The avail-

ability of 3D information enables direct registration be-

tween point clouds without establishing feature correspon-

dences. Methods like ICP [2, 5], NDT [3] work well with

proper initial guess, and global optimization approaches

such as Go-ICP [39] work without initialization require-

ments. These methods are widely used in point cloud based

SLAM algorithms like LOAM [44], Cartographer [18], etc.

Recently data driven methods like DeepICP [23], Deep-

ClosestPoint [38], RPM-Net [41], etc, are also proposed.

Although these approaches do not require feature corre-

spondences, they still rely heavily on the geometrical de-

tails of the point structures in the same modality to work

well. Consequently, these approaches cannot be applied

to our task on cross-modal registration. Another group of

common approaches is the two-step feature-based registra-

tion. Classical point cloud feature detectors [35, 45, 31, 8]

and descriptors [34, 30] usually suffer from noise and clut-

ter environments. Recently deep learning based feature

detectors like USIP [21], 3DFeatNet [40], and descriptors

like 3DMatch [43], PPF-Net [7], PPF-FoldNet [6], Perfect-

Match [15], have demonstrated improved performances in

point cloud-based registration. Similar to image-to-image

registration, these approaches require feature descriptors

that are challenging to obtain in cross-modality registration.

Image-to-Point Cloud Registration. To the best of our

knowledge, 2D3D-MatchNet [11] is the only prior work

for general image-point cloud registration. It extracts im-

ages keypoints with SIFT [22], and point cloud keypoints

with ISS [45]. The image and point cloud patches around

the keypoints are fed into each branch of a Siamese-like

network and trained with triplet loss to extract cross-modal

descriptors. At inference, it is a standard pipeline that con-

sists of RANSAC-based descriptor matching and EPnP [19]

solver. Despite its greatly simplified experimental settings

where the point clouds and images are captured at nearby

timestamps with almost zero relative rotation, the low in-

lier rate of correspondences reveals the struggle for a deep

network to learn common features across the drastically

different modalities. Another work [42] establishes 2D-

3D line correspondences between images and prior Lidar

maps, but they requires accurate initialization, e.g., from a

SLAM/Odometry system. In contrast, the general image-

to-point cloud registration, including 2D3D-MatchNet [11]

and our DeepI2P do not rely on another accurate localiza-

tion system. Some other works [26, 4] focus on image-to-

point cloud place recognition / retrieval without estimating

the relative rotation and translation.

3. Overview of DeepI2P

We denote an image as I ∈ R
3×W×H , where W and H

are the image width and height, and a point cloud as P =
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{P1,P2, · · · ,PN | Pn ∈ R
3}. The cross-modal image-to-

point cloud registration problem is to solve for the rotation

matrix R ∈ SO(3) and translation vector t ∈ R
3 between

the coordinate frames of the camera and point cloud. The

problem is difficult because standard approaches such as

ICP, PnP and Bundle Adjustment (BA) algorithms cannot

be used due to the lack of point-to-pixel correspondences.

Unlike the point cloud obtained from SfM, our point cloud

is obtained from a point cloud scanner and does not contain

any image-based feature descriptors. Establishing cross-

modal point-to-pixel correspondence is non-trivial. This

is because the points in the R
3 space shares very little ap-

pearance and geometric correlations with the image in the

P
2 space. We circumvent the problem by designing our

cross-modality image-to-point cloud registration approach

to work without point-to-pixel correspondences.

To this end, we propose a two-stage “Frustum classifica-

tion + Inverse camera projection” pipeline. The first stage

classifies each point in the point cloud into within or beyond

the camera frustum. We call this the frustum classification,

which is done easily by a deep network shown in Section 4.

In the second stage, we show that it is sufficient to solve the

pose between camera and point cloud using only the frus-

tum classification result. This is the inverse camera projec-

tion problem in Section 5.1. In our supplementary materi-

als, we propose another cross-modality registration method

“Grid classification + PnP” as our baseline for experimental

comparison. In the grid classification, the image is divided

into a tessellation of smaller regular grids, and we predict

the cell each 3D point projects into. The pose estimation

problem can then be solved by applying RANSAC-based

PnP to the grid classification output.

4. Classification

The input to the network is a pair of image I and point

cloud P , and the output is a per-point classification for

P . There are two classification branches: frustum and grid

classification. The frustum classification assign a label to

each point, Lc = {lc1, l
c
2, · · · , l

c
N}, where lcn ∈ {0, 1}.

lcn = 0 if the point Pn is projected to outside the image

I , and vice versa. Refer to the supplementary for the details

of the grid classification branch used in our baseline.

4.1. Our Network Design

As shown in Fig. 2, our per-point classification network

consists of four parts: point cloud encoder, point cloud de-

coder, image encoder and image-point cloud attention fu-

sion. The point cloud encoder/decoder follows the design

of SO-Net [20] and PointNet++ [28], while the image en-

coder is a ResNet-34 [17]. The classified points are then

used in our inverse camera projection optimization in Sec-

tion 5.1 to solve for the unknown camera pose.

Point Cloud Encoder. Given an input point cloud de-

noted as P ∈ R
3×N , a set of nodes P(1) ∈ R

3×M1 is

sampled by Farthest Point Sampling (FPS). A point-to-node

grouping [20] is performed to obtain M1 clusters of points.

Each cluster is processed by a PointNet [27] to get M1 fea-

ture vectors of length C1, respectively, i.e. P (1) ∈ R
C1×M1 .

The point-to-node grouping is adaptive to the density of

points. This is beneficial especially for point clouds from

Lidar scans, where points are sparse at far range and dense

at near range. The above sampling-grouping-PointNet op-

eration is performed again to obtain another set of feature

vectors P (2) ∈ R
C2×M2 . Finally, a PointNet is applied to

obtain the global point cloud feature vector P (3) ∈ R
C3×1.

Image-Point Cloud Attention Fusion. The goal of the

classification is to determine whether a point projects to

the image plane (frustum classification) and which region

it falls into (grid classification). Hence, it is intuitive that

the classification requires fusion of information from both

modalities. To this end, we design an Attention Fusion

module to combine the image and point cloud information.

The input to the Attention Fusion module consists of three

parts: a set of node features Patt (P (1) or P (2)), a set of

image features Iatt ∈ R
Cimg×Hatt×Watt (I(1) or I(2)), and

the global image feature vector I(3). As shown in Fig. 2,

the image global feature is stacked and concatenated with

the node features Patt, and fed into a shared MLP to get

the attention score Satt ∈ R
HattWatt×M . Satt provides

a weighting of the image features Iatt for M nodes. The

weighted image features are obtained by multiplying Iatt
and Satt. The weighted image features can now be concate-

nated with the node features in the point cloud decoder.

Point Cloud Decoder. The decoder takes the image and

point cloud features as inputs, and outputs the per-point

classification result. In general, it follows the interpolation

idea of PointNet++ [28]. At the beginning of the decoder,

the global image feature I(3) and global point cloud fea-

ture P (3) are stacked M2 times, so that they can be con-

catenated with the node features P (2) and the Attention Fu-

sion output Ĩ(2). The concatenated [I(3), Ĩ(2), P (3), P (2)] is

processed by a shared MLP to get M2 feature vectors de-

noted as P̃ (2) ∈ R
C2×M2 . We perform interpolation to get

P̃
(2)
(itp) ∈ R

C2×M1 , where the M2 features are upsampled to

M1 ≥ M2 features. Note that P (2) and P̃ (2) are associated

with node coordinates P(2) ∈ R
3×M2 . The interpolation

is based on k-nearest neighbors between node coordinates

P(1) ∈ R
3×M1 , where M1 ≥ M2. For each C2 channel,

the interpolation is denoted as:

P̃
(2)
(itp)i

=

∑k

j=1 wjP̃
(2)
j

∑k

j=1 wj

, where wj =
1

d(P
(1)
i ,P

(2)
j )

,

(1)
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Figure 2. Our network architecture for the classification problem.

and P
(2)
j is one of the k-nearest neighbors of P

(1)
i in P(2).

We get P̃
(2)
(itp) ∈ R

C2×M1 with the concatenate-sharedMLP-

interpolation process. Similarly, we obtain P̃
(1)
(itp) ∈ R

C1×N

after another round of operations. Lastly, we obtain the final

output (2+HW/(32×32))×N , which can be reorganized

into the frustum prediction scores 2×N and grid prediction

scores (HW/(32× 32))×N .

4.2. Training Pipeline

The generation of the frustum labels is simply a camera

projection problem. During training, we are given the cam-

era intrinsic matrix K ∈ R
3×3 and the pose G ∈ SE(4)

between the camera and point cloud. The 3D transforma-

tion of a point Pi ∈ R
3 from the point cloud coordinate

frame to the camera coordinate frame is given by:

P̃
′

i = [X ′

i, Y
′

i , Z
′

i, 1]
⊤ = GP̃i =

[

R t

0 1

][

Pi

1

]

, (2)

and the point P̃′
i is projected into the image coordinate:

p̃
′

i =







x′
i

y′
i

z′i






= KP

′

i =







fx 0 cx

0 fy cy

0 0 1






P

′

i. (3)

Note that homogeneous coordinate is represented by a tilde

symbol, e.g., P̃′
i is the homogeneous representation of P′

i.

The inhomogeneous coordinate of the image point is:

p′
i = [p′xi

, p′yi
]⊤ = [x′

i/z
′
i, y

′
i/z

′
i]
⊤. (4)

Frustum Classification. For a given camera pose G, we

define the function:

f(Pi;G,K,H,W ) =
{

1 : 0 ≤ p′xi
≤ W − 1, 0 ≤ p′yi ≤ H − 1, z′i > 0

0 : otherwise
,

(5)

which assigns a label of 1 to a point Pi that projects within

the image, and 0 otherwise. Now the frustum classifica-

tion labels are generated as lci = f(Pi;G,K,H,W ), where

G is known during training. In the Oxford Robotcar and

KITTI datasets, we randomly select a pair of image and raw

point cloud (I, Praw), and compute the relative pose from

the GPS/INS readings as the ground truth pose Gp
c . We use

(I, Praw) with a relative distance within a specified interval

in our training data. However, we observe that the rota-

tions in Gp
c are close to zero from the two datasets since

the cars used to collect the data are mostly undergoing pure

translations. To avoid overfitting to such scenario, we apply

randomly generated rotations Gr onto the raw point cloud

to get the final point cloud P = GrPraw in the training

data. Furthermore, the ground truth pose is now given by

G = Gp
cG

−1
r . Note that random translation can also be in-

cluded in Gr, but it does not have any effect on the training

since the network is translational equivariant.

Training Procedure. The frustum classification training

procedure is summarized as:

1. Select a pair of image and point cloud (I, Praw) with

relative pose Gp
c .
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2. Generate 3D random transformation Gr, and apply it

to get P = GrPraw and G = Gp
cG

−1
r .

3. Get the ground truth per-point frustum labels lci ac-

cording to Eq. 5.
4. Feed (I, P ) into the network illustrated in Fig. 2.

5. Frustum prediction L̂c = {l̂c1, · · · , l̂
c
n}, l̂

c
i ∈ {0, 1}.

6. Apply cross entropy loss for the classification tasks to

train the network.

5. Pose Optimization

We now formulate an optimization method to get the

pose of the camera in the point cloud reference frame with

the frustum classification results. Note that we do not use

deep learning in this step since the physics and geometry of

the camera projection model is already well-established.

Formally, the pose optimization problem is to solve for

Ĝ, given the point cloud P , frustum predictions L̂c =
{l̂c1, · · · , l̂

c
N}, l̂ci ∈ {0, 1}, and camera intrinsic matrix K.

In this section, we describe our inverse camera projection

solver to solve for Ĝ.

5.1. Inverse Camera Projection

The frustum classification of a point, i.e., Lc given G de-

fined in Eq. 5 is based on the forward projection of a cam-

era. The inverse camera projection problem is the other way

around, i.e, determine the optimal pose Ĝ that satisfies a

given L̂c. It can be written more formally as:

Ĝ = argmax
G∈SE(3)

N
∑

i=1

(

f(Pi;G,K,H,W )− 0.5
)(

l̂
c
i − 0.5

)

. (6)

Intuitively, we seek to find the optimal pose Ĝ such that all

3D points with label l̂ci = 1 from the network are projected

into the image, and vice versa. However, a naive search of

the optimal pose in the SE(3) space is intractable. To mit-

igate this problem, we relax the cost as a function of the

distance from the projection of a point to the image bound-

ary, i.e., a H ×W rectangle.

Frustum Prediction Equals to 1. Let us consider a point

Pi with the prediction l̂ci = 1. We define cost function:

g(p′xi
;W ) = max(−p′xi

, 0) + max(p′xi
−W, 0) (7)

that penalizes a pose G which causes p′xi
of the projected

point p′
i = [p′xi

, p′yi
]⊤ (c.f. Eq. 4) to fall outside the borders

of the image width. Specifically, the cost is zero when p′xi
is

within the image width, and negatively proportional to the

distance to the closest border along the image x-axis other-

wise. A cost g(p′yi
;H) can be analogously defined along

image y-axis. In addition, cost function h(·) is defined to

avoid the ambiguity of P′
i falling behind the camera:

h(z′i) = α · max(−z′, 0), (8)

where α is a hyper-parameter that balances the weighting

between g(·) and h(·).

Frustum Prediction Equals to 0. We now consider a

point Pi with prediction l̂ci = 0. The cost defined along

the image x-axis is given by:

u(p′xi
;W ) =

W

2
−

∣

∣

∣

∣

p′xi
−

W

2

∣

∣

∣

∣

. (9)

It is negative when p′xi
falls outside the borders along the

image width, and positively proportional to the distance to

the closest border along the image x-axis otherwise. Simi-

larly, an analogous cost u(p′yi
;H) along the y-axis can be

defined. Furthermore, an indicator function:

✶(p′xi
, p′yi

, z′i;H,W ) =
max(u(p′xi

;W ), 0)

u(p′xi
;W )

·
max(u(p′yi

;H), 0)

u(p′yi
;H)

·
max(z′i, 0)

z′i

(10)

is required to achieve the target of zero cost when p′
i is out-

side the H × W image or P′
i is behind the camera (i.e.

z′i < 0).

Cost Function. Finally, the cost function for a single

point Pi is given by:

ri(G; l̂ci ) =

{

r0i : l̂ci = 0

r1i : l̂ci = 1
, where (11)

r0i = (u(p′xi
;W ) + u(p′yi

;H)) · ✶(p′xi
, p′yi

, z′i;H,W ),

r1i = g(p′xi
;W ) + g(p′yi

;H) + h(z′i).

p′xi
, p′yi

, zi are functions of G according to Eq. 2, 3 and

4. Image height H , width W and camera intrinsics K are

known. Now the optimization problem in Eq. 6 becomes:

Ĝ = argmin
G∈SE(3)

n
∑

i=1

ri(G; l̂ci )
2. (12)

This is a typical unconstrained least squares optimization

problem. We need proper parameterization of the unknown

transformation matrix,

G =

[

R t

0 1

]

, with R ∈ SO(3), t ∈ R
3
, (13)

where G ∈ SE(3) is an over-parameterization that can

cause problems in the unconstrained continuous optimiza-

tion. To this end, we use the Lie-algebra representation ξ ∈
se(3) for the minimal parameterization of G ∈ SE(3). The

exponential map G = exp
se(3)(ξ) converts se(3) 7→ SE(3),

while the log map ξ = logSE(3)(G) converts SE(3) 7→
se(3). Similar to [10], we define the se(3) concatenation

operator ◦ : se(3)× se(3) 7→ se(3) as:

ξki = ξkj ◦ ξji = logSE(3)

(

exp
se(3)(ξkj) · exp

se(3)(ξji)
)

, (14)
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and the cost function in Eq. 12 can be re-written with the

proper exponential or log map modifications into:

Ĝ = exp
se(3)(ξ̂), where

ξ̂ = argmin
ξ

‖r‖2 = argmin
ξ

n
∑

i=1

ri(ξ; l̂
c
i )

2.
(15)

Gauss-Newton Optimization. Eq. 15 is a typical least

squares optimization problem that can be solved by the

Gauss-Newton method. During iteration i with the current

solution ξ(i), the increment δξ(i) is estimated by a Gauss-

Newton second-order approximation:

δξ
(i) = −(J⊤

J)−1
J
⊤
r(ξ(i)), where J =

∂r(ǫ ◦ ξ(i))

∂ǫ

∣

∣

∣

∣

ǫ=0

,

(16)

and the update is given by ξ(i+1) = δξ(i) ◦ ξ(i). Finally the

inverse camera projection problem is solved by performing

the exponential map Ĝ = exp
se(3)(ξ̂). A visualization of

our iterative optimization is presented in Fig. 3.

6. Experiments

Our image-to-point cloud registration approach is evalu-

ated with Oxford Robotcar [24] and KITTI [13] dataset.

Oxford dataset. The point clouds are built from the ac-

cumulation of the 2D scans from a 2D Lidar. Each point

cloud is set at the size of radius 50m, i.e. diameter 100m.

The images are captured by the center camera of a Bumble-

bee tri-camera rig. Similar to 3DFeat-Net [40], 35 traver-

sals are used for training, while 5 traversals are for testing.

In training and inference, the image-point cloud pair is se-

lected using the following steps: a) Choose a Lidar point

cloud from one of the traversals. b) Randomly select an

image from the same traversal and captured within ±10m

from the coordinate origin of the point cloud. The relative

pose of the camera to the point cloud coordinate frame is

Gp
c . c) Apply a random 2D rotation (around the up-axis)

and translation (along the x-y plane) Gr to the point cloud.

d) The objective is to recover the ground truth transforma-

tion Ggt = Gp
cG

−1
r . There are 130,078 point clouds for

training and 19,156 for testing.

KITTI Odometry dataset. Point clouds are directly ac-

quired from a 3D Lidar. The image-point cloud pairs are se-

lected in a similar way to that in Oxford dataset, i.e., a pair

of image and point cloud is captured within ±10m. The im-

ages are from both the left and right cameras that are facing

the front. We follow the common practice of utilizing the 0-

8 sequences for training, and 9-10 for testing. In total there

are 20,409 point clouds for training, and 2,792 for testing.

Remarks: Note that a KITTI point cloud is from a single

frame 3D Lidar scan, while an Oxford point cloud is an ac-

cumulation of 2D Lidar scans over 100m. As a result, point

clouds in KITTI suffers from severe occlusion, sparse mea-

surement at far range, etc. More details of the two dataset

configurations are in the supplementary materials.

6.1. Implementation Details

Classification Network. Refer to our supplementary ma-

terials for the network implementation details. These in-

cludes parameters of the PointNet and SharedMLP mod-

ules, number of nodes in P(1),P(2), number of nearest

neighbor k for point cloud interpolation in the decoder, etc.

Inverse Camera Projection. The initial guess G(0) in our

proposed inverse camera projection (c.f. Section 5.1) is

critical since the solver for Eq. 15 is an iterative approach.

To alleviate the initialization problem, we perform the op-

timization 60 times with randomly generated initialization

G(0), and select the solution with the lowest cost. In ad-

dition, the 6DoF search space is too large for random ini-

tialization. We mitigate this problem by leveraging on the

fact that our datasets are from ground vehicles to perform

random initialization in 2D instead. Specifically, R(0) is

initialized as a random rotation around the up-axis, and t(0)

as a random translation in the x-y horizontal plane. Our

algorithm is implemented with Ceres [1].

6.2. Registration Accuracy

The frustum classification accuracy is 98% and 94% on

the Oxford and KITTI dataset, respectively. However, these

numbers does not translate directly to the registration accu-

racy. Following the practice of [21, 40], the registration is

evaluated with two criteria: average Relative Translational

Error (RTE) and average Relative Rotation Error (RRE).

The results are shown in Table 1 and Fig. 4.

Grid Cls. + PnP is the result of our “Grid classification

+ PnP” baseline method (see Supplementary materials for

details). The RANSAC PnP algorithm optimizes the full

6-DoF Ĝ without any constraints. Frus. Cls. + Inv.Proj.

represents the result of our “Frustum classification + Inverse

camera projection” method. The difference between Frus.

Cls. + Inv.Proj. 3D and Frus. Cls. + Inv.Proj. 2D is that

the former is optimizing the full 6-DoF Ĝ, while the latter

constrains Ĝ to be 3-DOF, i.e., translation on x-y horizontal

plane and rotation around the up-axis.

Due to the lack of existing approaches in solving the

image-to-point cloud registration problem under the same

setting, we further compare our DeepI2P with 4 other ap-

proaches that may contain unfair advantages over ours in

their input data modality or configurations.

1) Direct Regression uses a deep network to directly

regress the relative poses. It consists of the Point Cloud

Encoder and Image Encoder in Section 4. The global point

cloud feature and global image feature are concatenated into
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Figure 3. Visualizations of the Gauss-Newton at iteration 0 / 40 / 80 from left to right. Green points are classified as inside image FoV.

Table 1. Registration accuracy on the Oxford and KITTI datasets.

Oxford KITTI

RTE (m) RRE (◦) RTE (m) RRE (◦)

Direct Regression 5.02± 2.89 10.45± 16.03 4.94± 2.87 21.98± 31.97
MonoDepth2 [14] + USIP [21] 33.2± 46.1 142.5± 139.5 30.4± 42.9 140.6± 157.8
MonoDepth2 [14] + GT-ICP 1.3± 1.5 6.4± 7.2 2.9± 2.5 12.4± 10.3
2D3D-MatchNet [11] (No Rot§) 1.41 6.40 NA NA

Grid Cls. + PnP 1.91± 1.56 5.94± 10.72 3.22± 3.58 10.15± 13.74
Frus. Cls. + Inv.Proj. 3D 2.27± 2.19 15.00± 13.64 3.17± 3.22 15.52± 12.73
Frus. Cls. + Inv.Proj. 2D 1.65± 1.36 4.14± 4.90 3.28± 3.09 7.56± 7.63

§Point clouds are not randomly rotated in the experiment setting of 2D3D-MatchNet [11].

a single vector and processed by a MLP that directly re-

gresses Ĝ. See the supplementary materials for more de-

tails of this method. Table 1 shows that our DeepI2P signif-

icantly outperforms the simple regression method.

2) Monodepth2+USIP converts the cross-modality regis-

tration problem into point cloud-based registration by using

Monodepth2 [14] to estimate a depth map from a single im-

age. The Lidar point cloud is used to calibrate the scale of

depth map from MonoDepth2, i.e. the scale of the depth

map is perfect. Subsequently, the poses between the depth

map and point cloud are estimated with USIP [21]. This is

akin to same modality point cloud-to-point cloud registra-

tion. Nonetheless, Table 1 shows that this approach under-

performs. This is probably because the depth map is inac-

curate and USIP does not generalize well on depth maps.

3) Monodepth2+GT-ICP acquires a depth map with ab-

solute scale in the same way as Monodepth2+USIP. How-

ever, it uses Iterative Closest Point (ICP) [2, 5] to estimate

the pose between the depth map and point cloud. Note that

ICP fails without proper initialization, and thus we use the

ground truth (GT) relative pose for initialization. Table 1

shows that our DeepI2P achieves similar RTE and better

RRE compared to Monodepth2+GT-ICP, despite the latter

has the unfair advantages of ground truth initialization and

the depth map is perfectly calibrated.

4)2D3D-MatchNet [11] is the only prior work for cross-

modal image-to-point cloud registration to our best knowl-

edge. However, the rotation between camera and Lidar is

almost zero in their experiment setting. This is because the

images and point clouds are taken from temporally consec-

utive timestamps without additional augmentation. In con-

Figure 4. Histograms of image-point cloud registration RTE and

RRE on the Oxford and KITTI datasets. x-axis is RTE (m) and

RRE (◦), and y-axis is the percentage.

trast, the point clouds in our experiments are always ran-

domly rotated. This means 2D3D-MatchNet is solving a

much easier problem, but their results are worse than ours.

Distribution of Errors. The distribution of the registra-

tion RTE (m) and RRE (◦) on the Oxford and KITTI dataset

are shown in Fig. 4. It can be seen that our performance

is better on Oxford than KITTI. Specifically, the mode of

the translational/rotational errors are ∼ 1.5m/3◦ on Oxford

and ∼ 2m/5◦ on KITTI. The translational/rotational error

variances are also smaller on Oxford.

Acceptance of RTE/RRE. There are other same-

modality methods that solves registration on Oxford and

KITTI dataset, e.g. USIP [21] and 3DFeatNet [40] that

gives much better RTE and RRE. These methods work

only on point cloud-to-point cloud instead of image-to-

point cloud data, and thus are not directly comparable to our

method. Furthermore, we note that the reported accuracy of

our DeepI2P in Table 1 is sufficient for non life-critical ap-

plications such as frustum localization of mobile devices in

both indoor and outdoor environments.

Oxford vs KITTI. Our performance on Oxford is better

than on KITTI for several reasons: 1) The point clouds in
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Oxford are built from 2D scans accumulated over 100m

from a Lidar scanner, while KITTI point cloud is a single

scan from a 3D Lidar as shown in Fig. 6. Consequently, the

occlusion effect in KITTI is severe. For example, the image

captured in timestamp tj is seeing things that are mostly

occluded/unobserved from the point cloud of timestamp ti.
Given the limited Field-of-View (FoV) of the camera, the

cross-modality registration becomes extremely challenging

since two modalities are observing different scene contents.

2) The vertical field-of-view of the point clouds in KITTI

is very limited, which leads to lack of distinctive verti-

cal structures for cross-modality matching. Most of the

points on the ground are structureless and thus not useful

for matching across modalities. 3) “KITTI Odometry” is

a small dataset that contains only 20,409 point clouds for

training, while Oxford is ∼ 6.4× larger with 130,078 point

clouds. As a result, we observe severe network overfitting

in the KITTI dataset but not in the Oxford dataset.

6.3. Ablation Study

Initialization of our Gaussian-Newton and Mon-

odepth2+ICP. In the 2D registration setting, there are 3

unknown parameters - rotation θ, translation tx, ty . For our

method, the initial θ is easily obtained by aligning the av-

erage yaw-angles of the predicted in-frustum points with

the camera principle axis. Therefore, our 60-fold initializa-

tion is only for two-dimensional search for tx, ty . In con-

trast, Monodepth2+ICP requires three-dimensional search

for θ, tx, ty . As shown in Tab. 2, our DeepI2P is robust to

initialization, while Monodepth2+ICP performs a lot worse

with 60-fold random initialization.

In-image occlusion. In Oxford/Kitti, occlusion effect can

be significant when the translation is large, e.g. > 5m.

Tab. 2 shows that the registration improves when the maxi-

mum translation limit decrease (15m → 10m → 5m).

Cross-attention module. Tab. 2 shows the significant

drop in registration accuracy w/o cross-attention module.

Additionally, we also see the coarse classification accuracy

drops significantly from 98% to 80%.

3D point density. As shown in Tab. 2, our registration ac-

curacy decreases with reducing point density. Nonetheless,

the performance drop is reasonable even when the point

density drops to 1/4 (20480 → 5120).

6.4. Visualizations

Fig. 5 shows examples of the results from our frustum

classification network and the baseline grid classification

network (see supplementary materials). The point clouds

are projected into the images using the ground truth pose

G. The colors of the points represent the correctness of the

frustum or grid predictions as described in the caption. The

Table 2. Registration accuracy on Oxford

# points # init. t limit RTE RRE

DeepI2P 20480 60 10 1.65 4.14

DeepI2P 20480 30 10 1.81 4.37

DeepI2P 20480 10 10 2.00 4.56

DeepI2P 20480 1 10 3.52 5.34

DeepI2P 20480 60 5 1.52 3.30

DeepI2P 20480 60 15 1.96 4.74

DeepI2P 10240 60 10 1.80 4.35

DeepI2P 5120 60 10 1.94 4.63

DeepI2P noAtten. 20480 60 10 6.88 20.93

MonoDepth2+ICP 20480 60 10 8.45 75.54

Figure 5. Visualization of the frustum and grid classification re-

sults projected onto the images. Green - both frustum and grid

predictions are correct. Yellow - frustum prediction is correct but

grid prediction is wrong. Red - frustum prediction is outside image

FoV, but ground truth label is inside FoV. Blue - frustum predic-

tion is inside image FoV, but ground truth label is outside FoV.

Best view in color and zoom-in.

Figure 6. 3D Visualization of the frustum classification and inverse

camera projection on the Oxford (Left) and KITTI (Right).

accuracy of the frustum and grid classifications are around

98% and 51% in Oxford, and 94% and 39% in KITTI. The

low classification accuracy in KITTI leads to larger RTE

and RRE during cross-modality registration. 3D visualiza-

tion of the frustum classification and the inverse camera pro-

jection problem is illustrated in Fig. 6. It illustrates the intu-

ition that a camera pose can be found by aligning the camera

frustum to the classification result.

7. Conclusions

The paper proposes an approach for cross-modality reg-

istration between images and point clouds. The challenging

registration problem is converted to a classification problem

solved by deep networks and an inverse camera projection

problem solved by least squares optimization. The feasibil-

ity of our proposed classification-optimization framework

is verified with Oxford and KITTI dataset.
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