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extra semantic based methods [13, 30, 40, 5, 11] directly

utilize human parsing [13, 11] or pose estimation mod-

els [30, 40, 5] as part localization modules to achieve more

accurate human part localization. However, their success

heavily relies on the accuracy of the off-the-shelf human

parsing or pose estimation models. Since there exist dif-

ferences between training datasets of human parsing/pose

estimation and person Re-ID, the off-the-shelf human pars-

ing/pose estimation models are error-prone when pedestri-

ans are seriously occluded. (3) The attention based meth-

ods [37, 62] exploit attention mechanisms to localize dis-

criminative human parts. Typically, the predicted attention

maps distribute most of the attention weights on human

parts, which can help decrease the negative effect of clut-

tered background. To sum up, most existing occluded Re-

ID methods focus on locating discriminative human parts

and leveraging local part features to develop powerful rep-

resentations of the pedestrian.

Based on the above discussions, the part-based represen-

tations have been proven to be effective for the occluded

Re-ID problem. To capture accurate human parts, an intu-

itive idea is to detect non-occluded body parts using body

part detectors and then match the corresponding body parts.

However, there are no extra annotations for the body de-

tector learning. Thus, we propose to localize discrimina-

tive human parts only with identity labels. To achieve this

goal, there are two main challenges as follows. On the one

hand, background with diverse characteristics, such as col-

ors, sizes, shapes, and positions, increase the difficulty of

getting robust features for the target person. Intuitively,

the appearance of pixels of the same human part region is

similar, while quite different from the background pixels.

Therefore, it is necessary to model the correlation between

pixels for robust feature representation. On the other hand,

as shown in Figure 1, the occluded parts vary between dif-

ferent pedestrian images. As there are no groundtruth an-

notations for human parts, it is difficult to cope with diverse

appearance of pedestrians and adaptively locate all unoc-

cluded parts only with the identity labels. As a result, as

shown in Figure 1 (c), most of the attention based methods

tend to put the main focus on the most discriminative re-

gion. They always ignore other human parts including per-

sonal belongings, e.g., backpack and reticule, which also

provide important clues for person Re-ID.

To deal with the above issues, we propose a novel

Part-Aware Transformer (PAT) for occluded person Re-ID

through diverse part discovery via a transformer encoder-

decoder architecture [39, 2], including a pixel context based

transformer encoder and a part prototype based transformer

decoder. In the pixel context based transformer encoder,

we adopt a self-attention mechanism to capture the full im-

age context information. Specifically, we model the corre-

lation of pixels of the feature map and aggregate pixels with

similar appearances. In this way, we can obtain the pixel

context aware feature map, which is more robust to back-

ground clutters. In the part prototype based transformer

decoder, we introduce a set of learnable part prototypes to

generate part-aware masks focusing on discriminative hu-

man parts. In specific, given the feature map of a pedestrian,

we take the learnable part prototypes as queries and pixels

of the feature map as keys and values of the transformer

decoder. We can obtain part-aware masks by calculating

the similarity between all pixels in the feature map and part

prototypes. Each part-aware mask is expected to denote the

spatial distribution of one specific human part, e.g., head or

body part. With part-aware masks, human part features can

be further obtained from the values by a weighted pooling.

However, without the assistance of part annotations, it is

challenging to constraint these part prototypes to capture ac-

curate human parts. Thus, to guide part prototype learning,

we propose two mechanisms including part diversity and

part discriminability. Intuitively, different part features of

the same pedestrian should focus on different human parts.

Therefore, the part diversity mechanism is adopted to en-

courage lower correlation between part features and make

part prototypes focus on different discriminative foreground

regions. The part discriminability mechanism is to make

part features maintain identity discriminative via part clas-

sification and a triplet loss. By optimizing the transformer

encoder and decoder jointly, part prototypes can be learned

through the whole dataset. Consequently, we can achieve

robust human part discovery for occluded person Re-ID in

a weakly supervised manner.

The contributions of our method could be summarized

into three-fold: (1) We propose a novel end-to-end Part-

Aware Transformer for occluded person Re-ID through di-

verse part discovery via a transformer encoder-decoder ar-

chitecture, including a pixel context based transformer en-

coder and a part prototype based transformer decoder. To

the best of our knowledge, our PAT is the first work by

exploiting the transformer encoder-decoder architecture for

occluded person Re-ID in a unified deep model. (2) To learn

part prototypes only with identity labels well, we design two

effective mechanisms, including part diversity and part dis-

criminability. Consequently, we can achieve robust human

part discovery for occluded person Re-ID in a weakly su-

pervised manner. (3) To demonstrate the effectiveness of

our method, we perform experiments on three tasks, includ-

ing occluded Re-ID, partial Re-ID and holistic Re-ID on

six standard Re-ID datasets. Extensive experimental results

demonstrate that the proposed method performs favorably

against state-of-the-art methods.

2. Related Work

In this section, we briefly overview methods that are re-

lated to holistic person Re-ID, partial Re-ID and occluded
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person Re-ID respectively.

Holistic Person Re-Identification. Person re-identification

(Re-ID) aims to match images of a person captured from

non-overlapping camera views [7, 44, 54]. Existing Re-

ID methods can be summarized to hand-crafted descrip-

tors [47, 23], metric learning methods [56, 20, 24] and deep

learning methods[38, 25, 33, 35, 45, 52, 19, 21, 34, 26, 22].

Recent works utilizing part-based features have achieved

state-of-the-art performance for the holistic person Re-ID

task. Kalayeh et al. [19] extract several region parts with

human parsing methods and assemble final discriminative

representations with part-level features. Sun et al. [38] uni-

formly partition the feature map and learn part-level fea-

tures by multiple classifiers. Zhao et al. [51] and Liu et

al. [26] extract part-level features by attention-based meth-

ods. But all these Re-ID methods focus on matching holis-

tic person images with the assumption that the entire body

of the pedestrian is available. Different from these methods,

our model can adaptively capture discriminative human part

features via a transformer encoder-decoder architecture for

the occluded person Re-ID task.

Partial Person Re-Identification. Partial person Re-ID

aims to match partial probe images to holistic gallery im-

ages. Zheng et al. [57] propose a local-level match-

ing model called Ambiguity-sensitive Matching Classifier

(AMC) based on the dictionary learning and introduce

a local-to-global matching model called Sliding Window

Matching to provide complementary spatial layout infor-

mation. He et al. [10] propose an alignment-free approach

namely Deep Spatial feature Reconsruction (DSR) that ex-

ploits the reconstruction error based on sparse coding. Luo

et al.et al. [29] proposed STNReID that combines a spa-

tial transformer network (STN) and a Re-ID network for

partial Re-ID. Sun et al. [37] introduce a Visibility-aware

Part Model (VPM) to perceive the visibility of part regions

through self-supervision. However, all these methods need

a manual crop of the occluded target person in the probe im-

age and then use the non-occluded parts as the new query.

The manual cropping is not efficient in practice and might

introduce human bias to the cropped results.

Occluded Person Re-Identification. Given occluded

probe images, occluded person Re-ID aims to find the same

person with holistic or occluded appearance in disjoint cam-

eras. This task is more challenging due to incomplete infor-

mation and spatial misalignment. Zhuo et al. [61] combine

the occluded/unoccluded classification task and person ID

classification task to extract key information from images.

He et al. [13] reconstruct the feature map of unoccluded

regions and propose a spatial background-foreground clas-

sifier to avoid the influence of background clutters. Be-

sides, the Pose-Guided Feature Aligment (FGFA) [30] uti-

lizes pose landmarks to mine discriminative parts to ad-

dress the occlusion noise. Gao et al. [5] propose a Pose-

guided Visible Part Matching (PVPM) model to learn dis-

criminative part features with pose-guided attentions. Wang

et al. [40] exploit graph convolutional layers to learn high-

order human part relations for robust alignment. Although

the above methods can solve the occlusion problem to some

extent, most of them heavily rely on off-the-shelf human

parsing models or pose estimators. Different from them,

our model can exploit diverse parts with only identity labels

in a weakly supervised manner via a transformer encoder-

decoder architecture.

3. Part-Aware Transformer

In this section, we introduce the proposed Part-Aware

Transformer (PAT) in detail. As shown in Figure 2, the pro-

posed PAT mainly consists of two modules, including the

pixel context based transformer encoder and the part proto-

type based transformer decoder. Here we give a brief intro-

duction to the full process. First, we obtain the feature map

of each pedestrian image through a CNN backbone. Then

we flatten the feature map and carry out the self-attention

operation to obtain the pixel context aware feature map with

the transformer encoder. After obtaining the pixel context

aware feature map, we calculate the similarity between the

feature map and a set of learnable part prototypes to obtain

part-aware masks. Part features can be further obtained by

a weighted pooling where part-aware masks are treated as

different spatial attention maps. Finally, we introduce the

part diversity mechanism and part discriminability mecha-

nism to learn part prototypes well with only identity labels.

3.1. Pixel Context based Transformer Encoder

Background regions with diverse characteristics increase

the difficulty of getting robust features for the target person.

Therefore, we adopt a self-attention mechanism to capture

the full image context information. In this way, we can ob-

tain the pixel context aware feature map, which is more ro-

bust to background clutters. Following [38], our method

uses ResNet-50 [9] without the average pooling layer and

fully connected layer as the backbone to extract global fea-

ture maps from given images. We also set the stride of

conv4 1 to 1 to increase the feature resolution as in [38]. As

a result, an input image with a size of H × W will get the

feature map with the spatial dimension of H/16 × W/16,

which is larger than that of the original ResNet-50. A larger

feature map has been proved to be effective in person Re-

ID. Formally, the feature map extracted from the backbone

is denoted as Z ∈ R
h×w×c, where h,w, c are the height,

width and channel of the global feature map, respectively.

We first utilize a 1 × 1 convolution to reduce the chan-

nel dimension of the feature map Z to a smaller dimension

d, creating a new feature map F ∈ R
h×w×d. The trans-

former encoder requires a 1D sequence as input. To han-

dle 2D feature maps, we flatten the spatial dimensions of

F into one dimension, resulting in a hw × d feature. In
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prototype learning only with identity labes. In this way, we

can achieve robust human part discovery in a weakly super-

vised manner. First of all, we introduce a set of part proto-

types PK = {pi}Ki=1
, pi ∈ R

1×d represents a part classifier

that determines whether pixels of the feature map Fatt be-

long to the part i. These part prototypes are set as learnable

parameters.

Self-attention Layer. Following the standard architecture

of the transformer, we first use a self-attention mechanism

to further incorporate the local context of human parts to

part prototypes. This process allows the local context infor-

mation propagation between prototypes during part proto-

type learning. The implementation is the same as in Sec-

tion 3.1, and both keys, queries and values arise from part

prototypes. We can obtain the updated part prototype set

{patti }Ki=1
. The weights of self-attention encode the rela-

tions between part prototypes pi and pj . The updated part

prototypes incorporate the local context of different parts.

Cross-attention Layer. The cross-attention layer aims

to extract foreground part features from the feature map

Fatt with the learnable part prototypes. As shown in Fig-

ure 2, in the cross-attention layer, given the feature map

Fatt = [fatt
1

; fatt
2

; . . . ; fatt
hw ], queries arise from part pro-

totypes {patti }Ki=1
, keys and values arise from pixels of the

feature map. Formally,

Qi = patti WQ, Kj = fatt
j WK , Vj = fatt

j WV , (7)

where i ∈ 1, 2, . . . ,K, j ∈ 1, 2, . . . , hw, and WQ ∈
R

d×dk ,WK ∈ R
d×dk ,WV ∈ R

d×dv are linear projec-

tions. Note that they are different from Eq.(3). For each

part prototype patti , we illustrate how to compute the part-

aware mask and the corresponding part feature. Formally,

mi,j =
exp (βi,j)

∑hw

j=1
exp (βi,j)

, βi,j =
QiK

T
j√

dk
, (8)

where
√
dk is a scaling factor. The attention weight mi,j

indicates the probability of the spatial feature fatt
j be-

longing to the foreground part i. The attention weights

of all hw positions make up a part-aware mask Mi =
[mi,1;mi,2; . . . ;mi,hw], which has high response values at

pixels belonging to the part i. We can further obtain ith

part feature by a weighted pooling, which is defined as the

weighted sum over all values:

f̂part
i = Att (Qi,K,V) =

hw
∑

j=1

mi,jVj , (9)

By computing over all part prototypes, we can obtain K
part-aware masks (each mask is a h×w attention map) and

further obtain K part features, as shown in Figure 2. We

implement Eq.(9) with the multi-head attention mechanism

and can get f̂part
i ∈ R

1×d. Then, two fully-connected lay-

ers are adopted, which is the same as the standard trans-

former architecture. The final part feature is formulated as:

fpart
i = FFN(f̂part

i ), (10)

where i ∈ 1, 2, . . . ,K and FFN(·) denotes the feed-

forward network as in Eq.(5).

Since there are no human part annotations, part prototype

learning tends to focus on the same discriminative part (e.g.,

the body), which may result in a suboptimal solution. Thus,

to learn part prototypes only with identity labes, we pro-

pose two mechanisms including part diversity and part dis-

criminability. (1) The part diversity mechanism is to make

part prototypes focus on different discriminative foreground

parts. A diversity loss is imposed to expand the discrepancy

among different part features
{

fpart
i

}K

i=1
:

Ldiv =
1

K(K − 1)

K
∑

i=1,j=1

K
∑

i 6=j

〈

fpart
i , fpart

j

〉

∥

∥fpart
i

∥

∥

2

∥

∥fpart
j

∥

∥

2

, (11)

The intuition behind this loss is obvious. If the ith and the

jth prototypes give a high attention weight to the same fore-

ground part, the Ldiv will be large and prompt these proto-

types to adjust themselves adaptively. (2) The part discrim-

inability mechanism is to make part features maintain iden-

tity discriminative. The part classification and triplet loss

are employed to guide part feature representation learning

as in Eq.(12), where the definitions of Lcls(·) and Ltri(·)
can be found in Eq.(6).

Ldis = λcls

K
∑

i=1

Lcls

(

fpart
i

)

+ λtri

K
∑

i=1

Ltri

(

fpart
i

)

.

(12)

In the triplet loss, part features fpart
i from different identi-

ties form negative pairs, and those from the same identity

form positive pairs. As a result, the features obtained from

the same prototype with different identities are pushed away

and the identity discriminative part features can be obtained.

3.3. Training and Inference

For the occluded person Re-ID task, our proposed PAT

is trained by minimizing the overall objective with identity

labels as defined in Eq.(13).

LPAT = LEn + Ldiv + Ldis, (13)

During the testing stage, for each image of an unseen iden-

tity, we concatenate the global feature fg and part features
{

fpart
i

}K

i=1
as its representation:

v =
[

fg, fpart
1

, · · · , fpart
K

]

. (14)

where [·] denotes a concatenation operation.
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4. Experiments

In this section, we first verify the effectiveness of our

proposed model for occluded person Re-ID, partial Re-ID,

and holistic Re-ID. Then, we report a set of ablation studies

to validate the effectiveness of each component. Finally, we

provide more visualization results.

4.1. Datastes and Evaluation Metrics

To demonstrate the effectiveness of our method, we

conduct extensive experiments on two occluded datasets:

Occluded-Duke [30] and Occluded REID [30], two par-

tial Re-ID datasets: Partial-REID [57] and Partial-iLIDS

[55], and two holistic Re-ID datasets: Market-1501 [53] and

DukeMTMC-reID [32, 58]. The details are as follows.

Occluded-Duke [30] contains 15,618 training images,

17,661 gallery images, and 2,210 occulded query images.

It is selected from DukeMTMC-reID by leaving occluded

images and filtering out some overlap images.

Occluded-REID [61] is an occluded person dataset cap-

tured by mobile cameras, including 2,000 images belong-

ing to 200 identities. Each identity has five full-body per-

son images and five occluded person images with different

viewpoints and different types of severe occlusions.

Partial-REID [57] is a specially designed partial person

Re-ID benchmark that includes 600 images from 60 peo-

ple, with five full-body images in gallery set and five partial

images in query set per person.

Partial-iLIDS [10] is a partial person Re-ID dataset based

on the iLIDS dataset [55], and contains a total of 238 im-

ages from 119 people captured by multiple cameras in the

airport, and their occluded regions are manually cropped.

Market-1501 [53] consists of 1,501 identities captured by

6 cameras. The training set consists of 12,936 images of

751 identities, the query set consists of 3,368 images, and

the gallery set consists of 19,732 images.

DukeMTMC-reID [32, 58] contains 36,411 images of

1,404 identities captured by 8 cameras. The training set

contains 16,522 images, the query set consists of 2,228 im-

ages and the gallery set consists of 17,661 images.

Evaluation Metrics. We adpot standard metrics as in

most person Re-ID literature, namely Cumulative Matching

Characteristic (CMC) curves and mean average precision

(mAP), to evaluate the quality of different Re-ID models.

4.2. Implementation Details

We adopt ResNet-50 [9] pretrained on ImageNet as our

backbone by removing the global average pooling (GAP)

layer and fully connected layer. For classifiers, as in [28] we

use a batch normalization layer [17] and a fully connected

layer followed by a softmax function. The number of part

prototypes K is set to 6 on Market-1501, and set to 14 on

all other datasets. The images are resized to 256 × 128

and augmented with random horizontal flipping, padding

Table 1. Performance comparison with state-of-the-arts on

Occluded-Duke and Occluded-REID. Our method achieves the

best performance on the two occluded datasets.

Methods
Occluded-Duke Occluded-REID

Rank-1 mAP Rank-1 mAP

Part-Aligned [51] 28.8 20.2 - -

PCB [38] 42.6 33.7 41.3 38.9

Part Bilinear [36] 36.9 - - -

FD-GAN [6] 40.8 - - -

AMC+SWM [57] - - 31.2 27.3

DSR [10] 40.8 30.4 72.8 62.8

SFR [12] 42.3 32 - -

Ad-Occluded [16] 44.5 32.2 - -

FPR [13] - - 78.3 68.0

PVPM [5] 47 37.7 70.4 61.2

PGFA [30] 51.4 37.3 - -

GASM [11] - 74.5 65.6

HOReID [40] 55.1 43.8 80.3 70.2

ISP [60] 62.8 52.3 - -

PAT(Ours) 64.5 53.6 81.6 72.1

10 pixels, random cropping, and random erasing [59]. Ex-

tra color jitter is adopted on occluded-REID and partial

datasets to avoid domain variance. The batch size is set to

64 with 4 images per person. During the training stage, all

the modules are jointly trained for 120 epochs. The learning

rate is initialized to 3.5 × 10−4 and decayed to its 0.1 and

0.01 at 40 and 70 epochs.

4.3. Comparison with State­of­the­art Methods

Results on Occluded Re-ID Datasets. Table 1 shows

the performance of our model and previous methods on

two occluded datasets. Four kinds of methods are com-

pared, which are hand-crafted splitting based Re-ID meth-

ods [51, 38], holistic Re-ID methds with key-point informa-

tion [36, 6], partial ReID methods [57, 10, 12] and occluded

ReID methods [13, 5, 30, 11, 40, 60]. The Rank-1/mAP

of our method achieves 64.5%/53.6% and 81.6%/72.1% on

Occluded-Duke and Occluded-REID datasets, which set a

new SOTA performance. Compared to the hand-crafted

splitting based method PCB [38], our PAT surpasses it

by +21.9% Rank-1 accuracy and +19.9% mAP on the

Occluded-Duke dataset. This is because our PAT explic-

itly learns part-aware masks to depress the noisy informa-

tion from the occluded regions. It can be seen that hand-

crafted splitting based Re-ID methods and holistic meth-

ods with key-points information have similar performance

on two occluded datasets. For example, PCB [38] and

FD-GAN [6] both achieve about 40% Rank-1 score on

the Occluded-Duke dataset, indicating that key-points in-

formation may not significantly benefit the occluded Re-ID

task. Compared with PVPM and HOReID, which are SOTA

occluded ReID methods with key-points information, our

method achieves much better performance, surpassing them

by at least +9.4% Rank-1 accuracy and +9.8% mAP on the
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Table 2. Performance comparison with state-of-the-arts on Partial-

REID and Partial-iLIDS datasets. Our method achieves the best.

Methods
Partial-REID Partial-iLIDS

Rank-1 Rank-3 Rank-1 Rank-3

AMC+SWM [57] 37.3 46.0 21.0 32.8

DSR [10] 50.7 70.0 58.8 67.2

SFR [12] 56.9 78.5 63.9 74.8

STNReID [29] 66.7 80.3 54.6 71.3

VPM [37] 67.7 81.9 65.5 74.8

PGFA [30] 68.0 80.0 69.1 80.9

AFPB [61] 78.5 - - -

PVPM [5] 78.3 87.7 - -

FPR [13] 81.0 - 68.1 -

HOReID [40] 85.3 91.0 72.6 86.4

PAT(Ours) 88.0 92.3 76.5 88.2

Occluded-Duke dataset. This is because their performance

heavily relies on the accuracy of the off-the-shelf pose es-

timation models, while our method can capture more accu-

rate human part information in a unified deep model. Fur-

thermore, our PAT also outperforms the methods with the

mask learning strategy, including GASM and ISP, which

shows the effectiveness of our transformer encoder-decoder

architecture and two learning mechanisms.

Results on Partial Datasets. To further evaluate our

method, we compare the results on Partial-REID and

Partial-iLIDS datasets with existing state-of-the-art meth-

ods. Like some previous methods [37, 13, 5, 40], since the

two partial datasets are too small, we train our model on

the Market-1501 training set and use two partial datasets

as test sets. Therefore, it is also a cross-domain setting.

As shown in Table 2, the Rank-1/Rank-3 of our method

achieves 88.0%/92.3% and 76.5%/88.2% on Partial-REID

and Partial-iLIDS datasets, respectively, which outperforms

all the previous partial person Re-ID models. This suggests

that the proposed PAT can be solid to address the occlu-

sion problem. Compared to the most competing method

HOReID [40], our PAT significantly surpasses it by +2.7%
Rank-1 accuracy on Partial-REID, while surpasses it by

+3.9% Rank-1 accuracy on Partial-iLIDS, which demon-

strates the effectiveness of our proposed model.

Results on Holistic Re-ID Datasets. We also experiment

on holistic person Re-ID datasets including Market-1501

and DukeMTMC-reID. We compare our method with state-

of-the-art approaches of three categories, and the results

are shown in Table 3. The methods in the first group

are hand-crafted splitting based models. The methods in

the second group are attention based approaches. The

methods in the third group are extra semantic based meth-

ods. From the results, we can see that the proposed PAT

achieves competitive performances with state-of-the-art on

both datasets. Specifically, the Rank-1/mAP of our method

achieves 95.4%/88.0% and 88.8%/78.2% on Market-1501

and DukeMTMC-reID datasets, respectively. Our PAT per-

forms better than the hand-crafted splitting based model

Table 3. Performance comparison with state-of-the-art methods on

Market-1501 and DukeMTMC-reID datasets.

Methods
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

PCB [38] 92.3 77.4 81.8 66.1

BOT [28] 94.1 85.7 86.4 76.4

MGN [41] 95.7 86.9 88.7 78.4

VPM [37] 93.0 80.8 83.6 72.6

IANet [15] 94.4 83.1 87.1 73.4

CASN+PCB [31] 94.4 82.8 87.7 73.7

CAMA [46] 94.7 84.5 85.8 72.9

MHN-6 [3] 95.1 85.0 89.1 77.2

SPReID [19] 92.5 81.3 84.4 71.0

DSA-reID [50] 95.7 87.6 86.2 74.3

P
2 Net [8] 95.2 85.6 86.5 73.1

PGFA [30] 91.2 76.8 82.6 65.5

HOReID [40] 94.2 84.9 86.9 75.6

FPR [13] 95.4 86.6 88.6 78.4

PAT(Ours) 95.4 88.0 88.8 78.2

PCB, because the hand-crafted splitting is too coarse to

align the human parts well. Furthermore, the proposed PAT

is superior to those approaches with external cues. Specifi-

cally, compared to the pose-guided occluded Re-ID method

HOReID [40], our PAT significantly surpasses it by +3.1%
mAP on Market-1501, while surpasses it by +2.6% mAP

on DukeMTMC-reID, which shows the effectiveness of the

proposed part prototype learning mechanism. The extra se-

mantic based approaches heavily rely on the external cues

for person alignment, but they cannot always infer the ac-

curate external cues in the case of severe occlusion. The

above results also prove that the learnable part prototypes

are robust to different views, poses, and occlusions.

4.4. Ablation Studies

In this section, we perform ablation studies on the

Occluded-Duke dataset to analyze each component of our

PAT, including the pixel context based transformer encoder

(P), the self-attention layer (S) and the cross-attention layer

(C) of the part prototype based transformer decoder and the

part diversity mechanism (D). Note that the part discrim-

inability mechanism is to make part features maintain iden-

tity discriminative, and it is the basis of our model. We

reomve all the modules and set the ResNet-50 with the av-

erage pooling as our baseline, where only a global feature

is available. The results are shown in Table 4.

Effectiveness of the Transformer Encoder. As shown in

index-2, compared with the baseline model, when only the

encoder is adopted and only the global feature fg is used,

the performance is improved by +7.1% mAP. This is be-

cause the self-attention mechanism of the encoder can cap-

ture the pixel context information well. From index-3 and

index-5, we can also see that with the encoder, the perfor-

mance is improved by +0.8% mAP since the pixel context

aware feature is more robust to background clutters.
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