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Abstract

We address the challenging problem of whole slide image

(WSI) classification. WSIs have very high resolutions and

usually lack localized annotations. WSI classification can

be cast as a multiple instance learning (MIL) problem when

only slide-level labels are available. We propose a MIL-

based method for WSI classification and tumor detection

that does not require localized annotations. Our method

has three major components. First, we introduce a novel

MIL aggregator that models the relations of the instances in

a dual-stream architecture with trainable distance measure-

ment. Second, since WSIs can produce large or unbalanced

bags that hinder the training of MIL models, we propose to

use self-supervised contrastive learning to extract good rep-

resentations for MIL and alleviate the issue of prohibitive

memory cost for large bags. Third, we adopt a pyramidal

fusion mechanism for multiscale WSI features, and further

improve the accuracy of classification and localization. Our

model is evaluated on two representative WSI datasets. The

classification accuracy of our model compares favorably to

fully-supervised methods, with less than 2% accuracy gap

across datasets. Our results also outperform all previous

MIL-based methods. Additional benchmark results on stan-

dard MIL datasets further demonstrate the superior perfor-

mance of our MIL aggregator on general MIL problems.

1. Introduction

Whole slide scanning is a powerful and widely used tool

to visualize tissue sections in disease diagnosis, medical ed-

ucation, and pathological research [10, 38]. The scanning

* Co-corresponding authors.

Figure 1. Decision boundary learned in MIL. Left: Max pooling

delineates the decision boundary according to the highest-score

instances in each bag. Right: DSMIL measures the distance be-

tween each instance and the highest-score instance.

converts tissues on glass slides into digital whole slide im-

ages (WSIs) for assessment, sharing, and analysis. Auto-

mated disease detection in WSIs has been a long-standing

challenge for computer aided diagnostic systems. We have

begun to see some recent success from computer vision and

medical image analysis communities [6, 44, 3, 24, 27, 29],

fueled by the advances in deep learning.

WSIs have extremely high resolutions — a typical

pathology image has a size of 40, 000 × 40, 000. Conse-

quently, the most widely used paradigm for WSI classifi-

cation is patch-based processing — a WSI is divided into

thousands of small patches and further examined by a clas-

sifier e.g., a convolutional neural network (CNN) [21, 53,

35, 11, 33]. In clinics, a disease-positive tissue section

might only take a small portion (e.g., less than 20%) of the

whole tissue, leading to a large number of disease-negative

patches. Unfortunately, with gigapixel resolution, patch-

level labeling by expert pathologists is very time consum-

ing and difficult to scale. To address this challenge, several

recent studies [21, 3, 18] have demonstrated the promise

of weakly supervised WSI classification, where only slide-

level labels are used to train a patch-based classifier.
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The majority of previous approaches [21, 53, 35, 11, 18,

8] on weakly supervised WSI classification follows a mul-

tiple instance learning (MIL) problem formulation [14, 34],

where each WSI is considered as a bag that contains many

instances of patches. A WSI (bag) is labeled as disease-

positive if any of its patches (instances) is disease-positive

(e.g., with lesions). Patch-level features or scores are ex-

tracted, aggregated, and examined by a classifier that pre-

dicts slide-level labels. Recent MIL based approaches have

greatly benefited from using deep neural networks for fea-

ture extraction and feature aggregation [22, 50, 37].

Two major challenges exist in developing deep MIL

models for weakly supervised WSI classification. First,

when patches (instances) in positive images (bags) are

highly unbalanced, i.e., only a small portion of patches are

positive, the models are likely to misclassify those positive

instances [22] when using a simple aggregation operation,

such as the widely adopted max-pooling. This is because,

under the assumptions of MIL, max-pooling can lead to a

shift of the decision boundary compared to fully-supervised

training (Figure 1). Besides, the model can easily suffer

from overfitting and unable to learn rich feature representa-

tions due to the weak supervisory signal [12, 32, 1]. Second,

current models either use fixed patch features extracted by

a CNN or only update the feature extractor using a few high

score patches, as the end-to-end training of the feature ex-

tractor and aggregator is prohibitively expensive for large

bags [12, 3, 32]. Such a simplified learning scheme might

lead to sub-optimal patch features for WSI classification.

To address these challenges, we propose a novel deep

MIL model, dubbed dual-stream multiple instance learn-

ing network (DSMIL). Specifically, DSMIL jointly learns

a patch (instance) and an image (bag) classifier, using a

two-stream architecture. The first stream deploys a stan-

dard max-pooling to identify the highest scored instance

(referred to as critical instance), while the second stream

computes an attention score for each instance by measur-

ing its distance to the critical instance. DSMIL further ap-

plies a soft selection of instances using the attention scores,

leading to a decision boundary that better delineates the in-

stances in positive bags, as shown in Figure 1. Importantly,

DSMIL makes use of self-supervised contrastive learning

for training the feature extractor for WSI, producing strong

patch representations. In addition, DSMIL incorporates a

multiscale feature fusion mechanism that can leverage tis-

sue features ranging from millimeter-scale (e.g., vessels and

glands) to cellular-scale (tissue microenvironment).

We evaluate DSMIL for weakly supervised WSI classi-

fication on two public WSI datasets including Camelyon16

and TCGA lung cancer. The results show that DSMIL out-

performs other recent MIL models in classification accuracy

by at least 2.3%. More importantly, our classification accu-

racy compares favorably to fully-supervised methods, with

less than 2% accuracy gap. Moreover, DSMIL also has su-

perior localization accuracy, outperforming previous MIL

models by a significant margin. Finally, we demonstrate

the state-of-the-art performance of DSMIL on general MIL

problems beyond weakly supervised WSI classification.

2. Related Work

Our work develops MIL for WSI analysis using deep

models. MIL itself is a well-established topic. We refer

the readers to [4] for a survey. In this section, we briefly re-

view recent efforts on deep MIL models, as well as relevant

works on MIL models for WSI analysis.

Deep MIL Models. Conventionally, MIL models consider

handcrafted aggregators, such as mean-pooling and max-

pooling [16, 39]. Recently, it is shown that parameterizing

the aggregation operator with neural networks can still be

beneficial [16, 52, 37]. Ilse et al. [22] proposed an attention-

based aggregation operator parameterized by neural net-

works which includes the contribution of each instance to

the bag embedding. Methods that consider the contextual

information are proposed to model the dependencies be-

tween the instances such as graph neural network-based ap-

proaches and capsule network-based approaches [47, 55, 8].

We deploy a non-local operation to model the instance-

to-instance and instance-to-bag relations [51]. Differing

from the attention mechanism in attention-based MIL (AB-

MIL) [22], the attentions in our model are explicitly com-

puted based on a trainable distance measurement. Our

method is also different from graph models and capsule net-

works in that the weights between the nodes are functions

of the two nodes instead of learned parameters [43, 42]. The

measurement mechanism is similar to self-attention [48,

51], but differs in that the measurement is done only be-

tween one node (the critical instance) to the others. Our

dual-stream non-local operation also differs from asymmet-

ric non-local operation in that the embeddings are filtered

according to the confidence scores learned in a separate

branch, instead of on the embeddings [56]. In addition,

deep MIL models have been considered for other weakly

supervised vision tasks, including weakly supervised object

localization [9] and detection [45, 49]. In this paper, we

focus on weakly supervised classification of WSI.

MIL Models for WSI Analysis. MIL has been success-

fully applied to WSI analysis for tasks such as cell segmen-

tation and tumor detection [54, 21, 40, 23, 3, 8]. Cam-

panella et al. [3] show that a MIL classifier trained on

large weakly-labeled WSI datasets generalizes better than a

fully-supervised classifier trained on pixel-level-annotated

small lab datasets. The former is easy to obtain on large

scale from everyday clinics while the latter requires labor-

intensive annotations in research labs.

Training a CNN for good feature representations in MIL

is non-trivial for WSI analysis, due to the prohibitive mem-

14319



Figure 2. Overview of our DSMIL. Patches extracted from each magnification of the WSIs are used for self-supervised contrastive learning

separately. The trained feature extractors are used to compute embeddings of patches. Embeddings of different scales of a WSI are

concatenated to form feature pyramids to train the MIL aggregator. The figure shows an example of two magnifications (20× and 5×).

The 5× feature vector is duplicated and concatenated with each of the 20× feature vectors of the sub-images within this 5× patch.

ory requirement and the noisy supervisory signal [32, 12].

Recently, semi-supervised learning has been used to en-

able the training of the classifier for WSI classification

with limited patch-level labels [26]. In contrast, our work

makes use of self-supervised contrastive learning [7] for

feature extraction in MIL. Self-supervised contrastive learn-

ing has demonstrated success in learning visual representa-

tions [36, 7, 19], yet remains unexplored in WSI analysis.

The assessment of WSIs by pathologists is done in mul-

tiscale [2, 17, 46] and it is common to consider multi-

scale features in WSI analysis. Using bags that simply

include features from different magnifications of WSI in

MIL has shown to be beneficial [18]. Another possibil-

ity [33] is to select regions at low-magnification and further

zoom in these regions for high-magnification patches. Our

multiscale feature analysis strategy is inspired by previous

works on multiscale feature representation using deep mod-

els [41, 28], yet simultaneously benefits our DSMIL model

for the ability to locally-constrain the patch attentions.

3. Method

We now present our method for weakly supervised WSI

classification. This section introduces the formulation of

MIL and presents our model — DSMIL.

3.1. Background: MIL Formulation

In MIL, a group of training samples is considered as a

bag containing multiple instances. Each bag has a bag label

that is positive if the bag contains at least one positive in-

stance and negative if it contains no such positive instance.

The instance-level labels are unknown. In the case of bi-

nary classification, let B = {(x1, y1), ..., (xn, yn)} be a

bag where xi ∈ χ are instances with labels yi ∈ {0, 1},

the label of B is given by

c(B) =

{

0, iff
∑

yi = 0

1, otherwise
(1)

MIL further uses a suitable transformation f and a

permutation-invariant transformation g [22, 5] to predict

the label of B, given by

c(B) = g(f(x0), ..., f(xn)) (2)

Multiple instance learning could be modeled in two ways

based on the choices of f and g: 1) Instance-based ap-

proach. f is an instance classifier that scores each instance,

g is a pooling operator that aggregates the instance scores

to produce a bag score. 2) Embedding-based approach.

f is an instance-level feature extractor that maps each in-

stance to an embedding, g is an aggregation operator that

produces a bag embedding from the instance embeddings

and outputs a bag score based on the bag embedding. The

embedding-based method produces a bag score based on a

bag embedding directly supervised by the bag label and usu-

ally yields better accuracy compared to the instance-based

method [52], however, it is usually harder to determine the

key instances that trigger the classifier [30].

In the setting of weakly supervised WSI classification,

each WSI is considered as a bag and the patches extracted

from it are considered as the instances of this bag. We will

then describe our model that jointly learns a instance-level

classifier as well as an embedding aggregator and explain

how such hybrid architecture could provide advantages of

both the instance-based and embedding-based methods.

3.2. DSMIL for WSI Classification

Our key innovations are the design of a novel aggre-

gation function g, and the learning of the feature extrac-
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Figure 3. MIL aggregator of DSMIL. The max-pooling branch de-

termines the critical instance by pooling the instance scores. The

aggregation branch measures the distance between each instance

to the critical instance and produces a bag embedding by summing

the instance embeddings using the distances as weights. Scores of

the two streams are averaged to produce the final score.

tor f . Specifically, we propose DSMIL that consists of a

masked non-local block and a max-pooling block for fea-

ture aggregation, with input instance embeddings learned

by self-supervised contrastive learning. Moreover, DSMIL

combines multiscale embeddings using a pyramidal strat-

egy, and thus ensures the local constraints of the attentions

for patches in a WSI. Figure 2 presents an overview of our

DSMIL. We now describe each component of DSMIL.

MIL Aggregator with Masked Non-Local Operation. In

contrast to most previous methods that either learn an in-

stance classifier or a bag classifier, DSMIL jointly learns

the instance classifier and the bag classifier as well as the

bag embedding in a dual-stream architecture.

Let B = {x1, ..., xn} denote a bag of patches of a WSI.

Given a feature extractor f , each instance xi can be pro-

jected into an embedding hi = f(xi) ∈ R
L×1. The first

stream uses an instance classifier on each instance embed-

ding, followed by max-pooling on the scores:

cm(B) = gm(f(xi), ..., f(xn))

= max{W0h0, . . . ,W0hN−1}
(3)

where W0 is a weight vector. The max-pooling stream

determines the instance with the highest score (critical in-

stance). Max-pooling is a permutation-invariant operation,

thus, this stream satisfies equation 2.

The second stream aggregates the above instance embed-

dings into a bag embedding which is further scored by a bag

classifier. We obtain the embedding hm of the critical in-

stance, and transform each instance embedding hi (includ-

ing hm) into two vectors, query qi ∈ R
L×1 and information

vi ∈ R
L×1, which are given respectively by:

qi = Wqhi, vi = Wvhi, i = 0, . . . , N − 1 (4)

where Wq and Wv each is a weight matrix. We then define

a distance measurement U between an arbitrary instance to

the critical instance as:

U(hi,hm) =
exp(〈qi,qm〉)

∑N−1

k=0
exp(〈qk,qm〉)

(5)

”〈·, ·〉” denotes the inner product of two vectors. The bag

embedding b is the weighted element-wise sum of the in-

formation vectors vi of all instances, using the distances to

the critical instance as the weights:

b =

N−1
∑

i

U(hi,hm)vi (6)

The bag score cb is then given by:

cb(B) = gb(f(xi), ..., f(xn))

= Wb

N−1
∑

i

U(hi,hm)vi = Wbb
(7)

where Wb is a weight vector for binary classification. This

operation is similar to self-attention [48]. but differs in that

the query-key matching is performed only between the crit-

ical node and the other nodes (including the critical node

itself). Moreover, instead of matching each query with ad-

ditional key vectors like self-attention, the query is matched

with other queries and no key vector is learned.

The dot product measures the similarity between two

queries, resulting in larger values for instances that are more

similar. Therefore, instances more similar to the critical in-

stance will have greater attention weights. The additional

layer for the information vectors vi allows contributing in-

formation to be extracted within each instance. The soft-

max operation in Equation 5 ensures the attention weights

are summed to 1 regardless of the bag size.

Since the critical instance does not depend on the or-

der of the instances and the measurement U is symmetric,

this sum term so as the bag embedding b does not depend

on the order of the instances, thus, the second stream is

permutation-invariant and satisfies Equation 2. The final

bag score is the average of the scores of the two streams:

c(B) =
1

2
(gm(f(xi), ..., f(xn)) + gb(f(xi), ..., f(xn))

=
1

2
(W0hm +Wb

∑

i

U(hi,hm)vi)
(8)

Note that DSMIL can handle the case of multi-class MIL

problems by max-pooling the instance scores and compute

attention weights for each class separately. The result bag

embedding is then a matrix b ∈ R
L×C where C is the

number of classes, with each entry a weighted sum of the

instance information vectors vi. The last fully connected

layer will then have an output channel number of C.

The information vector vi allows intra-instance feature

selection while the distance measurement applies an inter-

instance selection according to the similarity to the critical
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Figure 4. Pyramidal concatenation of multiscale features in WSI.

Feature vector from a lower magnification patch is duplicated and

concatenated to feature vectors of its higher magnification patches.

instance. The resulted bag embedding has a constant shape

regardless of the bag size, and will be used to compute the

output bag score cb at inference time. The architecture of

the aggregator is illustrated in Figure 3.

Self-Supervised Contrastive Learning of WSI Features.

Moving beyond the aggregation operation, we propose to

use self-supervised contrastive learning for learning the

feature extractor f . Specifically, we consider SimCLR

from [7], a state-of-the-art self-supervised learning frame-

work that enables robust representations to be learned with-

out the need for manual labels. SimCLR deploys a con-

trastive learning strategy that trains the CNN to associate the

sub-images from the same image in a batch of sub-images.

The sub-images are randomly selected in a batch of images

and fed into two random image augmentation branches. The

model is trained to maximize the agreement between the

sub-images that are from the same image using a contrastive

loss. After the training converges, the feature extractor is

kept and used to compute the representations of the train-

ing samples for downstream tasks. The datasets used for

SimCLR consist of patches extracted from the WSIs. The

patches are densely cropped without overlap and treated as

individual images for SimCLR training.

Locally-Constrained Multiscale Attention. Finally, we

make use of a pyramidal concatenation strategy to integrate

features of WSIs from different magnifications. First, For

each low-magnification patch, we obtain the feature vector

of this patch as well as the feature vectors of the sub-images

in the higher magnification within this patch. For example,

a patch with a size of 224×224 at 10× magnification will

contain 4 sub-images with a size of 224×224 at 20× magni-

fication. For every 10× patch, we then concatenate the 10×
feature vector with each of the 20× features and obtain 4

feature vectors. Figure 4 illustrates the case of three magni-

fications (20×-10×-5×). We demonstrate the effectiveness

of this method using features from two magnifications (20×
and 5×) in the experiment, but the idea is general and can

be extended to more magnifications.

There are two major benefits of this concatenation

method: 1) The first part of the resulted feature vector is

the same for the 20× patches that belong to the same 5×
patch. As a result, in DSMIL, the distance measurement re-

sults si = 〈qi,qm〉 for these vectors will tend to be similar

and the instances will be assigned similar attention weights.

The second part of the feature vector is specific to each 20×
patch which allows the attention weights to vary among

these patches. 2) The information from different scales are

preserved in the feature vectors, allowing the network to se-

lect the appropriate information vi across different scales.

4. Experiments and Results

We now present our experiments and results. First, we

report results on two clinical WSI datasets, Camelyon16

and TCGA lung cancer, that cover the cases of unbal-

anced/balanced bags and single/multiple class MIL prob-

lems. Moreover, we present an ablation study, demonstrat-

ing the effectiveness of our MIL aggregator, the contrastive

feature learning, and the multiscale attention mechanism.

Experiment Setup and Evaluation Metrics. We report

the accuracy and area under the curve (AUC) scores of

DSMIL for the task of WSI classification on both datasets.

On Camelyon16, we also evaluate localization performance

by reporting free response operating characteristic curves

(FROC) [15]. To pre-process the WSIs datasets, every WSI

is cropped into 224 × 224 patches without overlap to form

a bag, in the magnifications of 20× and 5×. Background

patches (entropy < 5) are discarded. Constantly better re-

sults are obtained on 20× images for both datasets and are

reported for experiments using a single-scale of WSI.

Implementation Details. We use Adam [25] optimizer

with a constant learning rate of 0.0001 to update the model

weights during the training. The mini-batch size for training

MIL models is 1 (bag). Patches extracted from the training

sets of the WSI datasets are used to train the feature extrac-

tor using SimCLR. For SimCLR, we use Adam optimizer

with an initial learning rate of 0.0001, a cosine annealing

(without warm restarts) scheme for learning rate scheduling

[31], and a min-batch size of 512. The CNN backbone used

for MIL models and SimCLR is ResNet18 [20].

4.1. Results on Camelyon16

We first present our results on Camelyon16. We intro-

duce the dataset and baselines, and discuss our results on

both classification and localization.

Dataset. Camelyon16 is a public dataset proposed for

metastasis detection in breast cancer [15]. The dataset con-

sists of 271 training images and 129 testing images, which

yield roughly 3.2 million patches at 20× magnification and

0.25 million patches at 5× magnification with on average

about 8,000 and 625 patches per bag. Tumor regions are

fully labeled with pixel-level annotations on each slide. We

ignore the pixel-level annotations in the training and con-

sider only slide-level labels (i.e. the slide is considered pos-

14322



Figure 5. Tumor localization in WSI using different MIL models. (a) A WSI from Camelyon16 testing set. (b)-(e) zoomed in area in the

orange box of (a). (b) Max-pooling. (c) ABMIL [22]. (d) DSMIL. (e) DSMIL-LC Note: for (b), classifier confidence scores are used for

patch intensities; for (c) (d) and (e), attention weights are re-scaled from min-max to [0, 1] and used for patch intensities.

Model Scale
Classification Localization

Accuracy AUC FROC

Mean-pooling Single 0.7984 0.7620 0.1162

Max-pooling Single 0.8295 0.8641 0.3313

MILRNN [3] Single 0.8062 0.8064 0.3048

ABMIL [22] Single 0.8450 0.8653 0.4056

DSMIL Single 0.8682 0.8944 0.4296

Fully-supervised Single 0.9147 0.9362 0.5254

MS-MILRNN [3] Multiple 0.8140 0.8371 0.2791

MS-ABMIL [18] Multiple 0.8760 0.8872 0.4191

DSMIL-LC Multiple 0.8992 0.9165 0.4371

Table 1. Results on Camelyon16 dataset. DSMIL/DSMIL-LC

denote our model with/without the proposed multiscale attention

mechanism. Instance embeddings are produced by the feature ex-

tractor trained using SimCLR for all MIL models.

itive if it contains any annotated tumor regions). The re-

sulted bags contain mixtures of tumor and healthy patches

for positive bags and all healthy patches for negative bags.

The positive bags in this dataset are highly unbalanced.

Only a small portion of regions in a positive slide contains

tumor (roughly <10% of the total tissue area per slide)

which leads to a large portion of negative patches in a pos-

itive bag. This makes it hard for good representations to be

directly learned in most MIL models [32, 12]. We show that

our method relying on only the slide-level labels can over-

come this difficulty and achieves performance comparable

to fully-supervised methods that use the pixel-level labels.

Baselines. We evaluate and compare DSMIL to a strong

set of baselines, including (1) deep models using traditional

MIL pooling operators such as max-pooling and mean-

pooling and (2) recent deep MIL models [18, 3, 22], on the

tasks of WSI classification and tumor localization. More-

over, we obtain an upper-bound fully-supervised model by

making use of the pixel-level annotations, where a patch is

labeled positive if it falls within a tumor region and the score

of a WSI is then obtained by averaging the scores of all

its patches in testing. Results on the classification task can

demonstrate the efficacy of our model in terms of produc-

ing good bag embeddings, while results on the localization

task can demonstrate the capability of DSMIL to delineate

positive instances in positive bags.

Classification Results. The classification results are sum-

marized in Table 1. Features are learned using self-

supervised contrastive learning on the 20× patches under

the same settings. The contribution of using self-supervised

contrastive learning will be presented in the ablation study.

The results suggest that, though both better than tradi-

tional pooling operators, DSMIL achieves better aggrega-

tion than ABMIL which implements no additional regular-

ization on the learned attentions, with about 2.6% improve-

ments in classification on the single scale setting. The recur-

rent neural network-based model without considering the

permutation-invariant characteristics does not outperform

the traditional pooling operators. With the multiscale at-

tention mechanism integrated, DSMIL achieves improved

results matching the performance of the fully-supervised

method, with a classification accuracy gap smaller than 2%.

Localization Results. Pixel-level annotations are available

for Camelyon16 which allow us to test the localization abil-

ity of our method. The localization performance indicates

the MIL model’s capability to delineate positive instances.

The reported FROC score is defined as the average sensitiv-

ity at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and

8 FPs per WSI. The result shows that DSMIL, where the

attention scores are explicitly computed using a trainable

distance measurement, better delineates the positive patches

with at least 6% relative improvement compared to ABMIL

in detection localization. Detection maps of representative

samples from the testing set are illustrated in Figure 5.

4.2. Results on TCGA Lung Cancer dataset

We further present our results on The Cancer Genome

Atlas (TCGA) lung cancer dataset. We again introduce the

dataset and discuss our results.

Dataset. The WSIs include two sub-types of lung can-

cer, Lung Adenocarcinoma and Lung Squamous Cell Car-

cinoma, with in a total of 1054 diagnostic digital slides

that can be downloaded from National Cancer Institute Data

Portal. We randomly split the WSIs into 840 training slides

and 210 testing slides (4 low-quality corrupted slides are

discarded). The dataset yields 5.2 million patches at 20×
magnification and 0.36 million patches at 5× magnification

with in average about 5000 and 350 patches per bag. Only

slide-level labels are available for this dataset.

The resulted bags contain mixtures of either type of tu-
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SimCLR features

Model Scale Accuracy AUC

Mean-pooling Single 0.8857 0.9369

Max-pooling Single 0.8088 0.9014

MIL-RNN [3] Single 0.8619 0.9107

ABMIL [22] Single 0.9000 0.9488

DSMIL Single 0.9190 0.9633

MS-MIL-RNN [3] Multiple 0.8905 0.9213

MS-ABMIL [18] Multiple 0.9000 0.9551

DSMIL-LC Multiple 0.9286 0.9583

Patch-based features

Model Scale Accuracy AUC

Patch-based w/o MIL Single 0.8857 0.9506

Mean-pooling Single 0.9096 0.9625

Max-pooling Single 0.8286 0.8958

MIL-RNN [3] Single 0.9048 0.9636

ABMIL [22] Single 0.9381 0.9765

DSMIL Single 0.9476 0.9809

MS-MIL-RNN [3] Multiple 0.9096 0.9561

MS-ABMIL [18] Multiple 0.9381 0.9792

DSMIL-LC Multiple 0.9571 0.9815

Table 2. Results on TCGA lung cancer dataset. Instance embed-

dings are produced by the feature extractor trained using SimCLR

and patch-based method without considering MIL.

mor and healthy patches for positive bags, and all healthy

patches for negative bags. Tumor slides in this dataset con-

tain large portions of tumor regions (>80% per slide), lead-

ing to a large portion of positive patches in positive bags.

Thus, training a classifier using a patch-based method with-

out considering MIL already has reasonable results (i.e.

treating the patches in a WSI as if they all have the same la-

bel as the whole WSI in training, and averaging the scores of

the patches in a WSI in testing). We show that significantly

improved results can be obtained by considering MIL.

Classification Results. We compare both the features

learned by SimCLR and by the patch-based method without

considering MIL for this dataset. By contrast, the patch-

based method does not converge for Camelyon16 due to

the large number of negative patches in positive bags, so

the patch-based features results are not included for Came-

lyon16. The results are summarized in Table 2 which sug-

gests similar conclusions as Camelyon16 dataset.

4.3. Ablation Study

We now delineate the contributions of our model via ab-

lation studies of the three major components of our model:

DSMIL aggregator, self-supervised contrastive learning for

the instance features, and the multiscale attention mecha-

nism. We keep our DSMIL aggregator and compare fea-

tures learned by different methods as well as different mul-

tiscale feature fusion methods for WSI. While the perfor-

mance of our DSMIL aggregator has been demonstrated on

two WSI datasets in the previous section, we further carry

out extensive benchmark experiments for our MIL aggrega-

tor on several classical MIL datasets in the ablation study.

Effects of Contrastive Learning. We compare the fea-

Dataset Camelyon16 TCGA

Features Accuracy AUC Accuracy AUC

ImageNet 0.6202 0.5408 0.7095 0.7260

Max-pooling 0.7099 0.7153 0.7714 0.8212

Patch-based 0.6977 0.5434 0.9476 0.9809

Contrastive 0.8682 0.8944 0.9190 0.9633

Table 3. Comparison of features learned by different methods for

a fixed MIL aggregator.

Method Accuracy AUC

Single scale (20×) 0.8682 0.8944

Concatenation (5× + 20×) 0.8682 0.8846

Max Pooling (5× + 20×) 0.8604 0.8731

Mix (5× + 20×) 0.8837 0.9097

Ours (5× + 20×) 0.8992 0.9165

Ours (1.25× + 5× + 20×) 0.8760 0.9034

Table 4. Comparison of different multiscale WSI feature integra-

tion methods. Multiscale approaches from other studies are used

on our MIL aggregator with fixed instance embeddings learned by

self-supervised contrastive learning on 20× and 5× WSI patches.

tures learned by self-supervised contrastive learning to sev-

eral baselines. 1) Use the feature extractor trained by max-

pooling operator [3]. The end-to-end training using max-

pooling can be done in a for-loop where the maximum-score

instance is found dynamically and used to update the model

weights without the need for large memory. 2) Use the fea-

ture extractor trained by the patch-based method without

considering MIL (i.e. treating the patches in a WSI as if

they all have the same label as the WSI in training, and av-

eraging the scores of the patches in a WSI in testing). 3) Use

the feature extractor pre-trained on ImageNet dataset [13].

The results are shown in Table 3. For unbalanced

bags (e.g., Camelyon16 dataset), self-supervised contrastive

learning leads to significantly better performance with at

least 16% higher classification accuracy, even compared

to the features obtained by end-to-end training of max-

pooling. For balanced bags (e.g., TCGA lung cancer

dataset), features learned by self-supervised contrastive

learning are comparable to those of the patch-based method,

yet are still significantly better (> 14% higher accuracy)

than end-to-end training of max-pooling. Note that for un-

balanced bags, the patch-based method does not lead to

good features due to large amounts of negative samples

in positive bags. Moreover, we further observe that using

max-pooling on contrastive learning features also signifi-

cantly outperforms the end-to-end training of max-pooling

by about 10%. The results suggest that self-supervised con-

trastive learning is a feasible way to obtain good representa-

tions for MIL regardless of the distribution of negative and

positive instances in the bags, and it also alleviates the mem-

ory requirement issue caused by large bag size.

Effects of Multiscale Attention. We further compare our

multiscale attention mechanism to several other methods

that consider multiscale WSI features, including 1) Con-

catenate the bag embeddings of the MIL model trained on
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Methods MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-Net 0.889 ± 0.039 0.858 ± 0.049 0.613 ± 0.035 0.824 ± 0.034 0.858 ± 0.037

MI-Net 0.887 ± 0.041 0.859 ± 0.046 0.622 ± 0.038 0.830 ± 0.032 0.862 ± 0.034

MI-Net with DS 0.894 ± 0.042 0.874 ± 0.043 0.630 ± 0.037 0.845 ± 0.039 0.872 ± 0.032

MI-Net with RC 0.898 ± 0.043 0.873 ± 0.044 0.619 ± 0.047 0.836 ± 0.037 0.857 ± 0.040

ABMIL 0.892 ± 0.040 0.858 ± 0.048 0.615 ± 0.043 0.839 ± 0.022 0.868 ± 0.022

ABMIL-Gated 0.900 ± 0.050 0.863 ± 0.042 0.603 ± 0.029 0.845 ± 0.018 0.857 ± 0.027

GNN-MIL 0.917 ± 0.048 0.892 ± 0.011 0.679 ± 0.007 0.876 ± 0.015 0.903 ± 0.010

DP-MINN 0.907 ± 0.036 0.926 ± 0.043 0.655 ± 0.052 0.897 ± 0.028 0.894 ± 0.030

NLMIL 0.921 ± 0.017 0.910 ± 0.009 0.703 ± 0.035 0.857 ± 0.013 0.876 ± 0.011

ANLMIL 0.912 ± 0.009 0.822 ± 0.084 0.643 ± 0.012 0.733 ± 0.068 0.883 ± 0.014

DSMIL 0.932 ± 0.023 0.930 ± 0.020 0.729 ± 0.018 0.869 ± 0.008 0.925 ± 0.007

Table 5. Performance comparison on classical MIL dataset. Experiments were run 5 times each with a 10-fold cross-validation. The mean

and standard deviation of the classification accuracy is reported (mean ± std). mi-Net[52], MI-Net [52], MI-Net with DS [52], MI-Net with

RC [52], ABMILP [22], ABMILP-Gated [22], GNN-MIL [47], DP-MINN [55]. NLMIL and ANLMIL use the non-local blocks from [51]

and [56]. Previous benchmark results are taken from [22, 47, 55] and the same training setting as [22] is used.

each magnification before the fully-connected layer. 2) Use

max-pooling on the predictions of the MIL model trained on

each magnification [3]. 3) Mix the instances from different

scales in a bag and feed the bag to the MIL model [18].

Table 4 presents the results on Camelyon16 dataset. Our

multiscale attention outperforms the single scale approach

by 3% and other multiscale approaches by at least 1.5%,

suggesting that considering multiscale features could lead

to better detection accuracy for WSI and structured mul-

tiscale features can further improve the results. Yet using

two levels (5×+20×) produces better results than using all

three levels (1.25×+5×+20×) with +1.6% in accuracy and

+1.3% in AUC. We conjecture that sometimes information

from a coarser scale (e.g. 1.25×) might not be as effective

as a finer one (e.g. 20×), and the resulted vectors could

become less discriminate. Thus, an attention mechanism

along the magnification level might be needed to re-weight

the features from different scales before fusion.

DSMIL Aggregator on Other MIL Tasks. Finally, We

benchmark our dual-stream MIL aggregator on classical

MIL benchmark datasets. These datasets consist of ex-

tracted feature vectors of the instances and do not require

a feature extractor to be learned. The first two datasets

(MUSK1, MUSK2) are used to predict drug effects based

on the molecule conformations. A molecule can have differ-

ent conformations and only some of them may be effective

conformations [14]. Each bag contains multiple conforma-

tions of the same molecule, and the bag is labeled positive

if at least one conformation is effective, negative otherwise.

The other three datasets, ELEPHANT, FOX, and TIGER,

consists of feature vectors extracted from images. Each bag

includes a group of segments of an image and the bag is la-

beled as positive if at least one segment contains the animal

of interest, negative if there is no such animal presented.

Since the feature vectors (instance embeddings) are al-

ready given, the experiment involves directly feeding the

feature vectors to DSMIL aggregator. To test our MIL ag-

gregator against other recent non-local architectures on MIL

problem, we replace the proposed DSMIL aggregator with

the non-local blocks in NL [51] (NLMIL) and ANL [56]

(ANLMIL) and also evaluate their results across the 5 MIL

datasets 5. Experiments are run 5 times each with a 10-fold

cross-validation. The benchmark results show that our dual-

stream MIL aggregator outperforms the previous best MIL

models as well as other non-local operations such as NL and

ANL by an average of 3% on general MIL problems.

5. Conclusion and Future Work

In this paper, we present a new MIL-based approach

for weakly supervised WSI classification. Our method

has demonstrated considerable improvement over previous

methods on representative WSI datasets. Our key techni-

cal innovation is a novel MIL aggregator that outperforms

recent MIL models on both MIL benchmark dataset and

representative WSI datasets. We also propose to make use

of self-supervised contrastive learning in MIL models and

to incorporate multiscale features. Our method further in-

tegrates the proposed aggregator, contrastive learning, and

multiscale features into a MIL model for WSI classification.

By casting tumor detection in WSI as a MIL problem, our

solution has the potential for real-world clinical applications

where large amount of unannotated slides are available. We

believe our work provides a solid step forward for both MIL

and computational histopathology.

Future research includes designing self-supervised learn-

ing strategies that adapt to the characteristics of histopatho-

logical data. Moreover, mechanisms that model the spatial

relations can be integrated to capture macroscale features in

WSI that are spatially structured and could potentially lead

to further improvement.
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