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Abstract

Learning discriminative representation using large-

scale face datasets in the wild is crucial for real-world ap-

plications, yet it remains challenging. The difficulties lie in

many aspects and this work focus on computing resource

constraint and long-tailed class distribution. Recently,

classification-based representation learning with deep neu-

ral networks and well-designed losses have demonstrated

good recognition performance. However, the computing

and memory cost linearly scales up to the number of iden-

tities (classes) in the training set, and the learning process

suffers from unbalanced classes. In this work, we propose

a dynamic class queue (DCQ) to tackle these two problems.

Specifically, for each iteration during training, a subset of

classes for recognition are dynamically selected and their

class weights are dynamically generated on-the-fly which

are stored in a queue. Since only a subset of classes is

selected for each iteration, the computing requirement is

reduced. By using a single server without model paral-

lel, we empirically verify in large-scale datasets that 10%

of classes are sufficient to achieve similar performance as

using all classes. Moreover, the class weights are dynam-

ically generated in a few-shot manner and therefore suit-

able for tail classes with only a few instances. We show

clear improvement over a strong baseline in the largest pub-

lic dataset Megaface Challenge2 (MF2) which has 672K

identities and over 88% of them have less than 10 in-

stances. Code is available at https://github.com/

bilylee/DCQ

1. Introduction

Recently, face recognition has witnessed great progress

along with the development of deep neural networks and

large-scale datasets. The size of the public training set has

*Corresponding to Bi Li and Teng Xi. Equal contribution.

"

Class Queue

enter

leave

"

FC Layer

!

weight
generation

"′

SGD update

all classes vs. subset

SGD-update vs. feedforward generation

(a) FC-based (b) DCQ-based

Figure 1. High-level comparison between the fully connected layer

(FC layer) used in classification and the proposed DCQ module.

Generally, there are two differences. 1) For the FC layer, all

classes in the training dataset are included in the FC layer (each

row in the FC layer represents a class weight). While for DCQ,

only a subset is used. 2) The class weights in the FC layer are ran-

domly initialized and then updated via SGD. In contrast, DCQ gets

the class weights in a few-shot manner based on another instance

x
′ with the same identity as input x.

been steadily increasing from CASIA-Webface[27] (10K

identity, 0.5M instance) → MS-Celeb-1M[7] (100K iden-

tity, 5M instance) → MF2[19] (672K identity, 4.7M in-

stance). For commercial applications, the training dataset

easily scales up to millions of identities and it is a matter of

time to reach billions of identities.

More data brings better performance. However, the

training difficulty accumulates along with the growth of

the training data. First of all, it simply needs more com-

puting resources. For classification-based methods, where

each identity is taken as a class and the feature extractor

is learned through the classification task, the memory con-

sumption of the fully connected layer W ∈ R
D×C linearly

scales up to the number of identities C in the training set.

So is the cost to compute the matrix multiplication between

the FC layer and the input feature. Secondly, for data gath-

ered in the real world, the class distribution is typically

long-tailed, that is, some classes have abundant instances
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(head classes) while most classes have few instances (tail

classes). For example, the MF2 dataset contains images

gathered from Flickr, and over 88% of identities have less

than 10 images. As witnessed by various studies[2, 29, 33],

long-tailed classification is itself a challenging problem.

To tackle the computing resource constraint, one option

is to adopt pairwise-based methods which have the bene-

fits of being class-number agnostic and therefore can be po-

tentially extended to datasets with an arbitrary number of

identities. However, the pair sampling mechanism is crit-

ical for this method to achieve good performance[21] and

it takes a much longer time to converge. Another option

is to dynamically reduce the number of classes used during

training. Zhang et al.[30] propose to use a hashing forest to

partition the space of class weights into small cells. Given

a training sample x, they walk through the forest to find the

closest cell and use classes within as the FC Layer. Con-

current with our work, An et al.[1] demonstrate that ran-

domly sampling classes from all classes can also achieve

matching performance as using all classes. These methods

can largely reduce the computational cost by using a sub-

set of classes for computing the matrix multiplication and

the softmax function. However, they still require all class

weights to be stored in the memory. [30] uses a parame-

ter server to overcome this problem while [1] uses model

parallel1 to distribute the class weights into several GPUs.

Moreover, since the class weights W are updated by SGD,

they also need to store all optimization-related stats of the

class weights such as the momentum in memory.

As for long-tailed class distribution, a simple solution

would be removing tail classes such that the class distribu-

tion is balanced. However, the full potential of the training

data is undermined in this way. Another option is to use

class-based sampling during training, i.e. sampling classes

with equal probability[3]. However, as demonstrated in

our experiment, this is not necessary and even harmful for

our method. Zhong et al.[33] propose a two-stage train-

ing mechanism where the model is firstly trained with only

the head classes and then finetuned with both head and tail

classes. As noted by the authors, the second stage needs

careful manual tuning to achieve good performance. It is

of interest to design methods that require only single-stage

training.

In this work, we propose a single-stage method that is

computationally efficient and has low memory consump-

tion. The key innovation is to design a dynamic class queue.

The meaning of “dynamic” is two-fold. First, the class sub-

set used for classification is dynamically selected. The com-

putational cost is reduced since only a part of the classes

are involved in the computation. Second, the class weights

are dynamically generated on-the-fly instead of learning via

1It splits the model into parts and places them in different GPUs to meet

memory constraints.

SGD. Since the class weight is dynamically generated at

each iteration, it does not require storing all class weights

or optimization-related stats in the memory. These class

weights are stored in a queue where the queue size can be

10x smaller than all classes in our experiments. Importantly,

the class weights are dynamically generated in a few-shot

way which is friendly to tail classes and therefore helpful

for training long-tailed datasets. For a visual illustration of

the proposed method, please refer to Figure 1.

We empirically verify that the proposed method is ef-

fective and efficient. By using a single server and less than

9GB memory per GPU card without model parallel, the pro-

posed method uses 10% of classes while still achieving sim-

ilar performance as the baseline which uses all classes in the

large-scale dataset (MS1MV2[5]). The proposed method

is most useful in the real-world long-tailed dataset. We

demonstrate this on the MF2[19] dataset which outperforms

a strong baseline by 0.75% (absolute change) in identifica-

tion and 1.72% in verification tasks with only 10% classes.

2. Related Work

Pairwise-loss based. A straightforward way to learn the

representation is by sampling pair or triplet samples[4, 11,

25] and minimize the pairwise losses. The simplest form

of pairwise loss is verification loss which samples two im-

ages at a time and minimizes the L2 distance when the two

images come from the same identity, otherwise enforces

a margin. FaceNet[21] adopts triplet loss which samples

three images at a time, an anchor image A, a positive im-

age P and a negative image N , and the relative distance

d(A,P ) − d(A,N) should be minimized below a mar-

gin. Our work can be interpreted in the pairwise-loss-based

framework. The difference is, instead of using only nega-

tives from the current batch, we build a class queue that is

much larger than the batch and is dynamically updated by

the samples in the batch.

Classification based. Recently, classification based rep-

resentation learning have been actively exploited in face

recognition[26, 15, 23, 24, 5]. To ensure intra-class com-

pactness, [26] proposes the center loss to penalize the dis-

tance between the image feature and the corresponding

class center. For inter-class dispersion, the feature extractor

is also constrained by the entropy loss. SphereFace[15, 16]

notice that the entropy loss can be reinterpreted in a geo-

metric way by l2 normalizing the weights of the last FC

layer and therefore projecting the distance metric to angu-

lar space. An angular margin is then introduced to enforce

inter-class dispersion. CosFace[24] further normalizes both

the weight and the features to remove radial variations and

introduces a cosine margin. Compared to SphereFace[15],

CosFace is more robust during training since it overcomes

the optimization difficulty in the angular space. ArcFace[5]

also notices the training difficulty of SphereFace and pro-
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Figure 2. The framework of the proposed method. Given two images of the same identities, the reference image passes through the

weight generator to get the class weight and update the class queue. The sample image is embedded by the feature extractor, then classified

by the class queue and supervised by the classification loss. During backward pass, the gradients update the feature extractor. The weight

generator is updated by the moving average of the feature extractor.

poses an additive angular margin.

Momentum-based model update. Feature drift has

been one of the key challenges to maintain a mem-

ory(queue) that works across the batch. Recently, He et

al.[8] propose a momentum-based method to keep the fea-

tures consistent in the memory and largely reduced the gap

between supervised and unsupervised learning. Du et al.[6]

notice the shallow face problem in face recognition and pro-

pose to use the momentum-based update to keep the class

weights different from sample features. Their method bears

similarities with our work in that class weights are gener-

ated in a feedforward manner based on a support image.

Nevertheless, the main goal of this work is to design meth-

ods for training with large-scale datasets in the wild, there-

fore we focus on the long-tailed problem and propose to use

a subset of classes for large-scale training.

3. Method

In this section, we first introduce the preliminaries

(Sec. 3.1) and introduce the difficulties faced in training

large-scale datasets (Sec. 3.2), then introduce the proposed

dynamic class queue in detail (Sec. 3.3). For a visual illus-

tration of the proposed method, please refer to Figure. 2.

3.1. Preliminaries

Classification-based Representation Learning. Given

a training dataset T , {(xi, yi), i ∈ {1, 2, · · · , N}}, where

N = |T | is number of images in T , xi ∈ R
H×W×3 is a face

image and yi ∈ Y = {1, 2, .., C} is the corresponding face

identity encoded via one-hot vector. C is the total num-

ber of identities which can be over millions in large-scale

Algorithm 1 Pseudocode of DCQ.

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenate.

# f & g: feature extractor & weight generator network
# w_queue: class weights queue of length K (CxK)
# l_queue: class label queue of length K (1xK)
# a: momentum
# s & m: scale and margin in CosFace loss
g.params = f.params # initialize
for (x_t, x_w, y) in loader:

# x_t: test sample, x_w: reference sample
# y: class labels of x_t
t = f.forward(x_t) # test features: NxC
w = g.forward(x_w) # class weights: NxC
w = w.detach() # no gradient to class weights

# positive and negative logits
l_pos = bmm(t.view(N,1,C), w.view(N,C,1)) # NX1
l_neg = mm(q.view(N,C), w_queue.view(C,K)) # NxK

# mute duplicate responses in the queue
l_diff = y - l_queue # N x K
l_neg = l_neg.masked_fill(l_diff == 0, -1e9)

# CosFace Loss
l_pos = l_pos - m # add margin
logits = cat([l_pos, l_neg], dim=1)
logits *= s # add scale
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits, labels)

# SGD update and momentum update
loss.backward()
update(f.params)
g.params = a*g.params+(1-a)*f.params

# update queue, first in first out
enqueue(w_queue, w)
enqueue(l_queue, y)
dequeue(w_queue)
dequeue(l_queue)

datasets. To learn a feature extractor ϕφ(·) with learnable

parameters φ, images are first encoded by the feature extrac-

tor f = ϕφ(x) ∈ R
D. Then, they are classified by a linear

layer (fully connected layer) with weight W ∈ R
D×C , that
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is ŷ = WTϕφ(x). The feature extractor is trained by min-

imizing the loss: argminφ,W
1
N

∑N
i=1 L(W

Tϕφ(xi), yi)
where L(ŷ, y) measures the discrepancy between the pre-

dicted value ŷ and the groundtruth y. Cross entropy loss is

typically used for classification task. However, it is found

that a variant of cross entropy loss which first projecting the

feature f and the linear classifier W into the spherical space

and add large cosine margin, the model can learn more dis-

criminative features for face recognition. Specifically, in

this work, we adopt the loss function used in CosFace[24],

that is:

L = − ln
es(cos(θy)−m)

es(cos(θy)−m) +
∑

j∈Y/{y} e
s cos(θj)

(1)

where cos(θ) = ( W
||W || )

T f
||f || ∈ R

C , cos(θj) is the j-

th value. Y/{y} are all classes excluding the groundtruth

y. s and m are hyperparameters, s controls the scale and

m is the cosine margin. Note that the proposed method is

not limited to CosFace and can be applied to any other loss

functions such as ArcFace[5].

The loss is minimized via stochastic gradient descent

(SGD). During evaluation, the FC layer is removed and

only the feature extractor is used. The learned representa-

tion can be used for either face verification by thresholding

the distance between the test and the reference face, or face

identification by searching the nearest neighbor in a face

database.

Feedforward weight generation The class weights w
in the FC layer are randomly initialized and iteratively up-

dated via SGD. This is beneficial for classes with sufficient

training samples. However, it struggles with tail classes. In

this work, we would like to generate the class weights in a

feedforward manner and on-the-fly at each iteration. More-

over, it should be friendly to tail classes with few instances.

We tackle this problem by following the few-shot learning

or meta-learning methodology. Given a support image (or

reference image) x′ from the same identity as the query im-

age x, it learns a weight generator function g(·) such that

w = g(x′).

3.2. Training Difficulties for largescale Datasets

Hardware constraints. In the above classification-

based framework, the size of the classifier weight W ∈
R

D×C linearly increases with the number of identities in

the training dataset C. This can be problematic for large-

scale face recognition with a large number of identities. The

FC layer easily exceeds the memory limit of the GPU and

solely computes the ŷ = WTϕφ(x) will dominate the com-

putation cost.

Learning Difficulties. Even if the computing and mem-

ory resource is unlimited, the learning process faces intrin-

sic difficulties. To illustrate, we use cross entropy loss as an

example. The reasoning holds for other cross entropy based

variants such as CosFace and ArcFace, et al.

During training, given a sample x, we can get its pre-

dictions ŷ = WTϕφ(x) ∈ R
C . The predictions are

then normalized into probabilities by a softmax function:

pi = eŷi
∑

j eŷj
which has properties

∑C
i=1 pi = 1 and

pi ≥ 0. Denote the probability of the groundtruth as p+

and others as p−j . Without loss of generality, we have p =

[p+, p−1 , p
−
2 , ..., p

−
C−1]. Correspondingly, the FC layer can

be represented as W = [w+, w−
1 , w

−
2 , ..., w

−
C−1]. The cross

entropy loss of the predictions is then LCE = − log p+.

Notice that even though only p+ is used in the cross entropy

loss, the predictions of other classes are implicitly contained

in the denominator of p+ due to the softmax function.

Then, the gradients of the cross entropy loss L with re-

spect to the feature f and the weights in the FC layer are:

∂L

∂f
= −(1− p+)w+ +

∑

i

p−i w
−
i (2)

∂L

∂w+
= −(1− p+)f (3)

∂L

∂w−
j

= p−j f (4)

Intuitively, these gradients show the “pull” and “push”

forces caused by the positive and negative class weights

and samples. For example, the feature f is updated by

the total forces of positive and negative classes. The pos-

itive class weights w+ are pulled to the feature f while

the negative class weights w− are pushed away from f .

The probabilities p indicates the strength of these forces.

Interestingly, the gradient of the feature is balanced since

(1− p+) =
∑

i p
−
i .

Now lets focus on the update of a single class weight w.

Through the training process, it is pushed away by samples

from other classes and pulled close to its instances, that is,

w = w0 +
∑

a∈C+

(1− p+a )fa −
∑

b∈C−

p−b fb (5)

Where C+ represents all instances belong to this class ac-

coutered during training and C− represents instances of

other classes. w0 is the random initialization. Learning

rates are omitted.

This can be problematic for large-scale datasets in the

wild. For large-scale datasets, the classes are typically long-

tailed. That is, some classes have abundant instances while

most classes contain only few instances. Therefore, for tail

classes with only few instances, their class weights are dom-

inated by push-away updates and cannot represents their in-

stances.
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Figure 3. The illustration of the learning difficulty.

3.3. Dynamic Class Queue

In this work, we design a dynamic class queue module

to tackle all the above difficulties: 1) computational and 2)

memory cost of using all classes and 3) long-tailed class

distribution. Two crucial points of the proposed method are:

First, the classes used for classification are dynamically se-

lected. Second, the class weights are dynamically generated

on-the-fly instead of randomly initialized and then updated

via SGD. Since only a subset of classes is used at each iter-

ation, the computational cost is largely reduced. Moreover,

the class weights are dynamically generated at each itera-

tion and therefore do not require storing all class weights in

the memory. Finally, the class weights are generated in a

few-shot manner and friendly to tail classes.

Dynamic Class Selection. The key idea behind dy-

namic class selection is that since the model is optimized

via stochastic gradient descent and the training process pro-

ceeds in a batch-wise way, therefore not all classes are

needed in one batch. Let XB = {x1, x2, ..., xB} be a batch

of images during training, and YB be their corresponding

identity labels. Let YS be a set of classes used for classifi-

cation, it is clear that YB ⊆ YS ⊆ Y . Accordingly, we can

rewrite eq. 1 by substituting all classes Y with a subset YS :

LS = − ln
es(cos(θy)−m)

es(cos(θy)−m) +
∑

j∈YS/{y} e
s cos(θj)

(6)

Now, the question is how to design the class set YS? A

trivial solution will be setting YS = Y , that is, using all

classes in the training set. However, to overcome the scaling

problem, we would like a class set that is much smaller than

all classes, i.e., |YS | ≪ |Y|. Since the classes of images in

the batch YB change for every batch, it means YS should

be dynamically updated every iteration during training. We

call YS the dynamic class set.

Concurrent with our work, An et al.[1] indicates that

random sampling a subset of classes performs as well as

using all classes. Let Yt
S be the dynamic class set at iter-

ation t, by using random sampling we have Yt
S = Yt

B ∪
Sample(Y/Yt

B ,K). Further more,we notice that instead of

using totally different classes at each iteration, we can build

a queue with size B+K and update B element of the queue

at each iteration. That is,

Yt
S = Yt

B ∪ Yt−1
B ∪ Yt−1

S /Yoldest
B . (7)

where Yoldest
B is the oldest batch in the queue (i.e., first in

first out). Since Yt
B is randomly sampled at each batch,

therefore the classes in the queue can be seen as a random

sampling from all classes.

The queue-based dynamic class selection is important in

our work because the class weights are dynamically gener-

ated. By reusing the K class weights in the queue (only B
class weights are updated), the computation for getting all

the selected class weights is greatly reduced. However, two

problems need to be solved to make it work. One is that

duplicate classes may exist in the queue. We overcome this

problem by setting the logits to −∞ for duplicate classes

(Refer to Algorithm 1 for details). Another problem with

reusing the class weights is that these weights are gener-

ated at earlier iterations and may have feature drift. We will

tackle this problem in the following subsection.

Dynamic Class Generation. There are various meth-

ods in the meta-learning literature to design the mapping

function, we will adopt the simplest one in this work which

already demonstrates good performance empirically. Note

that the design of the mapping function is orthogonal to

other components in this work and we expect better per-

formance with the development in the meta-learning field.

Specifically, we adopt the siamese network and therefore

g(·) = ϕφ(·) where ϕφ(·) is the feature extractor. We

have also tried prototypical network which takes the mean

of several support samples as the class weight, i.e. w =
1
n

∑n
i=1 ϕφ(x

′
i), however it does not demonstrate better

performance. We emphasize that class weight generated via

meta learning is friendly to tail classes as it is agnostic to the

number of samples in the class.

One problem with the current class weight generation

method is that since we reuse the K class weights in the

queue which are generated in earlier iterations during train-

ing, they may have different feature distribution compared

to the recently generated class weights. Therefore, the

model can easily discriminate between the positive classes

(which are generated in the current batch) and the negative

classes (which are reused in the queue) and the learned fea-

ture is not discriminative. To overcome this problem, we

need to bridge the feature gap between class weights gener-

ated at different time steps. Recently, He et al.[8] proposes

to mitigate the feature drift problem by taking the moving

average of the neural network parameters. We adopt this

method in this work. Specifically, at one iteration, the fea-

ture extractor is first updated via SGD, we then take the

moving average of parameters of the feature extractor as the

weight generator. That is,

φ′
t = αφ′

t−1 + (1− α)φt (8)

where φ′
t is the parameter of the weight generator at time t

and φt is the parameters of the feature extractor updated by

SGD, α is the momentum hyperparameter.
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Figure 4. The effects of the queue size. The x-axis is the queue

size 2048 × 2
x. The y-axis is the verification accuracies on six

benchmarks. The red dotted line is the CosFace baseline using

all classes. Models are trained on MS1MV2 with ResNet50 back-

bone. Experiments are repeated 3 times and we report the mean.

4. Experiment

4.1. Experimental Setup

Training Dataset. To evaluate different aspects of the

proposed method, two large-scale datasets are used re-

spectively. For training under clean dataset with balanced

classes, we use MS1MV2[5]. It is a cleaned version of

MS-1M-Celeb[7]. This dataset contains images of celebri-

ties which consists of 85K identities and 5.8M images. It

has balanced classes, each identity has about 100 images

on average. For training with the long-tailed dataset, we

use the training set of Megaface Challenge 2 (MF2)[19].

This is one of the largest datasets publicly available. It has

672K identities and 4.7M images, each identity has 7 im-

ages on average. Unlike MS1MV2, the images of MF2 are

collected from Flickr and most of them are common peo-

ple. In MF2, the classes are long-tail distributed, 88.42% of

identities have less than 10 images.

Training Settings. Two ResNet[10] backbones with dif-

ferent depth are used for feature extraction: ResNet50 and

ResNet101. For fair comparison, we adopt the backbone

improvements (remove the first pooling operation, change

ReLU[18] to PReLU[9], etc.) proposed in [5]. The mod-

els are trained using SGD with momentum 0.9 and weight

decay 0.0001. The batch size is 512. For the CosFace base-

line, the initial learning rate is 0.1. For DCQ, it is 0.06.

Both methods follow the same learning rate schedule. For

MS1MV2, the learning rate is decreased 10x at epoch 8, 16,

and 18. The total epoch is 20. For MF2, the learning rate is

decreased at epoch 25, 35, 38, for a total of 40 epochs.

Hyperparameters. The feature dimension of all models

is 512. For our baseline model, we use the same hyperpa-

rameters as the ones proposed in the CosFace[24]. The scale

and the margin in the loss function are 64 and 0.35. For our

DCQ model, we find that smaller scale and margin result

in better performance (not the case for our baseline model),

therefore we use scale 50 and margin 0.3. The momentum

α in Equation 8 is set to 0.999.

Data Preprocessing. We use MTCNN[28] to locate 5

facial landmarks and use them to normalize the face to a

canonical position. The normalized face is then cropped

and resized to 112x112. During training, the RGB values

are normalized to the range (-1, 1) by subtracting 127.5

and then dividing by 128. For training on MS1MV2, we

use only flipping augmentation with probability 50%. For

MF2, besides flipping, we also use monochrome augmenta-

tion with probability 20%.

Testing Settings. During testing, following [5] features

of the original image and the flipped image are averaged as

the final testing feature. Cosine distance of the features is

used. A single crop is used for all tests. We tests our models

on standard verification benchmarks including LFW[12],

CFP-FF, CFP-FP[22], AGEDB-30[17], CALFW[32] and

CPLFW[31]. Moreover, the model is evaluated on the test

set of the Megaface Challenge 2. The test set includes two

tasks: identification and verification. For the identification

task, it has 1M distractors (disjoint with the MF2 training

set) in the gallery set and 100K images from FaceScrub[20]

as the probe set.

4.2. Exploratory Experiments

Dynamic Class Queue works as well as using all

classes. One of the most important questions in this work

is how does DCQ perform compared to baselines using

all classes during training? To answer this question, we

compare DCQ with baselines by training on the MS1MV2

dataset. Although MS1MV2 has identities as large as 85K,

it is still possible to fit the whole FC layer into GPU mem-

ory and therefore suitable for training our baselines without

compromise. Moreover, this dataset is class-balanced and

allows us to focus on the approximation ability of the dy-

namic class queue without considering the long-tail effect

(which will be discussed in MF2 based experiments).

For fast experimentation, we use ResNet50 as the back-

bone. The performance of DCQ with different queue sizes

is shown in Figure 4. As can be seen, the recognition per-

formance steadily improves when the queue size increases

from 2048 to 16384. Notice that when the queue size

is 8192, it has about 10% of all classes (85,742) and al-

ready performs as well as the CosFace baseline using all

classes. By further increasing the queue size, DCQ is able

to outperform the baseline method in LFW, AGEDB-30,

and CALFW while performs slightly worse (within 0.3%)

in CFP-FP and CPLFW. This is likely due to the differ-

ent requirements of intra- and inter- variance in different

benchmarks. We leave more in-depth investigations for fu-

ture works. Nevertheless, DCQ achieves a good balance
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between accuracy and efficiency. As we will show, the ben-

efits of weight generation outweigh the drawbacks of partial

classes and DCQ achieves superior results in the long-tailed

dataset.

Dynamic Class Queue is hardware friendly. One ma-

jor benefit of the proposed method is in terms of computa-

tional cost and memory consumption. We show the GPU

memory used in one card and seconds per batch in Ta-

ble 1. Both methods are trained on the MF2 dataset. During

training, the CosFace has 642,962 classes and the DCQ has

queue size 65,536. As we will show, using 10% of classes

can outperform the baseline in the MF2 dataset. ResNet50

is used as the backbone and batch size is 512. Data loading

time is removed. Code runs on a single server with 8 V100

32G GPU cards.

Table 1. Time and memory comparison.
model Classes Time (Sec/batch) Memory (MB)

CosFace 642,962 0.291 18,621

DCQ 65,536 0.245 8,435

DCQ works well for the long-tailed dataset. We have

just verified the effectiveness of DCQ on a clean and bal-

anced dataset, MS1MV2. Now, we will let DCQ go through

the real test: MF2. MF2 is by far the public dataset with

the largest number of identities: 672K, which has about

8x more identities than MS1MV2 (85K). Moreover, it is

a long-tailed dataset, over 80% identities have less than 10

images. It is representative of datasets used in real applica-

tions. Models are trained with ResNet50 backbone and then

tested on the test set of the Megaface Challenge2.

Table 2. Comparison on training with long-tailed dataset: MF2

model MF2 Id. (%) MF2 Ver.(%) LFW AGEDB-30 CPLFW

CosFace-h9 77.10 86.75 99.58 90.35 88.60

CosFace-all 77.24 87.56 99.60 90.27 88.52

DCQ 77.99 89.28 99.58 91.07 90.12

We compare with two baselines, CosFace-h9 is trained

only on the head classes with instances ≥ 9, which has

100K classes and 2.2M images. CosFace-all is trained with

all classes. Our DCQ model uses 10% of all classes. The

results are shown in Table 2. Notice that simply remov-

ing all tail classes degrades the final performance. On the

other hand, by adopting the proposed DCQ method, with

only 10% of all classes, it is able to outperform the base-

line 0.75% in identification and 1.72% in verification. This

demonstrates the effectiveness of DCQ in the long-tailed

dataset. Moreover, the improvement is consistent in LFW,

AGEDB-30, and CPLFW benchmarks.

Momentum update is very important. The central de-

sign of this work is to maintain a queue that contains class

weights generated on-the-fly at different iterations during

training. To investigate the importance of smoothing the

feature drift, we use different momentums α to train our
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Figure 5. The effects of momentum update with different mo-

mentum α. The x-axis is 1 - α and in log scale. The y-axis is the

verification accuracies. The DCQ model is trained on MS1MV2

with ResNet50 backbone. The queue size 65,536.

DCQ model with the ResNet50 backbone. Intuitively, when

α is as small as 0, there is no feature smoothing between dif-

ferent iterations. On the other hand, when α is as large as 1,

the feature extractor will remain unchanged and cant reflect

the current feature distribution. Since the feature drift prob-

lem is more evident when the queue is large, we use queue

size 65,536 and train the model on MS1MV2.

The performance on LFW, CFP-FP, AGEDB-30, and

CPLFW with different momentums are presented in Fig-

ure 5. As can be seen, as the moving average α increases

from 0.9 (the right side of the figure), the accuracies are

consistently improved on all datasets and saturate at 0.999
(the left side of the figure). This demonstrates the impor-

tance of momentum update for mitigating the feature drift.

Note that the momentum has different impacts on different

datasets. For LFW, the influence is marginal while for other

datasets the improvement can be over 6%. This implies that

LFW is a relatively easy testing benchmark compared to

other datasets and does not require very strong features.

Instance-based is better than class-based sampling

for DCQ. For long-tailed datasets, one common practice

is to adopt class-based sampling, that is, all classes are sam-

pled with equal probability. This is in contrast to instance-

based sampling where all images are sampled equally and

therefore tail classes with more images are more likely to

be sampled. Interestingly, the proposed DCQ model per-

forms better with instance-based sampling even in long-

tailed dataset as shown in Table 3. One possible explana-

tion is that class-balanced sampling is good for learning the

classifier (e.g. the FC layer) since all classes are equally

sampled without bias. However, it is bad for representation

learning which requires diversity in the training data, and in-

creasing the probability of sampling tail classes just means

the same data are repeated several times. Since the DCQ

model does not need to learn the classifier which is directly

generated, it is beneficial to use instance-based sampling.
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Table 3. Comparisons between instance- and class- sampling,
model MF2 Id.(%) MF2 Ver.(%) LFW AGEDB-30 CPLFW

DCQ-cls 76.78 88.44 99.51 90.55 89.42

DCQ-ins 77.99 89.28 99.58 91.07 90.12

DCQ converges as fast as CosFace in the balanced

dataset and faster in the long-tailed dataset. Since the

class queue is randomly assembled and changes after each

iteration, one concern is about the convergence speed of

DCQ. To investigate this problem, we train ResNet50 back-

bones with CosFace and DCQ using the same training set-

tings (optimizer, number of epochs, and learning rate sched-

ule). These settings are adopted following the best prac-

tice of training CosFace, we do no tune them for DCQ. For

DCQ, we use 10% classes. The performance of each epoch

is shown in Figure. As can be seen, DCQ converges as fast

as CosFace in MS1MV2 (balanced dataset) and faster in

MF2 (long-tailed dataset). This is beneficial for the long-

tailed dataset in the wild.

5 10 15

0.93

0.94

0.95

0.96

0.97

0.98

Train: MS1MV2, Test: AGEDB-30

CosFace

DCQ

10 20 30 40

0.78

0.80

0.82

0.84

0.86

0.88

Train: MF2, Test: MF2 Ver.

CosFace

DCQ

Figure 6. Convergence comparisons. The x-axis is the epoch.

The y-axis is the verification accuracy. The left is trained on

MS1MV2 and tested on AGEDB-30 while the right is trained on

MF2 and tested on the verfication benchmark of MF2.

5. State-of-the-art Comparisons

In this section, we compare DCQ with state-of-the-art

methods to give readers an idea of how good the proposed

method is in the face recognition field. Yet we emphasize

that achieving the best recognition performance is not the

focus of this work. Instead, we aim for a new paradigm for

face recognition in the wild with large-scale datasets. The

proposed method is general enough to easily combine with

other methods (ArcFace loss, Curriculum Learning, etc.) to

further boost the performance. Without bells and whistles,

the proposed method is already competitive with other state-

of-the-art methods.

Comparisons on MS1MV2. We train models on the

MS1MV2 dataset and test them on standard benchmarks.

Following most SOTA methods, we use ResNet101 as the

backbone. The results are shown in Table 4. As can be seen,

our method performs on par with most SOTA methods. In

particular, Partial FC is a recently proposed method that re-

duces computations by randomly sampling classes at each

iteration and bears similarities with our method. The major

difference is that in PartialFC, class weights are learned via

SGD while we directly generate them via one-shot learn-

ing. We achieve a similar performance as the partial FC.

This implies that directly generates class weights on-the-fly

works as well as learning them via SGD. The extra benefit

of DCQ is that it requires less GPU memory during training

since Partial FC needs to store all class weights in the GPU

through model parallel.

Table 4. SOTA comparisons on models trained with MS1MV2.
model LFW CFP-FP AGEDB-30 CALFW CPLFW

CosFace[24] 99.43 - - 90.57 84.00

ArcFace[5] 99.82 98.27 - 95.45 92.08

GroupFace[14] 99.85 98.63 98.28 96.20 93.17

CurricularFace[13] 99.80 98.37 98.32 96.20 93.13

PartialFC-r1.0[1] 99.83 98.51 98.03 96.20 93.10

PartialFC-r0.1[1] 99.82 98.60 98.13 96.12 92.90

CosFace(ours) 99.78 98.38 98.22 96.20 93.15

DCQ(ours) 99.80 98.44 98.23 96.07 92.87

Comparisons on MF2. We train models on the MF2

dataset and test them on the test set of MF2. For a fair

comparison with other methods, ResNet50 is used as the

backbone. The results are shown in Table 5. As can be

seen, the proposed DCQ outperforms most SOTA methods.

NRA+CD achieves better performance than our method

with multi-stage training and careful noise reduction in the

MF2 dataset. In fact, the NRA+CD is orthogonal to our

method and should further improve the performance when

combined together.

Table 5. SOTA comparisons on models trained with MF2.
model MF2 Id.(%) MF2 Ver.(%)

3DiVi 57.05 66.46

NEC 62.12 66.85

RangeLoss 69.54 82.67

SphereFace 71.17 84.22

GRCCV 75.77 74.84

Yang Sun 75.79 84.03

CosFace[24] 74.11 86.77

NRA+CD[33] 80.02 89.93

CosFace(Ours) 77.24 87.56

DCQ(Ours) 77.99 89.28

6. Conclusion

In this work, we propose a new framework for training

with large-scale datasets in the wild. Specifically, two chal-

lenging problems, i.e., hardware constraints and long-tailed

classes, are solved simultaneously in a unified way via the

dynamic class queue. In essence, the proposed method dy-

namically selects classes for classification which reduces

the computing cost and dynamically generates class weights

which saves memory and overcomes the long-tail issue.

The DCQ model is empirically validated on two large-scale

datasets where it achieves similar performance as using all

classes in the balanced dataset and better performance in the

long-tailed dataset.
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