
Dynamic Slimmable Network

Changlin Li1 Guangrun Wang2 Bing Wang3 Xiaodan Liang4 Zhihui Li5 Xiaojun Chang1∗

1 GORSE Lab, Dept. of DSAI, Monash University 2 Univeristy of Oxford 3 Alibaba Group
4 Sun Yat-Sen University 5 Shandong Artificial Intelligence, Qilu University of Technology

changlin.li@monash.edu, wanggrun@gmail.com, fengquan.wb@alibaba-inc.com,

xdliang328@gmail.com, zhihuilics@gmail.com, xiaojun.chang@monash.edu

Abstract

Current dynamic networks and dynamic pruning methods

have shown their promising capability in reducing theo-

retical computation complexity. However, dynamic sparse

patterns on convolutional filters fail to achieve actual ac-

celeration in real-world implementation, due to the extra

burden of indexing, weight-copying, or zero-masking. Here,

we explore a dynamic network slimming regime, named Dy-

namic Slimmable Network (DS-Net), which aims to achieve

good hardware-efficiency via dynamically adjusting filter

numbers of networks at test time with respect to different

inputs, while keeping filters stored statically and contigu-

ously in hardware to prevent the extra burden. Our DS-Net

is empowered with the ability of dynamic inference by the

proposed double-headed dynamic gate that comprises an

attention head and a slimming head to predictively adjust

network width with negligible extra computation cost. To

ensure generality of each candidate architecture and the

fairness of gate, we propose a disentangled two-stage train-

ing scheme inspired by one-shot NAS. In the first stage, a

novel training technique for weight-sharing networks named

In-place Ensemble Bootstrapping is proposed to improve the

supernet training efficacy. In the second stage, Sandwich

Gate Sparsification is proposed to assist the gate training

by identifying easy and hard samples in an online way. Ex-

tensive experiments demonstrate our DS-Net consistently

outperforms its static counterparts as well as state-of-the-art

static and dynamic model compression methods by a large

margin (up to 5.9%). Typically, DS-Net achieves 2-4× com-

putation reduction and 1.62× real-world acceleration over

ResNet-50 and MobileNet with minimal accuracy drops on

ImageNet.1

1. Introduction

As deep neural networks are becoming deeper and wider

to achieve higher performance, there is an urgent need to

∗Corresponding author.
1Code release: https://github.com/changlin31/DS-Net

200 300 400 500
MAdds (Millions)

62

64

66

68

70

72

74

To
p-

1
Ac

cu
ra

cy
 (%

)

Accuracy vs MAdds

DS-Net (Ours)
US-Net

Figure 1. Universally accuracy-complexity comparison of our DS-

Net and Universally Slimmable Network (US-Net) [66] (based on

MobileNetV1 [23]).

Table 1. Latency comparison of ResNet-50 with 25% channels

(on GeForce RTX 2080 Ti). Both masking and indexing lead to

inefficient computation waste, while slicing achieves comparable

acceleration with ideal (the individual ResNet-50 0.25×).

method full masking indexing slicing (ours) ideal

latency 12.2 ms 12.4ms 16.6 ms 7.9 ms 7.2 ms

explore efficient models for common mobile platforms, such

as self-driving cars, smartphones, drones and robots. In

recent years, many different approaches have been pro-

posed to improve the inference efficiency of neural net-

works, including network pruning [40, 47, 19, 20, 48, 50],

weight quantization [30], knowledge distillation [2, 52, 21],

manually and automatically designing of efficient net-

works [56, 53, 71, 51, 3, 69, 10, 16, 38, 70] and dynamic

inference [4, 27, 59, 58, 41, 26, 13, 9].

Among the above approaches, dynamic inference meth-

ods have attracted increasing attention because of their

promising capability of reducing computational redundancy

by automatically adjusting their architecture with respect to

different inputs. As illustrated in Fig. 2 right, the dynamic

network learns to configure different architecture routing

adaptively for each input, instead of optimizing the archi-

tecture among the whole dataset like Neural Architecture

Search (NAS) or Pruning. A performance-complexity trade-

8607

0

1
Accuracy

MAdds (B)

easy & hard
static nets
dynamic nets

Gate

Easy samples

Hard samples

Less Computation

More Computation

Goldfish

Figure 2. The motivation for designing dynamic networks

to achieve efficient inference. Left: A simulation diagram

of accuracy-complexity comparing a series of static networks

(searched by NAS) with 20 dynamic inference schemes of dif-

ferent resource allocate proportion for easy and hard samples on a

hypothetical classification dataset with evenly distributed easy and

hard samples. Right: Illustration of dynamic networks on efficient

inference. Input images are routed to use different architectures

regarding their classification difficulty.

off simulated with exponential functions is shown in Fig. 2

left, the optimal solution of dynamic networks is superior to

the static NAS or pruning solution. Ideally, dynamic network

routing can significantly improve model performance under

certain complexity constraints.

However, networks with dynamic width, i.e., dynamic

pruning methods [13, 26, 9], unlike its orthogonal counter-

parts with dynamic depth, have never achieved actual acceler-

ation in a real-world implementation. As natural extensions

of network pruning, dynamic pruning methods predictively

prune the convolution filters with regard to different input

at runtime. The varying sparse patterns are incompatible

with computation on hardware. Actually, many of them are

implemented as zero masking or inefficient path indexing,

resulting in a massive gap between the theoretical analysis

and the practical acceleration. As shown in Tab. 1, both

masking and indexing lead to inefficient computation waste.

To address the aforementioned issues in dynamic net-

works, we propose Dynamic Slimmable Network (DS-Net),

which achieves good hardware-efficiency via dynamically

adjusting filter numbers of networks at test time with respect

to different inputs. To avoid the extra burden on hardware

caused by dynamic sparsity, we adopt a scheme named dy-

namic slicing to keep filters static and contiguous when

adjusting the network width. Specifically, we propose a

double-headed dynamic gate with an attention head and

a slimming head upon slimmable networks to predictively

adjust the network width with negligible extra computation

cost. The training of dynamic networks is a highly entangled

bilevel optimization problem. To ensure generality of each

candidate’s architecture and the fairness of gate, a disentan-

gled two-stage training scheme inspired by one-shot NAS

is proposed to optimize the supernet and the gates separately.

In the first stage, the slimmable supernet is optimized with a

novel training method for weight-sharing networks, named

In-place Ensemble Bootstrapping (IEB). IEB trains the

smaller sub-networks in the online network to fit the output

logits of an ensemble of larger sub-networks in the momen-

tum target network. Learning from the ensemble of different

sub-networks will reduce the conflict among sub-networks

and increase their generality. Using the exponential mov-

ing average of the online network as the momentum target

network can provide a stable and accurate historical repre-

sentation, and bootstrap the online network and the target

network itself to achieve higher overall performance. In the

second stage, to prevent dynamic gates from collapsing into

static ones in the multiobjective optimization problem, a

technique named Sandwich Gate Sparsification (SGS) is

proposed to assist the gate training. During training, SGS

identifies easy and hard samples online and further generates

the ground truth label for the dynamic gates.

Overall, our contributions are three-fold as follows:

• We propose a new dynamic network routing regime,

achieving good hardware-efficiency by predictively ad-

justing filter numbers of networks at test time with

respect to different inputs. Unlike dynamic pruning

methods, we dynamically slice the network parameters

while keeping them stored statically and contiguously

in hardware to prevent the extra burden of masking,

indexing, and weight-copying. The dynamic routing is

achieved by our proposed double-headed dynamic gate

with negligible extra computation cost.

• We propose a two-stage training scheme with IEB and

SGS techniques for DS-Net. Proved experimentally,

IEB stabilizes the training of slimmable networks and

boosts its accuracy by 1.8% and 0.6% in the slimmest

and widest sub-networks respectively. Moreover, we

empirically show that the SGS technique can effectively

sparsify the dynamic gate and improves the final perfor-

mance of DS-Net by 2%.

• Extensive experiments demonstrate our DS-Net outper-

forms its static counterparts [65, 66] as well as state-of-

the-art static and dynamic model compression methods

by a large margin (up to 5.9%, Fig. 1). Typically, DS-

Net achieves 2-4× computation reduction and 1.62×
real-world acceleration over ResNet-50 and MobileNet

with minimal accuracy drops on ImageNet. Gate visu-

alization proves the high dynamic diversity of DS-Net.

2. Related works

Anytime neural networks [35, 27, 24, 41, 36, 68, 66, 22]

are single networks that can execute with their sub-networks

under different budget constraints, thus can deploy instantly

and adaptively in different application scenarios. Anytime

neural networks have been studied in two orthogonal di-

rections: networks with variable depth and variable width.

Networks with variable depth [35, 27, 24, 41] are first

studied widely, benefiting from the naturally nested struc-

ture in depth dimension and residual connections in ResNet

[18] and DenseNet [28]. Network with variable width was

first studied in [36]. Recently, slimmable networks [68, 66]

using switchable batch normalization and in-place distil-

lation achieve higher performance than their stand-alone

8608

Supernet

...

Gate 1

Stage 1 Stage nStem

Input x

3×H0×W0

C1×H1×W1 n- Cn×Hn×Wn

Output

Pooling & Classifier

Gate n

n1
ρ ρ

ρ
1

Figure 3. Architecture of DS-Net. The width of each supernet stage is adjusted adaptively by the slimming ratio ρ predicted by the gate.

counterparts in any width. Some recent works [6, 67, 22]

also explore anytime neural networks in multiple dimensions,

e.g. depth, width, kernel size, etc.

Dynamic neural networks [58, 59, 43, 62] change their

architectures based on the input data. Dynamic networks

for efficient inference aim to reduce average inference cost

by using different sub-networks adaptively for inputs with

diverse difficulty levels. Networks with dynamic depth

[4, 27, 59, 58, 41] achieve efficient inference in two ways,

early exiting when shallower sub-networks have high classi-

fication confidence [4, 27, 41], or skipping residual blocks

adaptively [59, 58]. Recently, dynamic pruning meth-

ods [26, 13, 9] using a variable subset of convolution filters

have been studied. Channel Gating Neural Network [26] and

FBS [13] identify and skip the unimportant input channels at

run-time. In GaterNet [9], a separate gater network is used

to predictively select the filters of the main network. Please

refer to [17] for a more comprehensive review of dynamic

neural networks.

Weight sharing NAS [5, 1, 3, 45, 7, 61, 16, 38, 6, 39], aim-

ing at designing neural network architectures automatically

and efficiently, has been developing rapidly in recent two

years. They integrate the whole search space of NAS into

a weight sharing supernet and optimize network architec-

ture by pursuing the best-performing sub-networks. These

methods can be roughly divided into two categories: jointly

optimized methods [45, 7, 61], in which the weight of the

supernet is jointly trained with the architecture routing agent

(typically a simple learnable factor for each candidate route);

and one-shot methods [5, 1, 3, 16, 38, 6, 39], in which the

training of the supernet parameters and architecture routing

agent are disentangled. After fair and sufficient training, the

agent is optimized with the weights of supernet frozen.

3. Dynamic Slimmable Network

Our dynamic slimmable network achieves dynamic rout-

ing for different samples by learning a slimmable supernet

and a dynamic gating mechanism. As illustrated in Fig. 3,

the supernet in DS-Net refers to the whole module under-

taking the main task. In contrast, the dynamic gates are a

series of predictive modules that route the input to use sub-

networks with different widths in each stage of the supernet.

In previous dynamic networks [58, 59, 43, 62, 4, 27, 41,

26, 13, 9], the dynamic routing agent and the main net-

work are jointly trained, analogous to jointly optimized NAS

methods [45, 7, 61]. Inspired by one-shot NAS methods

[5, 1, 3, 16, 38], we propose a disentangled two-stage train-

ing scheme to ensure the generality of every path in our

DS-Net. In Stage I, we disable the slimming gate and train

the supernet with the IEB technique, then in Stage II, we fix

the weights of the supernet and train the slimming gate with

the SGS technique.

3.1. Dynamic Supernet

In this section, we first introduce the hardware efficient

channel slicing scheme and our designed supernet, then

present the IEB technique and details of training Stage I.

Supernet and Dynamic Channel Slicing. In some of dy-

namic networks, such as dynamic pruning [26, 13] and con-

ditional convolution [62, 42], the convolution filters W are

conditionally parameterized by a function A(θ,X) to the

input X . Generally, the dynamic convolution has a form of:

Y = WA(θ,X) ∗ X , (1)

where WA(θ,X) represents the selected or generated input-

dependent convolution filters. Here ∗ is used to denote a

matrix multiplication. Previous dynamic pruning methods

[26, 13] reduce theoretical computation cost by varying the

channel sparsity pattern according to the input. However,

they fail to achieve real-world acceleration because their

hardware-incompatible channel sparsity results in repeatedly

indexing and copying selected filters to a new contiguous

memory for multiplication. To achieve practical acceleration,

filters should remain contiguous and relatively static during

dynamic weight selection. Base on this analysis, we design

a architecture routing agent A(θ) with the inductive bias of

always outputting a dense architecture, e.g. a slice-able archi-

tecture. Specifically, we consider a convolutional layer with

at most N output filters and M input channels. Omitting the

spatial dimension, its filters can be denoted as W ∈ R
N×M .

The output of the architecture routing agent A(θ) for this

convolution would be a slimming ratio ρ ∈ (0, 1] indicating

that the first piece-wise ρ × N of the output filters are se-

lected. Then, a dynamic slice-able convolution is defined as

follows:
Y = W[: ρ×N] ∗ X , (2)

where [:] is a slice operation denoted in a python-like style.

Remarkably, the slice operation [:] and the dense matrix

multiplication ∗ are much more efficient than an indexing

operation or a sparse matrix multiplication in real-world

8609

Target Network

Online Network

x

Online
Feature
Channels

EMA
Feature
Channels

yS

yR

yL

y'L

y'R ŷ'L,R

Y

Stop
Gradient

Ensemble

Module

E

E

loss

loss

loss Label

Figure 4. Training process of slimmable supernet with In-place

Ensemble Bootstrapping.

implementation, which guarantees a practical acceleration

of using our slice-able convolution.

After aggregating the slice-able convolutions sequentially,

a supernet executable at different widths is formed. Paths

with different widths can be seen as sub-networks. By dis-

abling the routing agent, the supernet is analogous to a

slimmable network [68, 66], and can be trained similarly.

In-place Ensemble Bootstrapping. The sandwich rule and

in-place distillation techniques [66] proposed for Universally

Slimmable Networks enhanced their overall performance. In

in-place distillation, the widest sub-network is used as the

target network generating soft labels for other sub-networks.

However, acute fluctuation appeared in the weight of the

widest sub-network can cause convergence hardship, espe-

cially in the early stage of training. As observed in BigNAS

[67], training a more complex model with in-place distilla-

tion could be highly unstable. Without residual connection

and special weight initialization tricks, the loss exploded at

the early stage and can never converge. To overcome the con-

vergence hardship in slimmable networks and improve the

overall performance of our supernet, we proposed a training

scheme named In-place Ensemble Bootstrapping (IEB).

In recent years, a growing number of self-supervised

methods with bootstrapping [14, 15, 8] and semi-supervised

methods based on consistency regularization [34, 57] use

their historical representations to produce targets for the on-

line network. Inspired by this, we propose to bootstrap on

previous representations in our supervised in-place distilla-

tion training. We use the exponential moving average (EMA)

of the model as the target network that generates soft labels.

Let θ and θ′ denote the parameters of the online network and

the target network, respectively. We have:

θ′t = αθ′t−1 + (1− α)θt, (3)

where α is a momentum factor controlling the ratio of the

historical parameter and t is a training timestamp which is

usually measured by a training iteration. During training, the

EMA of the model are more stable and more precise than

the online network, thus can provide high quality target for

the slimmer sub-networks.

As pointed out in [54, 55], an ensemble of teacher net-

works can generate more diverse, more accurate and more

general soft labels for distillation training of the student net-

work. In our supernet, there are tons of sub-models with

different architectures, which can generate different soft la-

bels. Motivated by this, we use different sub-networks as a

teacher ensemble when performing in-place distillation. The

overall train process is shown in Fig. 4. Following the sand-

wich rule [66], the widest (denoted with L), the slimmest

(denoted with S) and n random width sub-networks (denoted

with R) are sampled in each training step. Sub-network at

the largest width is trained to predict the ground truth label

Y; n sub-networks with random width are trained to predict

the soft label generated by the widest sub-network of the

target network, Y ′
L(θ

′); the slimmest sub-network is trained

to predict the probability ensemble of all the aforementioned

sub-networks in the target network:

Ŷ ′
L,R(θ′) =

1

n+ 1

(
Y ′
L(θ

′) +
n∑

i=1

Y ′
R(θ′)

)
. (4)

To sum up, the IEB losses for the supernet training are:





LIEB
L (θ) = LCE(YL(θ),Y),

LIEB
R (θ) = LCE(YR(θ),Y ′

L(θ
′)),

LIEB
S (θ) = LCE(YS(θ), Ŷ ′

L,R(θ′)),

(5)

3.2. Dynamic Slimming Gate

In this section, we design the channel gate function

A(θ,X) that generates the factor ρ in Eqn. (2) and present

the double-headed design of the dynamic gate. Then, we

introduce the details of training stage II with an advanced

technique that is sandwich gate sparsification (SGS).

Double-headed Design. There are two possible ways to

transform a feature map into a slimming ratio ρ in Eqn. (2):

(i) scalar design directly output a sigmoid activated scalar

ranging from 0 to 1 to be the slimming ratio; (ii) one-hot

design use an argmax/softmax activated one-hot vector to

choose the respective slimming ratio ρ in a discrete candidate

list vector Lρ. Both of the implementations are evaluated

and compared in Sec. 4.4. Here, we thoroughly describe our

dynamic slimming gate with the better-performing one-hot

design. To reduce the input feature map X to a one-hot

vector, we divide A(θ,X) to two functions:

A(θ,X) = F(E(X)), (6)

where E is an encoder that reduces feature maps to a vector

and the function F maps the reduced feature to a one-hot

vector used for the subsequent channel slicing. Consider-

ing the n-th gate in Fig. 3, given a input feature X with

dimension ρn−1Cn ×Hn ×Wn, E(X) reduces it to a vector

XE ∈ R
ρ
n−1Cn which can be further mapped to a one-hot

vector. By computing the dot product of this one-hot vector

and Lρ, we have the newly predicted slimming ratio:

ρn = A(θ,X) · Lρ. (7)

Similar to prior works [25, 64] on channel attention and

gating, we simply utilize average pooling as a light-weight

8610

encoder E to integrate spatial information. As for feature

mapping function F , we adopt two fully connected layers

with weights W1 ∈ R
d×Cn and W2 ∈ R

g×d (where d repre-

sents the hidden dimension and g represents the number of

candidate slimming ratio) and a ReLU non-linearity layer σ

in between to predict scores for each slimming ratio choice.

An argmax function is subsequently applied to generate a

one-hot vector indicating the predicted choice:

F(XE) = argmax(W2(σ(W1[:, : ρn−1Cn](XE)))). (8)

Note that input X with dynamic channel number ρ × C is

projected to a vector with fixed length by the dynamically

sliced weight W1[:, : ρn−1Cn].

Our proposed channel gating function has a similar form

with recent channel attention methods [25, 64]. The attention

mechanism can be integrated into our gate with nearly zero

cost, by adding another fully connected layer with weights

W3 that projects the hidden vector back to the original chan-

nel number ρn−1Cn. Based on the conception above, we

propose a double-headed dynamic gate with a soft chan-

nel attention head and a hard channel slimming head.The

channel attention head can be defined as follows:

X̂ = X ∗ δ(W3[: ρn−1Cn, :](σ(W1[:, : ρn−1Cn](X)))), (9)

where δ(x) = 1 + tanh(x) is the activation function adopted

for the attention head. Unlike the slimming head, the channel

attention head is activated in training stage I.

Sandwich Gate Sparsification. In training stage II, we

propose to use the end-to-end classification cross-entropy

loss Lcls and a complexity penalty loss Lcplx to train

the gate, aiming to choose the most efficient and effec-

tive sub-networks for each instance. To optimize the non-

differentiable slimming head of dynamic gate with Lcls, we

use gumbel-softmax [31], a classical way to optimize neu-

ral networks with argmax by relaxing it to differentiable

softmax in gradient computation.

However, we empirically found that the gate easily col-

lapses into a static one even if we add Gumbel noise [31] to

help the optimization of gumbel-softmax. Apparently, us-

ing only gumbel-softmax technique is not enough for this

multi-objective dynamic gate training. To further overcome

the convergence hardship and increase the dynamic diversity

of the gate, a technique named Sandwich Gate Sparsification

(SGS) is further proposed. We use the slimmest sub-network

and the whole network to identify easy and hard samples

online and further generate the ground truth slimming factors

for the slimming heads of all the dynamic gates.

As analysed in [66], wider sub-networks should always

be more accurate because the accuracy of slimmer ones can

always be achieved by learning new connections to zeros.

Thus, given a well-trained supernet, input samples can be

roughly classified into three difficulty levels: a) Easy sam-

ples Xeasy that can be correctly classified by the slimmest

sub-network; b) Hard samples Xhard that can not be cor-

rectly classified by the widest sub-network; c) Dependent

samples Xdep: Other samples in between. In order to min-

imize the computation cost, easy samples should always

be routed to the slimmest sub-network (i.e. gate target

T (Xeasy) = [1, 0, . . . , 0]). For dependent samples and hard

samples, we always encourage them to pass through the

widest sub-network, even if the hard samples can not be

correctly classified (i.e. T (Xhard) = T (Xdep) = [0, . . . , 0, 1]).

Another gate target strategy is also discussed in Sec. 4.4.

Based on the generated gate target, we define the SGS

loss that facilitates the gate training:

LSGS = Tslim(X) ∗ LCE(X , T (Xeasy))

+ (¬Tslim(X)) ∗ LCE(X , T (Xhard))
(10)

where Tslim(X) ∈ {0, 1} represents whether X is truely

predicted by the slimmest sub-network and LCE(X , T) =

−
∑

T ∗ log(X) is the Cross-Entropy loss over softmax

activated gate scores and the generated gate target.

4. Experiments

Dataset. We evaluate our method on two classification

datasets (i.e., ImageNet [11] and CIFAR-10 [33]) and a stan-

dard object detection dataset (i.e., PASCAL VOC [12]). The

ImageNet dataset is a large-scale dataset containing 1.2 M

train set images and 50 K val set images in 1000 classes.

We use all the training data in both of the two training stages.

Our results are obtained on the val set with image size of

224× 224. We also test the transferability of our DS-Net on

CIFAR-10, which comprises 10 classes with 50,000 training

and 10,000 test images. Note that few previous works on

dynamic networks and network pruning reported results on

object detection. We take PASCAL VOC, one of the stan-

dard datasets for evaluating object detection performance,

as an example to further test the generality of our dynamic

networks on object detection. All the detection models are

trained with the combined dataset from 2007 trainval and

2012 trainval and tested on VOC 2007 test set.

Architecture details. Following previous works on static

and dynamic network pruning, we use two representative

networks, i.e., the heavy residual network ResNet 50 [18]

and the lightweight non-residual network MobileNetV1 [23],

to evaluate our method.

In Dynamic Slimmable ResNet 50 (DS-ResNet), we in-

sert our double-headed gate in the begining of each residual

blocks. The slimming head is only used in the first block of

each stage. Each one of those blocks contains a skip connec-

tion with a projection layer, i.e. 1× 1 convolution. The filter

number of this projection convolution is also controlled by

the gate to avoid channel inconsistency when adding skip

features with residual output. In other residual blocks, the

slimming heads of the gates are disabled and all the layers

in those blocks inherit the widths of the first blocks of each

stage. To sum up, there are 4 gates (one for each stage) with

both heads enabled. Every gates have 4 equispaced candi-

date slimming ratios, i.e. ρ ∈ {0.25, 0.5, 0.75, 1}. The total

8611

routing space contains 44 = 256 possible paths with differ-

ent computation complexities. All batch normalization (BN)

layers in DS-ResNet are replaced with group normalization

to avoid test-time representation shift caused by inaccurate

BN statistics in weight-sharing networks [68, 66].

Unlike DS-ResNet, we only use one single slimming gate

after the fifth depthwise separable convolution block of Dy-

namic Slimmable MobileNetV1 (DS-MBNet). Specifically,

a fixed slimming ratio ρ = 0.5 is used in the first 5 blocks

while the width of the rest 8 blocks are controlled by the gate

with the candidate slimming ratios ρ ∈ [0.35 : 0.05 : 1.25].
This architecture with only 18 paths in its routing space

is similar to an uniform slimmable network [68, 66], guar-

anteeing itself the practicality to use batch normalization.

Following [66], we perform BN recalibration for all the 18

paths in DS-MBNet after the supernet training stage.

Training details. We train our supernet with 512 total batch

size on ImageNet, using SGD optimizer with 0.2 initial

learning rate for DS-ResNet and 0.08 initial learning rate

for DS-MBNet, respectively. We use cosine learning rate

scheduler to reduce the learning rate to its 1% in 150 epochs.

Other settings are following previous works on slimmable

networks [68, 66, 65]. For gate training, we use SGD op-

timizer with 0.05 initial learning rate for a total batch size

of 512. The learning rate decays to 0.9× of its value in

every epoch. It takes 10 epochs for the gate to converge.

For transfer learning experiments on CIFAR-10, we follow

similar settings with [32] and [29]. We transfer our supernet

for 70 epochs including 15 warm-up epochs and use cosine

learning rate scheduler with an initial learning rate of 0.7 for

a total batch size of 1024. For object detection task , we train

all the networks following [46] and [44] with a total batch

size of 128 for 300 epochs. The learning rate is set to 0.004

at the first, then divided by 10 at epoch 200 and 250.

4.1. Main Results on ImageNet

We first validate the effectiveness of our method on Im-

ageNet. As shown in Tab. 2 and Fig. 5, DS-Net with

different computation complexity consistently outperforms

recent static pruning methods, dynamic inference methods

and NAS methods. First, our DS-ResNet and DS-MBNet

models achieve 2-4× computation reduction over ResNet-50

(76.1% [18]) and MobileNetV1 (70.9% [23]) with minimal

accuracy drops (0% to -1.5% for ResNet and +0.9% to -0.8%

for MobileNet). We also tested the real world latency on

efficient networks. Compare to the ideal acceleration tested

on channel scaled MobileNetV1, which is 1.31× and 1.91×,

our DS-MBNet achieves comparable 1.17× and 1.62× ac-

celeration with much higher performance. In paticular, our

DS-MBNet surpasses the original and the channel scaled

MobileNetV1 [23] by 3.6%, 4.4% and 6.8% with similar

MAdds and minor increase in latency. Second, our method

outperforms classic and state-of-the-art static pruning meth-

ods in a large range. Remarkably, DS-MBNet outperforms

Table 2. Comparison of state-of-the-art efficient inference methods

on ImageNet. Brown denotes network pruning methods, Blue

denotes dynamic inference methods, Orange denotes architecture

search methods and Purple denotes our method.

Method MAdds Top-1 Acc.

3B

MAdds

SFP [19] 2.9B 75.1

ThiNet-70 [50, 49] 2.9B 75.8

MetaPruning 0.85 [48] 3.0B 76.2

ConvNet-AIG-50 [58] 3.1B 76.2

AutoSlim [65] 3.0B 76.0

DS-ResNet-L (Ours) 3.1B 76.6

2B

MAdds

ResNet-50 0.75× [18] 2.3B 74.9

S-ResNet-50 [68] 2.3B 74.9

ThiNet-50 [50, 49] 2.1B 74.7

CP [20] 2.0B 73.3

MetaPruning 0.75 [48] 2.0B 75.4

MSDNet [27] 2.0B 75.5

AutoSlim [65] 2.0B 75.6

DS-ResNet-M (Ours) 2.2B 76.1

1B

MAdds

ResNet-50 0.5× [18] 1.1B 72.1

ThiNet-30 [50, 49] 1.2B 72.1

MetaPruning 0.5 [48] 1.0B 73.4

GFNet [60] 1.2B 73.8

DS-ResNet-S (Ours) 1.2B 74.6

Method MAdds Latency Top-1 Acc.

500M

MAdds

MBNetV1 1.0× [23] 569M 63ms 70.9

US-MBNetV1 1.0× [66] 569M - 71.8

AutoSlim [65] 572M - 73.0

DS-MBNet-L (Ours) 565M 69ms 74.5

300M

MAdds

MBNetV1 0.75× [23] 317M 48ms 68.4

US-MBNetV1 0.75× [66] 317M - 69.5

NetAdapt [63] 284M - 69.1

Meta-Pruning [48] 281M - 70.6

EagleEye [37] 284M - 70.9

CG-Net-A [26] 303M - 70.3

AutoSlim [65] 325M - 71.5

DS-MBNet-M (Ours) 319M 54ms 72.8

150M

MAdds

MBNetV1 0.5× [23] 150M 33ms 63.3

US-MBNetV1 0.5× [66] 150M - 64.2

AutoSlim [65] 150M - 67.9

DS-MBNet-S (Ours) 153M 39ms 70.1

the SOTA pruning methods EagleEye [37] and Meta-Pruning

[48] by 1.9% and 2.2%. Third, our DS-Net maintain supe-

riority comparing with powerful dynamic inference methods

with varying depth, width or input resolution. For example,

our DS-MBNet-M surpasses dynamic pruning method CG-

Net [26] by 2.5%. Fourth, our DS-Net also consistently

outperforms its static counterparts. Our DS-MBNet-S sur-

passes AutoSlim [65] and US-Net [66] by 2.2% and 5.9%.

4.2. Transferability

To evaluate the transferability of DS-Net and its dynamic

gate, we perform transfer learning in two settings: (i) DS-

Net w/o gate transfer: we transfer the supernet without

slimming gate to CIFAR-10 and retrain the dynamic gate.

(ii) DS-Net w/ gate transfer: we first transfer the supernet

then load the ImageNet trained gate and perform transfer

leaning for the gate. The results along with the transfer

learning results of the original ResNets are shown in Tab. 3.

Gate transfer boosts the performance of DS-ResNet by 0.4%

on CIFAR-10, demonstrating the transferability of dynamic

gate. Remarkably, both of our transferred DS-ResNet out-

performs the original ResNet-50 in a large range (0.6% and

8612

1 2 3 4
MAdds (Billions)

72

73

74

75

76

To
p-

1
Ac

cu
ra

cy
 (%

)
Acc. vs MAdds

ResNet50 based models

DS-ResNet (Ours)
AutoSlim
MSDNet
MetaPruning
ThiNet
S-Net
ResNet
CP
SFP

200 300 400 500
MAdds (Millions)

64

66

68

70

72

74

To
p-

1
Ac

cu
ra

cy
 (%

)

Acc. vs MAdds
MobileNetV1 based models

DS-MBNet (Ours)
AutoSlim
MetaPruning
US-Net
MBNet
NetAdapt
EagleEye
CG_Net

Figure 5. Accuracy vs. complexity on ImageNet.

Table 3. Comparison of transfer learning performance on CIFAR-

10. GT stands for gate transfer.

Model MAdds Top-1 Acc.

ResNet-50 [18, 32] 4.1B 96.8

ResNet-101 [18, 32] 7.8B 97.6

DS-ResNet w/o GT 1.7B 97.4

DS-ResNet w/ GT 1.6B 97.8

Table 4. Performance comparision of DS-MBNet and MobileNet

with FSSD on VOC object detection task.

Model MAdds mAP

MBNetV1 + FSSD [23, 44] 4.3B 71.9

DS-MBNet-S + FSSD 2.3B 70.7

DS-MBNet-M + FSSD 2.7B 72.8

DS-MBNet-L + FSSD 3.2B 73.7

1.0%) with about 2.5 × computation reduction. Among

them, DS-ResNet with gate transfer even outperforms the

larger ResNet-101 with 4.9× fewer computation complexity,

proving the superiority of DS-Net in transfer learning.

4.3. Object Detection

In this section, we evaluate and compare the performance

of original MobileNet and DS-MBNet used as feature ex-

tractor in object detection with Feature Fusion Single Shot

Multibox Detector(FSSD) [44]. We use the features from

the 5-th, 11-th and 13-th depthwise convolution blocks (with

the output stride of 8, 16, 32) of MobileNet for the detector.

When using DS-MBNet as the backbone, all the features

from dynamic source layers are projected to a fixed channel

dimention by the feature transform module in FSSD [44].

Results on VOC 2007 test set are given in Tab. 4. Com-

paring to MobileNetV1, DS-MBNet-M and DS-MBNet-L

with FSSD achieves 0.9 and 1.8 mAP improvement with

1.59× and 1.34× computation reduction respectively, which

demonstrates that our DS-Net remain its superiority after

deployed as the backbone network in object detection task.

4.4. Ablation study
In-place Ensemble Bootstrapping. We statistically anal-

ysis the effect of IEB technique with MobileNetV1. We

train a Slimmable MobileNetV1 supernet with three set-

tings: original in-place distillation, in-place distillation with

0 20 40 60 80 100
Epochs

0

10

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Accuracy of the slimmest child model

IEB (Ours)
EMA target
Inplace Distillation

Figure 6. Evaluation accuracy of the slimmest sub-network during

supernet training with three different training schemes.

Table 5. Ablation analysis of In-place Ensemble Bootstrapping.

EMA Ensemble slimmest widest

66.5 74.0

X 68.1 74.3

X X 68.3 74.6

EMA target and our complete IEB technique. As shown in

Tab. 5, the slimmest and widest sub-network trained with

EMA target surpassed the baseline by 1.6% and 0.3% re-

spectively. With IEB, the supernet improves 1.8% and 0.6%

on its slimmest and widest sub-networks comparing with

in-place distillation. The evaluation accuracy progression

curves of the slimmest sub-networks trained with these three

settings are illustrated in Fig. 6. The beginning stage of

in-place distillation is unstable. Adopting EMA target im-

proves the performance. However, there are a few sudden

drops of accuracy in the middle of the training with EMA

target. Though being able to recover in several epochs, the

model may still be potentially harmed by those fluctuation.

After fully adopting IEB, the model converges to a higher

final accuracy without any conspicuous fluctuations in the

training process, demonstrating the effectiveness of our IEB

technique in stablizing the training and boosting the overall

performance of slimmable networks.

Effect of losses. To examine the impact of the three losses

used in our gate training, i.e. target loss Lcls, complexity

loss Lcplx and SGS loss LSGS , we conduct extensive exper-

iments with DS-ResNet on ImageNet, and summarize the

results in Tab. 6 and Fig. 7 left. Firstly, as illustrated in Fig.

7 left, models trained with SGS (red line) are more efficient

than models trained without it (purple line). Secondly, as

shown in Tab. 6, with target loss, the model pursues bet-

ter performance while ignoring computation cost; complex-

ity loss pushes the model to be lightweight while ignoring

the performance; SGS loss itself can achieve a balanced

complexity-accuracy trade-off by encouraging easy and hard

samples to use slim and wide sub-networks, respectively.

SGS strategy. Though we always want the easy samples to

be routed to the slimmest sub-network, there are two possible

8613

1 2 3
MAdds (Billions)

66

68

70

72

74

76

Ac
cu

ra
cy

 (%
)

Accuracy vs MAdds

DS-Net (ours)
w/o SGS loss
Give Up
scalar head
w/o weight sharing

100%

80%

60%

40%

20%

Block 1 Block 2 Block 3 Block 4

ρ = 0.25

ρ = 0.5

ρ = 0.75

ρ = 1.0

Figure 7. (Left) Illustration of accuracy vs. complexity of models

in Tab. 6 and Tab. 7. (Right) Gate distribution of DS-ResNet-

M. The height of those colored blocks illustrate the partition of

input samples that are routed to the sub-networks with respective

slimming ratio ρ.

Table 6. Ablation analysis of losses on ImageNet. Results in bold

that use SGS loss achieve good performance-complexity trade-off.

Target Complexity SGS MAdds Top-1 Acc.

X 3.6B 76.8

X 0.3B 66.2

X Give Up 1.5B 73.7

X Try Best 3.1B 76.6

X X 2.0B 75.0

X X Try Best 1.2B 74.6

X X X Try Best 2.2B 76.1

Table 7. Ablation analysis of gate design on DS-ResNet.

weight sharing slimming head MAdds Top-1 Acc.

X scalar 2.3B 73.6

one-hot 3.0B 72.7

X one-hot 3.1B 76.6

target definition for hard samples in SGS loss: (i) Try Best:

Encourage the hard samples to pass through the widest sub-

network, even if they can not be correctly classified (i.e.

T (Xhard) = [0, . . . , 0, 1]). (ii) Give Up: Push the hard

samples to use the slimmest path to save computation cost

(i.e. T (Xhard) = [1, 0, . . . , 0]). In both of the strategies,

dependent samples are encouraged to use the widest sub-

network (i.e. T (Xdependent) = [0, . . . , 0, 1]). The results for

both of the strategies are shown in Tab. 6 and Fig. 7 left. As

shown in the third and fourth lines in Tab. 6, Give Up strategy

lowers the computation complexity of the DS-ResNet but

greatly harms the model performance. The models trained

with Try Best strategy (red line in Fig. 7 left) outperform

the one trained with Give Up strategy (blue dot in Fig. 7

left) in terms of efficiency. This can be attribute to Give

Up strategy’s optimization difficulty and the lack of samples

that targeting on the widest path (dependent samples only

account for about 10% of the total training samples). These

results prove our Try Best strategy is easier to optimize and

can generalize better on validation set or new data.

Gate design. First, to evaluate the effect of our weight-

sharing double-headed gate design, we train a DS-ResNet

without sharing the the first fully-connected layer for com-

parison with SGS loss only. As shown in Tab. 7 and Fig. 7

left, the performance of DS-ResNet increase substantially

(3.9%) by applying the weight sharing design (green dot vs.

red line in Fig. 7 left). This might be attribute to overfit-

ting of the slimming head. As observed in our experiment,

sharing the first fully-connected layer with attention head

can greatly improve the generality. Second, we also trained

a DS-ResNet with scalar design (refer to Sec 3.2) of the

slimming head to compare with one-hot design. Both of the

networks are trained with SGS loss only. The results are

present in Tab. 7 and Fig. 7 left. The performance of scalar

design (orange dot in Fig. 7 left) is much lower than the

one-hot design (red line in Fig. 7 left), indicating that the

scalar gate could not route the input to the correct paths.

4.5. Gate visualization

To demonstrate the dynamic diversity of our DS-Net,

we visualize the gate distribution of DS-ResNet over the

validation set of ImageNet in Fig. 7 right. In block 1 and

2, about half of the inputs are routed to the slimmest sub-

network with 0.25 slimming ratio, while in higher level

blocks, about half of the inputs are routed to the widest

sub-network. For all the gate, the slimming ratio choices

are highly input-dependent, demonstrating the high dynamic

diversity of our DS-Net.

5. Conclusion

In this paper, we have proposed Dynamic Slimmable

Network (DS-Net), a novel dynamic network on efficient

inference, achieving good hardware-efficiency by predic-

tively adjusting the filter numbers at test time with respect

to different inputs. We propose a two stage training scheme

with In-place Ensemble Bootstrapping (IEB) and Sandwich

Gate Sparsification (SGS) technique to optimize DS-Net.

We demonstrate that DS-Net can achieve 2-4× computation

reduction and 1.62× real-world acceleration over ResNet-50

and MobileNet with minimal accuracy drops on ImageNet.

Proved empirically, DS-Net and can surpass its static coun-

terparts as well as state-of-the-art static and dynamic model

compression method on ImageNet by a large margin (>2%)

and can generalize well on CIFAR-10 classification task and

VOC object detection task.

Acknowledgments

This work was supported in part by National Key R&D

Program of China under Grant No. 2020AAA0109700,

National Natural Science Foundation of China (NSFC) un-

der Grant No.U19A2073, No.61976233 and No.61906109,

Guangdong Province Basic and Applied Basic Research

(Regional Joint Fund-Key) Grant No.2019B1515120039,

Shenzhen Outstanding Youth Research Project (Project

No. RCYX20200714114642083), Shenzhen Basic Research

Project (Project No. JCYJ20190807154211365), Leading

Innovation Team of the Zhejiang Province (2018R01017)

and CSIG Young Fellow Support Fund. Dr Xiaojun Chang

is partially supported by the Australian Research Council

(ARC) Discovery Early Career Researcher Award (DECRA)

(DE190100626).

8614

References

[1] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari,

Kento Uchida, Shota Saito, and Kouhei Nishida. Adaptive

stochastic natural gradient method for one-shot neural archi-

tecture search. In ICML, 2019. 3

[2] Jimmy Ba and Rich Caruana. Do deep nets really need to be

deep? In NeurIPS, 2014. 1

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc V. Le. Understanding and simplifying

one-shot architecture search. In ICML, 2018. 1, 3

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh

Saligrama. Adaptive neural networks for fast test-time pre-

diction. arXiv:1702.07811, 2017. 1, 3

[5] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick

Weston. SMASH: one-shot model architecture search through

hypernetworks. In ICLR, 2018. 3

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize it

for efficient deployment. In ICLR, 2020. 3

[7] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 3

[8] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning of

visual features. In ECCV, 2018. 4

[9] Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look

twice: Gaternet for dynamic filter selection in cnns. In CVPR,

2019. 1, 2, 3

[10] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao

Dai, Xiaojun Chang, Hongdong Li, Tom Drummond, and

Zongyuan Ge. Hierarchical neural architecture search for

deep stereo matching. In NeurIPS, 2020. 1

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In CVPR, 2009. 5

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 5

[13] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,

and Cheng-zhong Xu. Dynamic channel pruning: Feature

boosting and suppression. arXiv:1810.05331, 2018. 1, 2, 3

[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi

Munos, and Michal Valko. Bootstrap your own latent: A new

approach to self-supervised learning. In NeurIPS, 2020. 4

[15] Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien

Grill, Florent Altché, Rémi Munos, and Mohammad Ghesh-

laghi Azar. Bootstrap latent-predictive representations for

multitask reinforcement learning. In ICML, 2020. 4

[16] Zichao Guo, X. Zhang, H. Mu, Wen Heng, Z. Liu, Y. Wei,

and Jian Sun. Single path one-shot neural architecture search

with uniform sampling. In ECCV, 2020. 1, 3

[17] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui

Wang, and Yulin Wang. Dynamic neural networks: A survey.

arXiv:2102.04906, 2021. 3

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

2, 5, 6, 7

[19] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. In IJCAI, 2018. 1, 6

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for

accelerating very deep neural networks. In ICCV, 2017. 1, 6

[21] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-

ing the knowledge in a neural network. arXiv:1503.02531,

2015. 1

[22] Lu Hou, Lifeng Shang, Xin Jiang, and Qun Liu. Dynabert:

Dynamic bert with adaptive width and depth. In NeurIPS,

2020. 2, 3

[23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017. 1, 5, 6, 7

[24] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J Andrew

Bagnell. Learning anytime predictions in neural networks via

adaptive loss balancing. In AAAI, 2019. 2

[25] J Hu, L Shen, S Albanie, G Sun, and E Wu. Squeeze-and-

excitation networks. IEEE transactions on pattern analysis

and machine intelligence, 2019. 4, 5

[26] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,

and G Edward Suh. Channel gating neural networks. In

NeurIPS, 2019. 1, 2, 3, 6

[27] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q. Weinberger. Multi-scale dense

networks for resource efficient image classification. In ICLR,

2018. 1, 2, 3, 6

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional networks.

In CVPR, 2017. 2

[29] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong

Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng Chen. Gpipe:

Efficient training of giant neural networks using pipeline

parallelism. In NeurIPS, 2019. 6

[30] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In CVPR, 2018.

1

[31] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-

eterization with gumbel-softmax. In ICLR, 2017. 5

[32] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better

imagenet models transfer better? In CVPR, 2018. 6, 7

[33] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009. 5

[34] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. arXiv:1610.02242, 2016. 4

8615

[35] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.

Fractalnet: Ultra-deep neural networks without residuals. In

ICLR, 2017. 2

[36] Hankook Lee and Jinwoo Shin. Anytime neural prediction

via slicing networks vertically. arXiv:1807.02609, 2018. 2

[37] Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, and Liang

Lin. Eagleeye: Fast sub-net evaluation for efficient neural

network pruning. In ECCV, 2020. 6

[38] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,

Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-wisely

supervised neural architecture search with knowledge distilla-

tion. In CVPR, 2020. 1, 3

[39] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,

Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:

Exploring hybrid cnn-transformers with block-wisely self-

supervised neural architecture search. arXiv:2103.12424,

2021. 3

[40] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets.

arXiv:1608.08710, 2016. 1

[41] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao

Huang. Improved techniques for training adaptive deep net-

works. In ICCV, 2019. 1, 2, 3

[42] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu,

Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu, Mei Chen,

and Nuno Vasconcelos. Revisiting dynamic convolution via

matrix decomposition. arXiv:2103.08756, 2021. 3

[43] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu

Zhang, Xingang Wang, and Jian Sun. Learning dynamic

routing for semantic segmentation. In CVPR, 2020. 3

[44] Zuoxin Li and Fuqiang Zhou. Fssd: feature fusion single shot

multibox detector. arXiv:1712.00960, 2017. 6, 7

[45] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture search. In ICLR, 2019. 3

[46] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. In ECCV, 2016. 6

[47] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017. 1

[48] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

ICCV, 2019. 1, 6

[49] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

ICLR, 2019. 6

[50] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, 2017. 1, 6

[51] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,

Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehensive

survey of neural architecture search: Challenges and solutions.

ACM Computing Surveys, 2021. 1

[52] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. In ICLR, 2015. 1

[53] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 1

[54] Zhiqiang Shen, Zhankui He, and Xiangyang Xue. Meal:

Multi-model ensemble via adversarial learning. In AAAI,

2019. 4

[55] Zhiqiang Shen and Marios Savvides. Meal v2: Boosting

vanilla resnet-50 to 80%+ top-1 accuracy on imagenet without

tricks. arXiv:2009.08453, 2020. 4

[56] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. In ICML,

2019. 1

[57] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NeurIPS, 2017. 4

[58] Andreas Veit and Serge Belongie. Convolutional networks

with adaptive inference graphs. In ECCV, 2018. 1, 3, 6

[59] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E

Gonzalez. Skipnet: Learning dynamic routing in convolu-

tional networks. In ECCV, 2018. 1, 3

[60] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang,

and Gao Huang. Glance and focus: a dynamic approach

to reducing spatial redundancy in image classification. In

NeurIPS, 2020. 6

[61] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, 2019. 3

[62] Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. In NeurIPS, 2019. 3

[63] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tadapt: Platform-aware neural network adaptation for mobile

applications. In ECCV, 2018. 6

[64] Zongxin Yang, Linchao Zhu, Yu Wu, and Yi Yang. Gated

channel transformation for visual recognition. In CVPR, 2020.

4, 5

[65] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot

architecture search for channel numbers. arXiv:1903.11728,

2019. 2, 6

[66] Jiahui Yu and Thomas S. Huang. Universally slimmable

networks and improved training techniques. In ICCV, 2019.

1, 2, 4, 5, 6

[67] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,

Pieter-Jan Kindermans, Mingxing Tan, T. Huang, Xiaodan

Song, and Quoc V. Le. Bignas: Scaling up neural architecture

search with big single-stage models. In ECCV, 2020. 3, 4

[68] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas S. Huang. Slimmable neural networks. In ICLR,

2019. 2, 4, 6

[69] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Zongyuan

Ge, and Steven W. Su. Differentiable neural architecture

search in equivalent space with exploration enhancement. In

NeurIPS, 2020. 1

8616

[70] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and

Steven W. Su. Overcoming multi-model forgetting in one-shot

NAS with diversity maximization. In CVPR, 2020. 1

[71] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Chuan

Zhou, Zongyuan Ge, and Steven W Su. One-shot neural

architecture search: Maximising diversity to overcome catas-

trophic forgetting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2021. 1

8617

