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Abstract

We introduce an approach for pre-training egocentric

video models using large-scale third-person video datasets.

Learning from purely egocentric data is limited by low

dataset scale and diversity, while using purely exocentric

(third-person) data introduces a large domain mismatch.

Our idea is to discover latent signals in third-person video

that are predictive of key egocentric-specific properties. In-

corporating these signals as knowledge distillation losses

during pre-training results in models that benefit from both

the scale and diversity of third-person video data, as well

as representations that capture salient egocentric proper-

ties. Our experiments show that our “Ego-Exo” framework

can be seamlessly integrated into standard video models;

it outperforms all baselines when fine-tuned for egocen-

tric activity recognition, achieving state-of-the-art results

on Charades-Ego and EPIC-Kitchens-100.

1. Introduction

Egocentric video captured by wearable cameras offers

a unique perspective into human behavior. It is the sub-

ject of a recent surge in research interest in first-person ac-

tivity recognition [35, 77], anticipation [21, 1], and video

summarization [36, 74, 13] with many valuable future ap-

plications in augmented reality and robotics. Compared

to third-person videos, egocentric videos show the world

through a distinct viewpoint, encode characteristic egocen-

tric motion patterns due to body and head movements, and

have a unique focus on hands, objects, and faces, driven by

the camera wearer’s attention and interaction with their sur-

roundings.

However, these unique properties also present a fun-

damental challenge for video understanding. On the one

hand, learning models purely from egocentric data are lim-

ited by dataset scale. Current egocentric video datasets are

small (e.g., 90k clips in EPIC-Kitchens-100 [11] vs. 650k

in Kinetics-700 [34]) and lack diversity (e.g., videos only

Figure 1: Main idea. We extract key egocentric signals

from large-scale third-person data and distill them into the

video backbone during pre-training to guide feature learn-

ing for egocentric video tasks with wearable camera video.

in kitchen scenes). On the other hand, a purely exo-

centric approach that uses more readily available third-

person video—the status-quo for pre-training video mod-

els [19, 67, 76, 69]—ignores the unique properties of ego-

centric video and faces a major domain mismatch. Prior

work has shown that this latter strategy, though popular,

is insufficient: pre-training egocentric action recognition

models with third-person data alone produces significantly

worse results than pre-training with first-person data [62].

In an attempt to bridge the domain gap, prior work explores

traditional embedding learning [61, 75] or domain adapta-

tion approaches [10], but they require paired egocentric and

third-person videos that are either concurrently recorded or

annotated for the same set of activities, which are difficult

to collect and hence severely limit their scope.

Despite their differences, we hypothesize that the exo-

centric view of activity should in fact inform the egocen-

tric view. First, humans are able to watch videos of other

people performing activities and map actions into their own

(egocentric) perspective; babies in part learn new skills in

just this manner [48, 55]. Second, exocentric video is not

devoid of person-centered cues. For example, a close-up in-

structional video captured from the third-person view may
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nonetheless highlight substantial hand-object interactions;

or video captured with a hand-held phone may follow an

event (e.g., a parade) as it unfolds with attentional cues re-

lated to a head-mounted camera.

Building on this premise, in this work we ask: “How can

we best utilize current video datasets to pre-train egocentric

video models?” Our key idea is to discover latent signals

in third-person video that approximate egocentric-specific

properties. To that end, we introduce a feature learning

approach in which ego-video features are guided by both

exo-video activity labels and (unlabeled) ego-video cues, to

better align traditional third-person video pre-training with

downstream egocentric video tasks.

Specifically, we introduce a series of ego-inspired tasks

that require the video model to be predictive of manipulated

objects, spatiotemporal hand-object interaction regions, and

general egocentricity. Then we incorporate these tasks into

training as knowledge-distillation losses to supplement an

action classification pre-training objective on third-person

video. See Fig. 1.

By design, our video models can continue to enjoy large

amounts of labeled third-person training data, while simul-

taneously embedding egocentric signals into the learned

features, making them a suitable drop-in replacement for

traditional video encoders for egocentric video tasks. Fi-

nally, our approach does not assume any paired or activity-

labeled egocentric videos during pre-training; the egocen-

tric signals are directly inferred from third-person video.

Our experiments on three challenging egocentric video

datasets show that our “Ego-Exo” framework learns strong

egocentric feature representations from third-person video.

On Charades-Ego [62], our model improves over models

pre-trained on Kinetics—the standard pre-training and fine-

tuning paradigm—by +3.26 mAP, and outperforms meth-

ods that specifically aim to bridge the domain gap between

viewpoints. Finally, our pre-trained model achieves state-

of-the-art results on EPIC-Kitchens-100 [11], the largest

available first-person dataset.

2. Related Work

Egocentric video understanding The unique viewpoint

in egocentric video presents interesting research challenges

including action recognition and anticipation [77, 21, 59, 1],

daily life summary generation [36, 74], inferring body

pose [32, 51], and estimating gaze [37, 31]. Several egocen-

tric video datasets have been created to support these chal-

lenges [12, 38, 54, 62]. Model architectures proposed for

these tasks include multi-stream networks [46, 38, 35, 68],

recurrent networks [22, 21, 65], 3D conv nets [53, 44] and

spatially grounded topological graph models [50].

These architectures vary significantly, but all use video

encoders that are similarly pre-trained with third-person

video datasets, despite being applied to egocentric video

tasks. In contrast, we introduce key egocentric losses dur-

ing exocentric video pre-training that bridge the domain gap

when applied to downstream egocentric video tasks.

Joint first/third person video understanding Several

strategies have been proposed to address the domain gap

between first and third person video. Prior work learns

viewpoint-invariant representations using embedding learn-

ing methods, and applies them to action recognition [63,

61, 3], video summarization [30], image retrieval [17], per-

son segmentation [72], and attention-driven gaze predic-

tion [75]. Image generation methods [16, 56, 57, 41] use

generative adversarial frameworks to synthesize one view-

point from the other. Viewpoint invariance has also been

treated as a domain adaptation task in prior work, adapting

third-person video models for overhead drone-footage [10].

Other methods use egocentric video as a modality to supple-

ment top-view footage to improve identification and track-

ing models [2, 4, 5, 73].

The above methods require paired datasets that are either

simultaneously recorded or that share the same labels for

instances across viewpoints. In contrast, our method lever-

ages only third-person video datasets, but is augmented with

pseudo-labels (derived from first-person models) to learn

egocentric video representations, thus circumventing both

the need for first-person video during pre-training and the

need for paired labeled data.

Knowledge distillation for video In knowledge distilla-

tion (KD), one network is trained to reproduce the out-

puts of another [29]. Distillation serves to compress mod-

els [29, 49, 8] or incorporate privileged information from

alternate tasks [43]. In videos, KD can incorporate infor-

mation from alternate modalities like audio [24, 6], depth

and flow [28, 64], or a combination [45], and object-level

information [52]. In the context of self-supervised learning,

prior work assigns weak image labels to video instances as

supervision for video-level models [25]. In contrast, we use

inferred weak labels that are relevant to the egocentric do-

main, and we use them alongside third-person video labels,

rather than in place of them during pre-training.

Egocentric cues in video understanding models Ego-

centric video offers several unique cues that have been

leveraged to improve video understanding models [39, 46].

These include attention mechanisms from gaze and motor

attention [47, 38, 42], active object detection [20, 7, 15, 70],

and hands in contact [66, 60, 33]. We are also interested in

such important egocentric cues, but unlike prior work we do

not train models on labeled egocentric video datasets to de-

tect them. Instead, we embed labels predicted for these cues

as auxiliary losses in third-person video models to steer fea-

ture learning towards egocentric relevant features. Unlike

any of these prior methods, our goal is to leverage third-

person video to pre-train first-person video models.
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Figure 2: Ego-Exo framework. To enhance traditional pre-training (left panel), we generate soft-labels for third-person

videos from a set of pre-trained egocentric models (top-right) that capture a variety of key egocentric signals (Sec 3.3),

and we train distillation modules to approximate the responses of these models (bottom-right). Once pre-trained, the video

backbone can be directly fine-tuned for a downstream egocentric task.

3. Ego-Exo Approach

Our goal is to learn egocentric video representations

from third-person video datasets, by discovering and dis-

tilling important cues about hands, objects, and interactions

(albeit in a different viewpoint) that are relevant to egocen-

tric activity during pre-training. To do this, we automati-

cally assign third-person video instances with various ego-

centric pseudo-labels that span simple similarity scores to

complex spatiotemporal attention maps, and then we intro-

duce auxiliary losses that force our features to be predictive

of these pseudo-labels. On the one hand, our approach re-

tains the benefits of large-scale third-person video and the

original action classification task to guide general video fea-

ture learning. On the other hand, we steer feature learning

towards better egocentric features using automatically gen-

erated egocentric labels, as opposed to collecting manually

labeled instances.

In the following sections, we first describe the traditional

video pretraining framework (Sec 3.1) and how we incorpo-

rate our auxiliary loss terms into it (Sec 3.2). Next we de-

scribe the three egocentric tasks we use, namely Ego-Score,

Object-Score, and Interaction-Map (Sec 3.3). Finally, we

present our full training and evaluation pipeline in Sec 3.4.

3.1. Video model pre-training

Video models benefit greatly from strong initializations.

The standard procedure for training egocentric video mod-

els is thus to first pre-train models using large-scale third-

person video datasets, and then fine-tune for a specific

downstream task.

More formally, we are provided with a large-scale third-

person (exocentric) video dataset Vexo. In pre-training, each

video instance v 2 Vexo consists of T frames {f1, ..., fT }
and an associated action label yact. These frames are

encoded into a series of N spatiotemporal clip features

{x1, ..., xN}, where xi 2 R
c×t×h×w, using a video en-

coder backbone (e.g., a 3D CNN model). These features

are then passed to a classifier head, which spatiotemporally

pools the feature and uses a linear classifier to generate the

predicted action class ŷact. Predictions are typically gener-

ated for each clip and then averaged to generate video-level

predictions. The network is trained to minimize the cross

entropy loss Lact(y
act, ŷact). See Fig 2 (left panel).

Once pre-trained, the backbone weights are retained, the

head is replaced with a task-specific classifier, and the new

network is trained with instances from a target egocentric

dataset Vego to predict egocentric video labels.

3.2. Ego-Exo pre-training

Third-person pre-training alone results in strong,

general-purpose video features. However, it ignores im-

portant egocentric signals and introduces a domain gap that

limits its utility for downstream egocentric tasks. We intro-

duce auxiliary egocentric task losses to overcome this gap.

Specifically, along with datasets Vexo and Vego, we as-

sume access to off-the-shelf video models that address a

set of egocentric video understanding tasks. For each task

τ , the model Mτ takes as input a video (as either frames

or clips) and generates predicted labels yτ . We use these

pre-trained models to associate egocentric pseudo-labels to

the third-person video instances in Vexo. We stress that the

videos in Vexo are not manually labeled for any task τ .

We introduce a task-specific head Hτ for each task that

is trained to approximate these pseudo-labels for each video
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instance, leading to an auxiliary loss term Lτ (H
τ (v), yτ ).

Each head is trained to approximate the response of an ego-

centric video model when applied to a third-person video

instance, and thus can be seen as a knowledge-distillation

mechanism that distills information from the egocentric

tasks into the video encoder model. The final pre-training

objective is the combination of the action classification loss

Lact and each of the auxiliary loss terms Lτ . See Fig 2 for

our full framework.

Note that these pseudo-labels vary in structure and se-

mantics, ranging from scalar scores (e.g., to characterize

how egocentric-like a third-person video is), categorical la-

bels (e.g., to identify the manipulated objects in video) and

spatiotemporal attention maps (e.g., to characterize hand-

object interaction regions). Moreover, these labels are

egocentric-specific, but they are automatically generated

for third-person video instances. This diverse combination

leads to robust feature learning for egocentric video, as our

experiments will show. Once pre-trained, we can retain our

enhanced backbone weights to fine-tune on an egocentric

video task using data from Vego.

3.3. Auxiliary egocentric tasks

Next, we describe each task we use, how we source Mτ

and pseudo-labels yτ , the loss terms Lτ , and their relevance

to egocentric feature learning. Note that no egocentric activ-

ity labels are used for the task models, and each task model

is applied to third-person video instances in Vexo.

Ego-Score: Discriminating ego videos. A good egocen-

tric video representation should be able to capture the un-

derlying differences between first- and third-person videos,

to discriminate between the two viewpoints. Based on this

motivation, we design an Ego-Score task τego to character-

ize the egocentricity likelihood of the video.

For this, we train a binary ego-classifier Mego on the

Charades-Ego dataset [62], which has both egocentric and

third-person videos of indoor activities involving object in-

teractions. While the dataset offers paired instances show-

ing the same activity from two views, our method does not

use this pairing information or egocentric activity labels. It

uses only the binary labels indicating if a sample is egocen-

tric or exocentric. Please see Supp. for more training details

and an ablation study about the pairing information.

We use this trained classifier to estimate the real-valued

pseudo task-labels yego for each video in our pre-training

framework described in Sec 3.2. We sample multiple clips

from the same video and average their score to generate

a video-level label. Formally, for a video v with N clips

{x1, ..., xN} we generate scores:

y
ego
i (v) =

exp( 1

Nβ

P

n z
ego
i (xn))

P

j exp(
1

Nβ

P

n z
ego
j (xn))

, (1)

where β is a scalar temperature parameter, z
ego
i (xn) is

the predicted logits from the ego-classifier Mego, and i 2
{0, 1} is the class label.

Third-person videos display various egocentric cues, re-

sulting in a broad distribution of values for Ego-Score, de-

spite sharing the same viewpoint (details in Supp). This

score is used as the soft target in the auxiliary task loss,

which we predict using a video classification head Hego:

Lego(x) = �
X

i

y
ego
i (v) log(Hego

i (x)). (2)

Object-Score: Finding interactive objects. In egocen-

tric videos, interactions with objects are often central, as

evident in popular egocentric video datasets [62, 12, 38].

Motivated by this, we designate an Object-Score task τobj

for each video that encourages video representations to be

predictive of manipulated objects.

Rather than require ground-truth object labels for third-

person videos, we propose a simple solution that directly

uses an off-the-shelf object recognition model Mobj trained

on ImageNet [14] to describe objects in the video. For-

mally, for a video v with frames {f1, ..., fT } we average

the predicted logits from Mobj across frames to generate

the video-level Object-Score y
obj
i (v):

y
obj
i (v) =

exp( 1

Tβ

P

t z
obj
i (ft))

P

j exp(
1

Tβ

P

t z
obj
j (ft))

, (3)

where z
obj
i (ft) is predicted logits for the ith class from the

recognition model, and β is the temperature parameter.

Similar to the Ego-Score, we introduce a knowledge-

distillation loss during pre-training to make the video model

predictive of the Object-Score using a module Hobj :

Lobj(x) = �
X

i

y
obj
i (v) logHobj

i (x). (4)

Interaction-Map: Discovering hand interaction regions.

The Object-Score attempts to describe the interactive ob-

jects. Here we explicitly focus on the spatiotemporal re-

gions of interactions in videos. Prior work shows it is pos-

sible to recognize a camera wearer’s actions by attending to

only a small region around the gaze point [38], as gaze of-

ten focuses on hand-object manipulation. Motivated by this,

we introduce an Interaction-Map task τ int to learn features

that are predictive of these important spatiotemporal hand-

object interaction regions in videos.

We adopt an off-the-shelf hand-object detector [60]

M int to detect hands and interacting objects. For each

frame ft in a video, the hand detector predicts a set of

bounding-box coordinates and associated confidence scores

Bt = {(bh, sh)} for detected hands. These bounding boxes

are scaled to h ⇥ w—the spatial dimensions of the video

clip feature. We then generate a t ⇥ h ⇥ w spatiotemporal
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Figure 3: Interaction-Map construction. Soft-labels

for hand-map and object-map are generated from detected

bounding boxes according to Eqn 5.

hand-map yh where the score for each grid-cell yhi,j(ft) at

each time-step is calculated by its overlap with the detected

hands at time t:

yhi,j(ft) =

(

maxk∈Bt
i,j
{shk} if Bt

i,j 6= ;,

0 if Bt
i,j = ;,

(5)

where Bt
i,j is the set of predicted bounding boxes that over-

lap with the (i, j)-th grid-cell at time t. The full hand-map

label yh is formed by concatenating the per-frame labels

over time. We generate the corresponding object-map yo

analogously. See Fig 3 for an illustrative example.

We use the hand-map and object-map as the Interaction-

Map pseudo-labels for the third-person videos during pre-

training. We introduce two Interaction-Map prediction

heads, Hh and Ho, to directly predict the t ⇥ h ⇥ w

Interaction-Map labels from clip features using a 3D con-

volution head:

Lint(x) = �
X

i,j

 

X

k

yh(fk) log[H
h(x)]k

+yo(fk) log[H
o(x)]k

!

i,j

,

(6)

where fk is k-th frame from training clip x, and Hh(x) and

Ho(x) are the predicted hand-map and object-map scores.

We predict Interaction-Maps instead of directly predict-

ing bounding boxes via standard detection networks [58] for

two reasons. First, detection architectures are not directly

compatible with standard video backbones—they typically

utilize specialized backbones and work well only with high

resolution inputs. Second, predicting scores on a feature

map is more aligned with our ultimate goal to improve the

feature representation for egocentric video tasks, rather than

train a precise detection model.

3.4. Ego-Exo training and evaluation

The three proposed ego-specific auxiliary tasks are com-

bined together during the pre-training procedure to con-

struct the final training loss:

L(x) = Lact(x) + wego ⇤ Lego(x)

+wobj ⇤ Lobj(x) + wint ⇤ Lint(x),
(7)

where Lact is the standard cross-entropy loss for third-

person action recognition, and wego, wobj and wint are the

corresponding loss weights for the three auxiliary tasks, se-

lected via cross-validation on downstream tasks.

Note that third-person video instances without hand-

object interactions or salient interactive objects still con-

tribute to the auxiliary loss terms, and are not ignored. Our

distillation models approximate the responses of the pre-

trained egocentric models as soft-targets instead of hard la-

bels, offering valuable information about perceived egocen-

tric cues, whether positive or negative for the actual label.

Training with our auxiliary losses results in features that

are more suitable for downstream egocentric tasks, but it

does not modify the network architecture itself. Conse-

quently, after pre-training, our model can be directly used

as a drop-in replacement for traditional video encoders, and

it can be applied to various egocentric video tasks.

4. Experiments

Datasets. Our experiments use the following datasets.

• Kinetics-400 [34] is a popular third-person video dataset

containing ⇠300k videos and spanning 400 human action

classes. We use this dataset to pre-train all our models.

• Charades-Ego [62] has ⇠68k instances spanning 157 ac-

tivity classes. Each instance is a pair of videos corre-

sponding to the same activity, recorded in the first and

third-person perspective. Our method does not require

this pairing, and succeeds even if no pairs exist (Supp.).

• EPIC-Kitchens [12] is an egocentric video dataset with

videos of non-scripted daily activities in kitchens. It con-

tains 55 hours of videos consisting of 39k action seg-

ments, annotated for interactions spanning 352 objects

and 125 verbs. EPIC-Kitchens-100 [11] extends this to

100 hours and 90k action segments, and is currently the

largest annotated egocentric video dataset.

Due to its large scale and diverse coverage of actions,

Kinetics has widely been adopted as the standard dataset

for pre-training both first- and third-person video mod-

els [27, 19, 35, 11]. EPIC-Kitchens and Charades-Ego are

two large and challenging egocentric video datasets that are

the subject of recent benchmarks and challenges.

Evaluation metrics. We pre-train all models on Kinet-

ics, and fine-tune on Charades-Ego (first-person only) and

EPIC-Kitchens for activity recognition. Following stan-

dard practice, we report mean average precision (mAP) for

Charades-Ego and top-1 and top-5 accuracy for EPIC.

Implementation details. We build our Ego-Exo frame-

work on top of PySlowFast [18] and use SlowFast [19]

video models as backbones with 8 input frames and stride 8.
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We use a Slow-only ResNet50 architecture for all ablation

experiments, and a SlowFast ResNet50/101 architecture for

final results.

For our distillation heads Hego and Hobj (Sec 3.3), we

use a spatiotemporal pooling layer, followed by a linear

classifier. We implement our Interaction-Map heads Hh

and Ho as two 3D conv layers with kernel sizes 1⇥3⇥3 and

1⇥1⇥1, and ReLU activation.

For our combined loss function (Eqn 7), we set the loss

weights wego, wobj and wint to 0.1, 0.5, 1.0 respectively

through cross-validation on the EPIC-Kitchens validation

set (cross-validation on Charades-Ego suggested similar

weights). The temperature parameter β in Eqn 1 and Eqn 3

is set to 1. Training schedule and optimization details can

be found in Supp.

4.1. Ego-Exo pre-training

We compare our pre-training strategy to these methods:

• Scratch does not benefit from any pre-training. It is

randomly initialized and directly fine-tuned on the target

egocentric dataset.

• Third-only is pre-trained for activity labels on Kinetics

400 [34]. This represents the status-quo pre-training strat-

egy for current video models.

• First-only is pre-trained for verb/noun labels on EPIC-

Kitchens-100 [11], the largest publicly available egocen-

tric dataset.

• Domain-adapt introduces a domain adaptation loss de-

rived from gradients of a classifier trained to distinguish

between first- and third-person video instances [23]. This

strategy has been used in recent work to learn domain in-

variant features for third-person vs. drone footage [10].

• Joint-embed uses paired first- and third-person video

data from Charades-Ego to learn viewpoint-invariant

video models via standard triplet embedding losses [61].

We first pre-train this model with Kinetics to ensure that

the model benefits from large-scale pre-training.

• Ego-Exo is pre-trained on Kinetics-400, but additionally

incorporates the three auxiliary egocentric tasks (Sec 3.3)

together with the original action classification loss, to

learn egocentric-specific features during pre-training.

For this experiment, all models share the same backbone ar-

chitecture (Slow-only, ResNet-50) and only the pre-training

strategy is varied to ensure fair comparisons. Domain

Adapt uses additional unlabeled egocentric data during pre-

training, but from the same target dataset that the model will

have access to during fine-tuning. Joint-embed uses paired

egocentric and third-person data, an advantage that the other

methods do not have, but offers insight into performance in

this setting. Only First-only has access to ego-videos la-

beled for actions during pre-training.

C-Ego EPIC verbs EPIC nouns

Methods mAP top-1 top-5 top-1 top-5

Scratch 8.50 55.62 86.10 38.35 62.39

First-only 11.73 – – – –

Third-only 24.69 61.19 87.49 46.18 69.72

Domain-adapt [23] 23.62 61.27 87.49 45.93 68.73

Joint-embed [61] - 61.26 87.17 46.55 68.97

Ego-Exo 26.23 62.83 87.63 48.15 70.28

Table 1: Ego-Exo vs. alternate pre-training methods.

Our Ego-Exo pre-training results in best performance. Note

that we do not evaluate First-only and Joint-embed on the

datasets they were pre-trained on (EPIC and Charades-Ego

respectively). Values are averaged over 3 runs.

C-Ego EPIC verbs EPIC nouns

Methods τego τobj τh+o mAP top-1 top-5 top-1 top-5

Third-only 5 5 5 24.69 61.19 87.49 46.18 69.72

Ego-Exo

3 5 5 25.01 62.22 87.78 46.26 68.76

5 3 5 25.49 61.65 87.57 46.27 69.52

5 5 3 25.91 62.55 88.50 47.71 69.62

3 3 3 26.23 62.83 87.63 48.15 70.28

Table 2: Auxiliary task ablation study. Distilling knowl-

edge from all three egocentric tasks results in the best per-

forming pre-trained model. Values are averaged over 3 runs.

Table 1 shows the validation performance of different

pre-training strategies. Third-only benefits from strong ini-

tialization from large-scale video pre-training and greatly

outperforms models trained from Scratch. First-only per-

forms very poorly despite being pre-trained on the largest

available egocentric dataset, indicating that increasing scale

alone is not sufficient—the diversity of scenes and activ-

ities in third-person data plays a significant role in fea-

ture learning as well. Domain-adapt and Joint-embed both

learn viewpoint invariant features using additional unla-

beled egocentric data. However, the large domain gap

and small scale of the paired dataset limit improvements

over Third-only. Our Ego-Exo method achieves the best

results on both Charades-Ego and EPIC-Kitchens. The

consistent improvements (+1.54% mAP on Charades-Ego,

and +1.64%/+1.97% on EPIC verbs/nouns) over Third-only

demonstrate the effectiveness of our proposed auxiliary

egocentric tasks during pre-training. This is a key result

showing the impact of our idea.

Fig 4 shows a class-wise breakdown of performance

on Charades-Ego compared to the Third-only baseline.

Our pre-training strategy results in larger improvements on

classes that involve active object manipulations.

4.2. Ablation studies

Impact of auxiliary ego-tasks. We next analyze the im-

pact of each auxiliary egocentric task in our Ego-Exo frame-

work. As shown in Table 2, adding the Ego-Score task

improves performance on both EPIC-Kitchens tasks, while
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Figure 4: Class-level performance on Charades-Ego. Our method significantly improves on several classes that focus on

active object manipulations (green lines), and performs only marginally worse across most under-performing classes (red

lines). 35 most/least improved classes (out of all 157 classes) are shown.

C-Ego EPIC verbs EPIC nouns

Methods mAP top-1 top-5 top-1 top-5

Third-only 24.69 61.19 87.49 46.18 69.72

Third-only +aux 25.00 62.36 87.72 46.59 68.33

∆ +0.31 +1.17 +0.23 +0.42 -1.39

Ego-Exo 26.23 62.83 87.63 48.15 70.28

Ego-Exo +aux 27.47 64.26 88.45 48.39 70.68

∆ +1.24 +1.43 +0.82 +0.24 +0.40

Table 3: Effect of Ego-Exo losses during fine-tuning.

Adding distillation losses during fine-tuning improves per-

formance for both models, and results in a larger perfor-

mance gain for our Ego-Exo pre-trained models. Values are

averaged over 3 runs.

adding Object-Score and Interaction-Map consistently im-

proves all results. This reveals that despite varying struc-

ture and semantics, these scores capture important underly-

ing egocentric information to complement third-person pre-

training, and further boost performance when used together.

Fig 5 shows instances from Kinetics based on our aux-

iliary pseudo-label scores combined with the weights in

Eqn 7. Our score is highest for object-interaction heavy

activities (e.g., top row: knitting, changing a tire), while it

is low for videos of broader scene-level activities (e.g., bot-

tom row: sporting events). Note that these videos are not

in the egocentric viewpoint—they are largely third-person

videos from static cameras, but are ego-like in that they

prominently highlight important features of egocentric ac-

tivity (e.g. hands, object interactions).

Adding auxiliary ego-tasks during fine-tuning. Our

auxiliary losses may also be added after pre-training, for

fine-tuning downstream egocentric models similar to prior

semi-supervised learning work [9]. We re-introduce our

Interaction-Map loss Lint (Eqn 6) for downstream egocen-

tric training. We do not include Ego-Score (which is triv-

Method mAP

ActorObserverNet [61] 20.0

SSDA [10] 23.1

I3D [10] 25.8

SlowFast [19] 25.93

Ego-Exo 28.04

Ego-Exo* 29.19

Ego-Exo*-R101 30.13

Table 4: Comparison to prior work on Charades-Ego.

Despite having no access to paired egocentric data, our

model outperforms specialized joint-embedding and do-

main adaptation based methods.

ially high for all videos) and Object-Score (which is sub-

sumed in the interaction label for this setting) as their im-

pact after pre-training was minimal.

Table 3 shows that while both the baseline and our

method further improve by adding the auxiliary task during

fine-tuning, our improvements (Ego-Exo + aux) are larger,

especially on Charades-Ego. This is likely because our dis-

tillation heads benefit from training to detect hands and ob-

jects in large-scale third-person video prior to fine-tuning

for the same task on downstream ego-datasets.

4.3. Comparison with state-of-the-art

Finally, we compare our method with state-of-the-art

models, many of which use additional modalities (flow,

audio) compared to our RGB-only models. We include

three competitive variants of our model using SlowFast [19]

backbones: (1) Ego-Exo uses a ResNet50 backbone; (2)

Ego-Exo* additionally incorporates our auxiliary distilla-

tion loss during fine-tuning.1 (3) Ego-Exo*-R101 further

uses a ResNet-101 backbone.

1Same as Ego-Exo + aux in Table 3, but here with a SlowFast backbone
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Overall Unseen Participants Tail Classes

top-1 top-5 top-1 top-1

Methods verb noun actions verb noun actions verb noun actions verb noun actions

w/ audio Epic-Fusion [35] 62.40 46.50 35.11 88.74 72.24 55.17 56.57 41.78 29.46 29.41 18.55 13.47

w/o audio

TSN fusion [12] 58.43 46.54 32.79 87.27 72.49 53.12 52.04 42.09 26.30 24.76 14.91 10.41

TRN [22] 62.56 45.70 34.41 88.24 71.37 54.65 57.49 40.85 28.69 27.24 13.42 11.20

TSM [40] 65.51 48.48 37.58 89.39 73.46 58.04 59.66 43.16 30.41 29.76 15.84 13.15

SlowFast [19] 63.89 49.66 37.42 88.71 74.99 58.17 57.37 44.31 29.71 33.57 22.57 16.55

Ego-Exo 64.08 50.59 38.38 88.57 74.82 59.04 57.42 46.18 31.41 32.87 22.98 16.30

Ego-Exo* 65.02 51.74 39.52 89.26 75.95 60.07 58.86 47.01 32.36 33.68 22.35 16.30

Ego-Exo*-R101 66.07 51.51 39.98 89.39 76.31 60.68 59.83 45.50 32.63 33.92 22.91 16.96

Table 5: Comparison on EPIC-Kitchens-100 action recognition test set. Our method is best in all categories.

Figure 5: Kinetics instances sorted by Ego-Exo scores.

Our task scores are maximum for videos that prominently

feature hands/objects in view (top row), and minimum for

scenes devoid of human-centered activity (bottom row).

Charades-Ego. Table 4 compares our Ego-Exo method

with existing methods. Our Ego-Exo and Ego-Exo* yield

state of the art accuracy, improving performance over the

strongest baseline by +2.11% and +3.26% mAP. We ob-

serve large performance gains over prior work, including

ActorObserverNet [61] and SSDA [10], which use joint-

embedding or domain adaptation approaches to transfer

third-person video features to the first-person domain. In

addition, unlike the competing methods, our method does

not require any egocentric data which is paired or shared

category labels with third-person data during pre-training.

EPIC-Kitchens. Table 6 compares our method to state-

of-the-art models on the EPIC-Kitchens test set. Ego-Exo

and Ego-Exo* consistently improve over SlowFast (which

shares the same backbone architecture) for all categories on

both seen and unseen test sets. Epic-Fusion [35] uses addi-

tional optical flow and audio modalities together with RGB,

yet Ego-Exo outperforms it on the top-1 metric for all cat-

egories. AVSlowFast [71] also utilizes audio, but is outper-

formed by our model with the same backbone (Ego-Exo*-

R101) on the S1 test set.2 On EPIC-Kitchen-100 [11], as

shown in Table 5, Ego-Exo consistently improves over the

2Table 6 compares existing methods under a controlled setting: us-

ing a single model with RGB or RGB+audio as input, and only Kinet-

ics/ImageNet for pre-training. Other reported results on the competition

page may use extra modalities, larger pre-training datasets, or model en-

semble schemes (e.g. the top ranking method ensembles 8 models).

verbs nouns actions

S1 (seen) Methods top-1 top-5 top-1 top-5 top-1 top-5

w/ audio
Epic-Fusion [35] 64.75 90.70 46.03 71.34 34.80 56.65

AVSF-R101 [71] 65.70 89.50 46.40 71.70 35.90 57.80

w/o audio

TSN fusion [12] 48.23 84.09 36.71 62.32 20.54 39.79

RU-LSTM [22] 56.93 85.68 43.05 67.12 33.06 55.32

SlowFast [19] 64.57 89.67 45.89 69.50 34.67 54.47

Ego-Exo 65.84 89.91 46.68 70.30 36.00 54.90

Ego-Exo* 66.19 90.11 47.21 70.08 37.04 55.91

Ego-Exo*-R101 65.97 90.32 47.99 70.72 37.09 56.32

S2 (unseen)

w/ audio
Epic-Fusion [35] 52.69 79.93 27.86 53.87 19.06 36.54

AVSF-R101 [71] 55.80 81.70 32.70 58.90 24.00 43.20

w/o audio

TSN fusion [12] 39.40 74.29 22.70 45.72 10.89 25.26

RU-LSTM [22] 43.67 73.30 26.77 48.28 19.49 37.15

SlowFast [19] 53.91 80.81 30.15 55.48 21.58 37.56

Ego-Exo 54.11 80.37 30.83 57.08 21.20 38.34

Ego-Exo* 53.88 80.51 31.44 57.60 22.02 39.13

Ego-Exo*-R101 55.34 81.46 31.72 58.25 22.81 40.18

Table 6: Comparison to prior work on EPIC-Kitchens

(test set). Methods in gray use additional audio modality

information. Our method outperforms all methods that use

consistent modalities in both settings, and is competitive

with models that benefit from audio stream inputs.

SlowFast baseline on all evaluation metrics, and Ego-Exo*-

R101 outperforms all existing state-of-the-art methods.

5. Conclusion

We proposed a novel method to embed key egocentric

signals into the traditional third-person video pre-training

pipeline, so that models could benefit from both the scale

and diversity of third-person video datasets, and create

strong video representations for downstream egocentric un-

derstanding tasks. Our experiments show the viability of

our approach as a drop-in replacement for the standard

Kinetics-pretrained video model, achieving state-of-the-art

results on egocentric action recognition on Charades-Ego

and EPIC-Kitchens-100. Future work could explore al-

ternate distillation tasks and instance-specific distillation

losses to maximize the impact of third-person data for train-

ing egocentric video models.
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