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Abstract

Images synthesized by powerful generative adversar-

ial network (GAN) based methods have drawn moral and

privacy concerns. Although image forensic models have

reached great performance in detecting fake images from

real ones, these models can be easily fooled with a sim-

ple adversarial attack. But, the noise adding adversarial

samples are also arousing suspicion. In this paper, in-

stead of adding adversarial noise, we optimally search ad-

versarial points on face manifold to generate anti-forensic

fake face images. We iteratively do a gradient-descent with

each small step in the latent space of a generative model,

e.g. Style-GAN, to find an adversarial latent vector, which

is similar to norm-based adversarial attack but in latent

space. Then, the generated fake images driven by the ad-

versarial latent vectors with the help of GANs can defeat

main-stream forensic models. For examples, they make the

accuracy of deepfake detection models based on Xception

or EfficientNet drop from over 90% to nearly 0%, mean-

while maintaining high visual quality. In addition, we find

manipulating noise vectors n at different levels have differ-

ent impacts on attack success rate, and the generated ad-

versarial images mainly have changes on facial texture or

face attributes.

1. Introduction

Nowadays, it is increasingly hard for human eyes to tell

a real image from a fake one with the rapid improvement

of image generation techniques. Manipulated or generated

fake images may draw social and privacy concern if being

abused by malicious attackers. An attacker may register

an account with photos belonging to a non-existent person

or swap one person’s face to another, thus causing privacy

and security issues. Image forensic models are designed to

clarify those images from real ones, and have gained con-
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Figure 1. Adversarial images generated by different methods. Up-

per left is the original Style-GAN-generated image. Upper right is

the image generated by our method. Lower left and Lower right

are adversarial images generated by FGSM[8] and PGD[21] Linf

norm-based attack respectively under the same perturbation level.

Although all these images can bypass the target forensic model,

images generated by our method are more invisible to human eyes.

siderable performance on several benchmarks and datasets

[17, 30]. However, a smarter attacker may attempt to gener-

ate images which can bypass those detectors while keeping

high visual quality. These images may escape the detection

procedure and spread in social media. In order to combat

the generation and spread of undetectable “deep fakes”, it is

necessary for image forensics researchers themselves to de-

velop and study anti-forensic operations[32] to improve the

robustness and generalization ability of the existed forensic

models.

In this paper, we propose to efficiently generate adver-

sarial high visual quality fake images to fool forensic de-

tectors. By adversarially exploring on the manifold of the

recent powerful generative model Style-GAN[13], we can
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therefore generate the adversarial fake face images that fool

forensic models. Though StyleGAN is capable of generat-

ing high-resolution images with various styles and stochas-

tic details, the generated fake images are easily detected by

models based on Xception or EfficientNet with accuracy of

over 90%. But with intentionally iteratively searching these

adversarial vectors in its latent space with a gradient de-

scent manner, we successfully screen out fakes images that

will be detected by forensic models as real ones.

Although one can exploit existing adversarial attack

methods [8, 21] to deceive a forensic model, it may hold

visible perturbations brought by the optimization process in

image space, which make it detectable by human eyes or

specially designed detectors [24]. Recently proposed unre-

stricted adversarial attack methods [31, 36, 11] could gen-

erate adversarial images with less suspicious visual artifacts

by training GAN models, but they mainly focus on defeat-

ing classification or recognition tasks.

Our method has superiority in the following aspects:

First, because we do modifications on the manifold, we

don’t have to care much about the image pixel constraint,

which makes a higher updating strength possible. Second,

unlike norm-based attack which leave visible artifacts onto

the image, our method can generate the same image without

obvious artifacts, see in Figure 1.

Our contribution are as follows:

1. We propose a novel method of generating adversar-

ial anti-forensic images via exploring Style-GAN’s mani-

fold. Images generated by our method can successfully by-

pass two image forensic models, Xception [2] and Efficient-

Net [33]. indicating the demand for more robust forensic

models.

2. We compare our method with nowadays widely-

applied norm-based adversarial attacks and show that the

proposed method can achieve the same attack success rate

while introducing less visible perturbation, making it harder

for our adversarial image to be detected by human eyes.

3. We conduct our attack in different ensemble ways and

have shown our adversarial images can transfer between

different forensic models, causing a threat even in the situ-

ation where the architecture of forensic models is unknown

to the attacker.

4. We show some interesting effects between the adver-

sarial strength, the level of input noise vector and the at-

tributes of our generated images, which are worthy of in-

vestigation in future.

2. Related Work

2.1. Forged Image Generation and Detection

Forged Image Generation. Generating forged images

manually with image-editing tools can be time-consuming

and may be easily detected by both human eyes and other

forensic methods. Recent deep-learning methods lower the

threshold of synthesizing these fake images, making it pos-

sible to yield a large volume in a short period. Nowadays

forged images have drawn more attention since detection on

them are much harder then before, and have caused serious

privacy and security issues, in which fake facial images ac-

count for a large proportion. There exists several methods

to synthesize forge facial images[35]: Entire face synthesis

[13, 22, 12], which our method belongs to, uses GANs or

other generative models to generate a fake image; face iden-

tity swap[15, 34, 23], which swap one person’s face to an-

other one; face attributes editing [9, 40],which manipulates

face attributes with image editing software or deep learning

models and face expression manipulating [6, 34, 23], which

transplant a target’s facial expression to a source person.

GAN framework was first introduced by Goodfellow

et al. [7] and has been widely applied to a series of

unsupervised and semi-supervised image generation tasks

. The main idea of a GAN is to fit the data distribution

with an adversarial game procedure, where a generator

tries to deceive a discriminator which aims to tell an

image is from the real data distribution or not. GAN

framework can also realize cross-domain translations

[10, 43] with additional information and carefully designed

loss functions. GANs have shown awesome results in face

generation [22, 12, 13],and have drawn broad awareness for

the vital role face images play nowadays. We choose Style-

GAN [13] pretrained on FFHQ dataset for the diversity of

its latent space and its ability to generate high resolution

images with various styles and fine grained details. With a

strong generator, we can generate more realistic images to

bypass detectors as well as human eyes.

Image Forensics. Traditional Image forensic ap-

proaches are usually based on specific artifacts left by a

certain forge method, which lack versatility and is fragile

to the change of forge method and data distribution. Re-

cent machine-learning and deep-learning methods are ca-

pable to handle more complex forge approaches. Zhang et

al. [41] used SVMs and Random Forests to classify forged

facial image, which is the first work to use machine-learning

method on image forensics. A two-stream network was pro-

posed to by Zhouet al. [42] for face manipulation detection.

MesoNet proposed by Yamagishiet al. [1] uses a network

with low layer numbers, focusing on the mesoscopic prop-

erties of images, to detect manipulated images. Rossler et

al. [30] shows that a Xception model outperforms than other

model on the forged image classification task. In practice,

EfficientNet [33] also show good performance.

Recently, a Face X-Ray method [16] which focus on the

detection of image blending artifact has been proposed and

have shown good performance on identity-swapping.

For the simplicity, we focus on bypassing deep learning
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forensic models which are aimed to detect whether an im-

age derives from a GAN or not. Images generated by our

method is able to escape the detection of two selected foren-

sic models, Xception [2] and EfficientNet [33].

2.2. Adversarial Examples

Adversarial Examples are images crafted with small

modifications to fool a target classifier. Given a classifier

f and an clean image X as well as its ground truth label

y which belong to a label set S,where f(x) = y for an

well-behaved classifier. The goal of an adversarial attack

is to get a modified image X ′ and make the threat model

predict f(X ′) = y′ while y′ ∈ S and y′ 6= y . The type

of the attack can be categorized as non-targeted attack and

targeted attack based on whether its goal is to make the

target model classify the adversarial image as any y′ 6= y or

a specified y′. Based on how much information about the

target model is known, attack method can be divided into

white-box attack, in which model weights and architectures

are accessible, and black-box attack, where attackers hold

limited knowledge about the model. Besides, adversarial

examples have shown transferability [25, 19], that is,

adversarial examples crafted on one model may also fool

other models although their architectures are different. The

norm-based attack methods require the distance between

the crafted adversarial image X ′ and the original image

X should satisfy the p-norm constraint ‖X ′ −X‖p < ǫ.

Series of work have followed this protocol [4, 21, 29, 37]

to improve the attack strength and transferability. Sev-

eral ways to resist adversarial examples have also been

proposed, such as adversarial training[8, 21], gradient

distillation[26], high level guided denoise[18] and so on.

Our work has taken advantage of several attack methods

below but is free from the norm constraint.

FGSM. FGSM [8] is an one-step attack method which

add perturbations onto the original images, hoping to max-

imize the loss function J(X ′, y), while J is usually the

cross-entropy loss, FGSM is formally defined by

X ′ = X + ǫ · sign(∇XJ(X, y)), (1)

where ǫ denotes the max perturbation scale. We have

deployed FGSM attack onto our generated images, trying

to fool the forensic model as a controlled experiment.

PGD. Madry et.al [21] deploy a strong iterative attack

method called Projected Gradient Descent. in each step the

perturbation is projected to a ǫ− based ball. Defined by

Xt+1 = Xt + α · sign(∇Xt
J(Xt, y)), (2)

in which Xt denotes the attack image in t-th iteration.

In our work,we use a similar way to update our input

vector to search on the generator’s manifold, we also

deployed Linf and L2 PGD attack onto the Style-GAN

generated image to compare with on method on visual

quaility and attack success rate.

Unrestricted Adversarial Examples. The traditional

adversarial perturbations are constrained by norm-bounds,

where unrestricted adversarial examples are free from. To

generate an unrestricted adversarial image, one can apply

various modifications to the original image,such as spa-

tial transformations [38], rotating [5],attribute editing [28],

translations[11], or even construct an image from scratch

[31], as soon as the synthesized image still belongs to

its previous class, which are usually judged by an aux-

iliary classifier[31].A recent work[27] also takes advan-

tage of Style-GAN, generating unrestricted adversarial im-

ages via modifying Style-GAN’s style vectors and noise in-

puts, attacking image classification models on ImageNet[3],

CelebA[20] and Lsun[39], while we are aimed at deceiv-

ing forensic models and focus on face images generated by

Style-GAN for the unique role face images plays in image

forensic applications.

3. Method

Although highly realistic images can be generated by

Style-GAN, they are easily to be detected by a forensic

model. In this paper, we try to generate fake images which

can fool forensic detectors without quality degradation. We

do manipulations on Style-GAN’s input latent vector z or

noise vector n in the neighborhood of the given vector to

find adversarial images on the face manifold. similar to

work [27], while keeping the original architecture of Style-

GAN unchanged.

3.1. Style­GAN

In our task, what we need is the original pretrained Style-

GAN and its weight. Style-GAN architecture consists of

a 8-layer linear mapping network f which maps a latent

code z to an intermediate style space to get style vector w,

and a generator g whose each layer takes style vectors and

random noise inputs as input and generates image progres-

sively. High-level patterns are determined by style vectors

and stochastic details are controlled by noise inputs, respec-

tively.

3.2. Anti­Forensics Fake Image Generation

In this work, we aim at generating our image adversarial

once for all avoiding extra adding perturbations operation.

As the iteration process goes further, the adversary of our

generate images becomes stronger. Our search method fo-

cus on finding the right direction which makes the gener-

ated images have the ability to escape the forensic models.

Motivated by the traditional norm-based iterative adversar-

ial attack, we apply gradient descent on the noise and latent
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Figure 2. The overall pipeline of our method. We perform gradient descent on the latent vector and noise inputs of Style-GAN, respectively

or together, maximizing loss function of the target forensic model(s).

vector of Style-GAN, updating those vectors towards the

direction which maximizes the loss of the forensic model’s

prediction. Each time after updating, we validate whether

the forensic detector predicts the fake image as real. Be-

cause forged image detection task is a two classification

problem, a non-target method will suffice. We bypass the

target detection models successfully if they misclassify our

generated images as real. The whole pipeline of our method

is shown in Figure 2.

In the basic attack setting, we minimize the binary cross-

entropy loss of the final prediction of a single forensic

model, while in the ensemble setting, the predictions of

the model are combined in different strategies, to achieve

higher attack success rates on both models.

3.3. Adversarially Searching on Face Manifold

We perform gradient descent to the latent vector z be-

fore the mapping network f and the noise inputs n1, n2...n8

inserted at each level of the generator’s upsampling layer.

Each time, we use the one step gradient sign of the loss

function to update our latent vectors with a fixed step size

hyperparameter ǫ1. The modification formula can then be

described as

zt+1 = zt + ǫ1 · sign(∇zt(J(g(zt, nt), y))), (3)

where z denotes the input latent vector and n represents the

noise injected into each layer, y is the ground truth label of

the generated images and is always set to fake, g is our pre-

trained Style-GAN generator. It is similar for each level’s

noise inputs. The iteration formula for noise inputs can be

written as

nt+1 = nt + ǫ2 · sign(∇nt
(J(g(zt, nt), y))). (4)

The reason why we don’t update the style vector after the

mapping network f directly is that we want to keep the in-

tegrity of the whole Style-GAN architecture.

Updating on noise inputs n1, n2, ..., n8 and latent vector

z can be carried out separately or together. Each level of

the generator network gets style vectors derived from the

same z, at the first few steps of the iteration process, the

images remain the same as they were. When iteration num-

ber increases, the texture of the resultant images become

much deeper, see in Figure 3. Modification on n1, n2, ...n8

will have more interesting effects on generated image for it

will gradually change the appearance of the output image

after more iteration steps and will bring different adversar-

ial strength. Synthesized images have the ability to bypass

the detector with ignorable changes after the first 1-2 steps,

while after 3-5 steps, some attributes of the generated per-

son’s face have obviously changed. We also found that dif-

ferent update step size and iteration times have impact on

the generate images visual quality. So we have to select

feasible step sizes and iteration times if we want to keep

the certain appearance of a person. The fact also means we

might be able to deploy successful attacks with some of the

image attributes modified, while others stay constant.

Recently, [27] also conducted adversarial attack through

Style-GAN, which seems to be similar to our method. We
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clarify that our method is different from theirs in the fol-

lowing aspects. First of all, [27] aims at attacking more

general tasks, such as image classification and instance seg-

mentation. while our work concentrates more on a specific

topic, Deepfake detection. Secondly, [27] mainly aims to

disable a classification task, so their attack will need an in-

put image (also called reference image) which exists in the

real world, while our goal is to generate fake images that

can evade forensic detection totally from scratch. Lastly,

[27] only reports performance on white box attack scenario,

while the proposed method additionally shows promising

performance under a black box attack protocol, which will

be shown in section 4.2.

3.4. Gradients Ensemble

To increase the attack success rate of adversarial images

generated by our method, we propose to conduct ensemble

attack. We organize our ensemble attack method in three

different manners: an alternatively attack manner, ensemble

in loss and ensemble in network predicted logits. The suc-

cess of the ensemble attack suggests our method can be used

to bypass a set of forensic models as far as we know their

architecture. To bypass a single model we need to search

through a direction which maximizes the target model’s pre-

dict error, while ensembling can constrain our searching to-

wards the direction where we can find the images which

make the prediction of both models deteriorate. Gradients

ensemble can effectively avoid searching into local maxi-

mums.

4. Experiment

4.1. Basic Setting

Our method generates images totally from scratch. We

use Style-GAN generator pretrained on FFHQ dataset as

our generator. Random latent vectors and noise inputs are

sampled from a standard Gaussian distribution. As for the

forensic models, we use EfficientNet-B3 [33]and Xception

[2] network for training, both of which are loaded with pre-

trained weights on the imagenet dataset. The training data

set is composed of images from FFHQ Dataset and Style-

GAN generated images, we use the first 50,000 images in

both image sets as our training set, the 50,000-60,000th

picture as the validation set, and the 60,000-70,000th pic-

ture as the test set. The size of the pictures in the dataset

is 1024 × 1024. We resize those images to 299 × 299
and 300× 300, and feed them into the EfficientNet-B3 and

Xception networks respectively. We use Adam [14] as the

optimizer and set the learning rate to 0.0002, weight decay

to 0.001, and epoch to 3. In each epoch, we verified ac-

curacy of our model for 5 times, and we choose the model

with the best performance in the verification process as our

final model and evaluate them on the testset.

To construct our attack dataset, for each strategy, we fol-

low the same process: we first generate 5,000 images from

scratch as our fake GAN-generated images, labelled as 1,

and select another 5,000 real image from FFHQ dataset as

real images, labelled as 0. Image size is 1024 × 1024 after

generation process and is resized then normalized to [0, 1]
before being fed into forensic models. We test the accu-

racy of the detectors on those real images and fake images

without attack as models accuracy on clean images. Aver-

age accuracy of each model has reached over 90%. Next,

we apply our attack on those generated fake images and test

the accuracy of the detector on the attacked images.

4.2. White­box Attack

In our basic white-box attack setting, we conduct three

ways to attack. Noise method means we perform gra-

dient decent on all noise inputs with the latent vector z

fixed, while latent method means we only update the la-

tent vector z with the noise inputs fixed. The third method,

noise and latent means simultaneously updating noise in-

puts n1, n2...n8 and latent vector z. As our threat model,

Xception and EfficientNet are attacked separately. The hy-

perparameter ǫ1 and ǫ2 are set to 0.004 and 0.05, respec-

tively. Although most of the attack images are able to by-

pass the target forensic models after 1-2 steps, we continue

updating on these vectors till iteration times reached 10 for

we want to see how the distortion the updating process bring

to the output images will be.

As baseline experiments, we develop a FGSM attack un-

der Linf constraint and two PGD attacks under Linf and

L2 norm constraint on the target forensic models. For Linf

and L2 PGD attack, the iteration step size ǫ is set to 0.01,

and will last 40 times. All pixel values are normalized to

[0,1] in our experiment, and will be clipped after each iter-

ation to avoid invalid outputs. and the allowed maximum

perturbation size is 0.3 in all norm-based attacks.

Our basic attack success rate on two forensic models,

comparing with the PGD attack, are shown in Table 1. In

our attack setting, before attack, the accuracy on both real

images and fake images is over 90%, while after our attack,

the accuracy have dropped to less than 1%. Baseline meth-

ods also perform well in degrading the prediction of both

forensic models, except for PGD L2 attack, which only de-

crease the accuracy of the model by about 30%. We an-

alyze that it is because of L2 adversarial attack takes the

whole image’s information in consideration and thus re-

quires much larger perturbation scale. While most meth-

ods shown in Table 1 can successfully deceive the model,

our method is better in the visual quality of generated im-

ages. Images generated by our method, Linf PGD attack

and FGSM are shown in Figure 1 . PGD L2 attack is not in

our consideration due to its low attack success rate.
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Method
Model

EfficientNet Xception

Clean image 97% 93%

PGD Linf (ǫ = 0.3) 0% 5%

PGD L2(ǫ = 0.3) 60% 63%

FGSM Linf (ǫ = 0.3) 13% 5%

Noise(ours) 0% 0%

Latent(ours) 0% 0%

Noise and latent(ours) 0% 0%

Table 1. Accuracy different models perform on our method and

other adversarial attack method, PGD L2, PGD Linf and FGSM

attack. our method has the same ability to bypass the forensic de-

tectors as norm-based adversarial attack, PGD Linf and has better

adversarial strength than FGSM and PGD L2 attack. PGD L2 at-

tack shows poor performance on both models because of the lim-

ited perturbation scale.

4.3. Black­Box Attack

In this subsection, we report the performance of our gen-

erated images in a black-box setting. We explore the black-

box transferability of our generated adversarial image from

one single forensic model to another. First we set our attack

strategy to be the latent noise method as mentioned above,

and fix the iteration step to 3. Under this situation, varia-

tions in images attributes is relatively small, meanwhile re-

sult images have enough adversarial strength. For the two

forensic models, we generate 5000 adversarial images, de-

noted as Imge and Imgx. We then test the accuracy Xcep-

tion model reaches on adversarial images generated on Ef-

ficientNet and vice versa.

We observe that images generated on EfficientNet by

our method shows good black-box transferability, decreas-

ing the accuracy of Xception from 93% to 50% by nearly

a half. While images generated on Xception shows little

transferability, the accuracy of EfficientNet is 97% on clean

GAN-generated images before attack, while it is 90% on

our adversarial images. Images generated by Linf PGD at-

tack, L2 PGD attack and FGSM are also tested in the same

way, and similar result was found. The model accuracy of

black-box attacks can be found in Table 2. From the chart

we can find transferability of norm-based attacks are better

than our method. We speculate the reason for the fact is 1:

Our method are generated from the specific Style-GAN’s

manifold and they still have artifacts(although invisible to

human eyes) that can be caught by detectors and 2: norm

based attack have less overfitting than our method on the

target model.

4.4. Ensemble Attack

We have found that attack between different models

which relies on transferability is kind of fragile and lacks

robustness. To improve the performance, we conducted our

Target Model Method
Test Model

EfficientNet Xception

EfficientNet

FGSM Linf 0% 0%

PGD Linf 0% 0%

PGD L2 60% 81%

Ours 0% 5%

Xception

FGSM Linf 13% 5%

PGD Linf 86% 0%

PGD L2 95% 63%

Ours 9% 0%

Table 2. Model accuracy under black-box setting. Adversarial ex-

amples generated from norm-based attacks (except L2 PGD at-

tack shows better transferability. while our method has also shown

transferability to some extent.

Origin image Step 5 Step 9Step 1

Figure 3. Images generated though solely updating latent vector z

at different steps. ǫ1 is set to 0.004. While successfully deceiving

the target model, our adversarial images are the same as the orig-

inal image except for some nearly invisible textures under proper

iteration times and step size.

experiment in an ensemble way. we have tried three ensem-

ble methods: ensemble in loss, ensemble in logits, and a

an alternative attack manner. Ensemble in loss means loss

function of the two forensic models are added together after

each calculation, while in ensembling in logits setting, we

fuse output logits of image forensic models to get the final

cross-entropy loss function, which is then used to get the

gradient with a backward pass, and in this setup,the weight

of the EfficientNet and Xception are both 0.5 for we ob-

served their gradients are in the similar scale. In the alter-

native attack scenario, we alternatively carry out gradient

descent updating process according to one model in the en-

semble models in each step. Other settings are same as the

base attack strategy. Result of model accuracy on differ-

ent ensemble attack method are shown in Table 3. Result

on Xception and EfficientNet model show all the ensemble

attack method are able to deceive the target forensic model

with a high confidence. The success of different ways of en-

semble attack suggests we can improve anti-forensic ability

of our generated images by expand our target model set.

4.5. Impact of Noise Inputs on Generated Images

Noise Level. Updating on the latent vector z and noise

inputs n1, n2, ...n8 can both achieve the goal of deceiving
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Ensemble Method
Model

EfficientNet Xception

Ensemble in loss 0.5% 0%

Ensemble in logits 0.1% 0%

Alternative attack 0.4% 0%

Table 3. Model accuracy under different ensemble attacks. Im-

ages generated from all the attack method can bypass the model

successfully

Attack level
Model

EfficientNet Xception

0 (no attack) 97% 93%

1 99% 87%

2 98% 88%

3 98% 85%

4 75% 57%

5 35% 23%

6 1% 0%

7 1% 0%

8 1% 0%

Table 4. Model accuracy on adversarial images generate with only

one level‘s noise vector taking part in the updating process. Up-

dating higher level noise vectors results in stronger adversary.

the target model. When iteration times are small enough,

the result image have little change comparing with the orig-

inal one in both settings. However, When the iteration times

goes larger, updating on z only brings irregular textures to

the output image, making the attack more fragile facing

with human eyes,see in Figure 3. while updating on noise

vector shows more interesting results, controlling both the

iteration step scale and updating noise injected in different

level of the generator can affect both the attack success rate

and the character’s appearance of the generated image.

Concretely, changing the noise injected in lower level of

the generator may affect the output character’s appearance

such like gender, beard, hair cuts and so on, while changing

higher level noise may affect more general features of the

images like color or textures. Updating on a certain level

also leads to different attack strength.

We fix the latent vector z, and conduct attack by respec-

tively updating noise vector from level 1 to level 8. We

choose images generated in iteration step 3 and set a proper

step length ǫ2 = 0.05 for it won’t be too large to make

the result images suffer from serious distortions. We have

found that while the iteration steps and the latent vector z

is fixed, the higher level noise vector impact the model pre-

diction most, in other words, updating high level noise have

strongest adversarial impact. Figure 4 shows our generate

images under this setting and attack success rates of updat-

ing different level of noises are shown in Table 4.

Iterations & Step Size. We also found when updating

Mid level noise High level noiseLow level noise

Iteration 

step

Figure 4. Images generated though solely updating noise vector at

a specific level of the generator at different iteration steps. Updat-

ing low-level noise inputs results in more obvious attribute shifts.

Noise 1 Noise 4 Noise 8

Step3

Step 9

Step1

Figure 5. Images for a single person generated with a relatively

large stride at different iteration step. After 3 steps, resultant im-

ages are still similar to their counterpart. While after 9 steps, dis-

tortion has become large enough to be noticed by human eyes.

step on our noise vector become larger, Changing in lower

level noise inputs can also result in variations on some face

attributes. Images generated through updating on different

noise level with different iteration steps are shown in Fig-

ure 5 (with fixed ǫ2 = 0.05). More iteration steps bring
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Figure 6. Images generated though with different stride at iteration

step 3. Overlarge stride will lead to poor image quality.

larger image diversity. While proper modifications on noise

inputs yield feasible results, excessively updating or over-

large step-size can cause serious distortions. We show im-

ages of a single person under different iteration steps with

ǫ2 = 0.1 in figure and images with different iteration step

size while step=3 in Figure 6.

While the clear relationship among adversarial strength,

image attributes and noise level is still not clear. Further

research may make us have the ability to make slight modi-

fications on a certain feature of the image to bypass forensic

models in future.

4.6. Image Quality Assessment

In this subsection, we show that our method is able to

keep the visual quality of generated images, qualitatively

and quantitatively.

Intuitively, as the total perturbation we added to latent

vector has an limited range, it won’t have a huge impact

on the original distribution, thus the quality of the gener-

ated images can be preserved. Quantitatively, we calculate

several metrics on a test dataset with 10,000 images, where

reference images and images generated by three adversar-

ial methods each account for a quarter. We also evaluate the

quality of our images by user study, where 100 triplets com-

posed of adversarial images crafted by proposed method

and baseline methods are shown to 100 users, who are asked

to choose the one which is most similar to the reference im-

Figure 7. From left to right: reference image, image generated by

FGSM Linf , PGD Linf and proposed method, all three adversar-

ial images can deceive the detector. Zoom in to see more details.

Metric Ours PGD Linf FGSM Linf

MSE (↓) 0.009 0.027 0.004

PSNR (↑) 21.61 15.628 23.986

SSIM (↑) 0.891 0.57 0.926

LPIPS (↓) 0.123 1.084 0.507

User Study 10000/10000 0/10000 0/10000

Table 5. Table 5. Metric measuring distortion between adversarial

images and reference images. proposed method has similar per-

formance with FGSM in MSE, PSNR and SSIM, while surpassing

the rest methods in LPIPS and user study by a large margin.

age for each triplet. Please refer to Table 5 and Figure 7 to

see the result. Notice proposed method shows priority on

LPIPS and user study, which better reflects human percep-

tion than other metrics.

5. Conclusion & Future Work

In this paper, we propose a novel method to generate

GAN images which can bypass certain image forensic clas-

sifiers by searching on the manifold of Style-GAN. Images

generated by our method can lower the forensic models’

accuracy from over 90% to less than 1%, and have better

visual quality than norm-based adversarial attacks. We also

explored the transferability of our images over two foren-

sic models and deployed our method in different ensemble

manners and successfully generated unrestricted adversar-

ial images which are able to bypass several forensic mod-

els. Our method suggests more robust image forensic mod-

els are needed to identify GAN-generated fake images from

real ones. In our future work, we are about to find out ways

to improve transferability of our adversarial images over

different model architectures. Relationship among noise

level, face attributes and adversarial strength is also an at-

tractive realm to explore.
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