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Abstract

We aim to tackle the challenging Few-Shot Object Detec-

tion (FSOD), where data-scarce categories are presented

during the model learning. The failure modes of Faster-

RCNN in FSOD are investigated, and we find that the per-

formance degradation is mainly due to the classification in-

capability (false positives) caused by category confusion,

which motivates us to address FSOD from a novel aspect

of classification refinement. Specifically, we address the in-

trinsic limitation from the aspects of both architectural en-

hancement and hard-example mining. We introduce a novel

few-shot classification refinement mechanism where a de-

coupled Few-Shot Classification Network (FSCN) is em-

ployed to improve the final classification of a base detec-

tor. Moreover, we especially probe a commonly-overlooked

but destructive issue of FSOD, i.e., the presence of dis-

tractor samples due to the incomplete annotations where

images from the base set may contain novel-class objects

but remain unlabelled. Retreatment solutions are developed

to eliminate the incurred false positives. For FSCN train-

ing, the distractor is formulated as a semi-supervised prob-

lem, where a distractor utilization loss is proposed to make

proper use of it for boosting the data-scarce classes, while

a confidence-guided dataset pruning (CGDP) technique is

developed to facilitate the few-shot adaptation of base de-

tector. Experiments demonstrate that our proposed frame-

work achieves state-of-the-art FSOD performance on pub-

lic datasets, e.g., Pascal VOC and MS-COCO.

1. Introduction

Deep learning based object detection [13, 4, 2] have

achieved remarkable performance outperforming traditional

*∗ indicates equal contribution (Yiting Li, Haiyue Zhu and Yu Cheng).

† indicates corresponding author: Haiyue Zhu.

Figure 1. FSOD performance gain by eliminating classification

false positives.

approaches [24, 5]. However, deep learning detection relies

on the availability of a large number of training samples.

In many practical applications such as robotics [22, 23],

labeling a large amount of data is often time-consuming

and labor-intensive. This paper focuses on a practically de-

sired but rarely explored area, i.e., Few-Shot Object Detec-

tion (FSOD). With the aid of data-abundant base classes,

the object detector is trained to additionally detect novel

classes through very limited samples. Existing approaches

are mainly built on top of Faster-RCNN [13]. For example,

the current state-of-the-art approach TFA [17] is presented

that employs a classifier rebalancing strategy for registering

novel classes. During finetuning, the backbone pre-trained

on the base set is reused and being frozen, while only the

box classifier and regressor are trained with novel data. De-

spite its’ remarkable progress, its performance on challeng-

ing benchmarks such as MS-COCO, is still far away from

satisfaction compared with those general data-abundant de-

tection tasks, which deserves more research efforts as data-

efficiency is practically preferred in most real-world appli-

cations.

To make a step towards the challenging FSOD task, it

crucial to find out the major cause of performance degrada-
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tion in novel classes. Regarding the architecture of Faster-

RCNN, its localization branch is typically class-agnostic

with satisfactory performance. Thus our insight is to tackle

the limitations of the classification branch for FSOD in this

work. Specifically, we evaluate TFA from two important as-

pects on few-shot classes: 1) IOU awareness, i.e., robust-

ness to hard negatives and 2) category discriminability, i.e.,

robustness to category confusion. Models that are weak in

the first aspect often predict poorly localized hard nega-

tives as “confident” foregrounds of the same category, while

those that are weak in the second aspect may suffer from

classification confusion between categories that share sim-

ilar visual features or appear in similar contexts. Next, we

analyze the potential performance gain by eliminating these

two types of errors separately. For example, given the classi-

fication of a poorly localized box (e.g., IOU=0.4) from cate-

gory “dog”, the effect of the first type false positives (object-

ness error) can be eliminated by erasing the prediction score

for its corresponding semantic category “dog”, while scores

for other categories are preserved. To eliminate the second

type false positives (confusion error), scores for all other

categories except “dog” are erased. Results are shown in

Fig. 1. For the 10-shot case, eliminating the objectness error

only provides 1.7 points performance gain in mAP, while

eliminating the confusion error can dramatically boost the

performance gain to 8.0 points, which indicates that classi-

fication results of TFA is IOU-aware but less discriminative

to confusable categories.

Maintaining IOU-awareness during finetuning is not su-

pervising, as the objectness knowledge gained from a large

dataset is usually universal and generalizable, thus can be

reliably generalized into unseen novel classes as well. How-

ever, lacking inter-class separability often leads to the is-

sue of category confusion. We conjecture possible reasons

from the following aspects of architectural limitation: The

classification branch of Faster-RCNN based detectors is

not purposely designed for few-shot adaptation. For ex-

ample, the shared feature representation for both classi-

fication and localization is shown to be suboptimal for

learning category discriminative representations since clas-

sification requires translation-invariant features while lo-

calization prefers translation-covariant features. Such mis-

matched learning goals degrade the quality of category-

specific translation invariance features [4], thus pose a tough

challenge to learn discriminative classifiers when samples

of novel classes are scarce.

In this work, we propose a unified approach for ad-

dressing the above limitation. Given the fact that TFA is

IOU-aware but less semantic discriminative, our key insight

is to enhance the original classification results by inject-

ing additional category-discriminative information. In this

work, a novel Few-Shot Classification Refinement mech-

anism is proposed to handle both objectness estimation

Figure 2. Some samples to show the co-occurrence of both base

and novel classes in the same image according to the commonly

used dataset setting for MS-COCO, “couch”, “person” and “bot-

tle” are novel classes while the others are base classes. Due to in-

complete annotations, those novel-class objects can be unlabelled

in base set.

and category discriminability simultaneously. Our frame-

work consists of two branches, named as the “IOU-aware

classification branch” and the “discriminability enhance-

ment branch”,which separately perform their efforts on es-

timating objectness and alleviating category confusion, re-

spectively. As the name suggests, the IOU-aware classifica-

tion branch is responsible for producing accurate IOU es-

timation for each object proposal, which is implemented

by the original TFA. At the same time, the enhancement

branch is designed as a translation-invariant classifier to

produce category-discriminative classification results. After

that, outputs of these two complementary branches are ag-

gregated together to produce less confused yet IOU-aware

confidence.

For exhaustively preserving the classification-preferred

translation-invariant features, we design the enhancement

branch as a decoupled classifier that does not share any pa-

rameters with the base detector, where we call it a Few-

Shot Correction Network (FSCN). It segments region pro-

posal from image space and provides extra classification

refinement to the base detector. Therefore, the classifica-

tion and localization tasks are decoupled in Faster-RCNN,

which naturally solves the issue of shared feature represen-

tation. To further improve the semantic discriminability of

FSCN, we train it by sampling misclassified false positives

from TFA, so as to drive its focus towards the weakness of

the base detector and enhance its capacity for eliminating

category confusion.

Moreover, we focus on a unique but practically-existed

problem of FSOD in this work, i.e., the presence of dis-

tractor samples due to the incomplete annotations, where

objects belonging to novel classes can exist in the base set

but remain unlabelled. As shown in Fig. 2, such a situa-

tion is quite realistic for most real-world applications, e.g.,

in autonomous driving, FSOD is to extend the detection for

a novel object “scooter”. However, “scooter” may also ex-

ist in the previous images for training the base classes with

no annotations, so that such “scooter” distractors will be

false emphasized as “background” continuously, which in-

troduces destructive noise. Obviously, completely annotat-

ing all novel objects requires to repeatedly review the whole
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dataset upon the arrival of each novel classes, which is

against the motivation of FSOD that dramatically increases

the annotation cost especially when the detection tasks are

evolving frequently. Hence, “distractor” is defined as those

unlabelled novel-class objects in the base set, where pro-

posals corresponding to those unlabelled novel objects are

falsely supervised as negative examples. As a result, the

positive gradients provided by the few-shot training sam-

ples could be easily overwhelmed by the discouraging gra-

dients produced by the distractors during the detector fine-

tuning, so that the resultant detector often inclines to predict

novel classes with lower probabilities thus suffers catas-

trophic performance degradation. To the best of our knowl-

edge, such the distractor phenomenon has not been treated

in existing FSOD works without any attention to address it

properly.

In this work, we purposely tackle such distractor phe-

nomenon by designing delicate retreatment approaches for

both base detector and FSCN correspondingly. For the

few-shot adaptation of base detector, a Confidence-Guided

Dataset Pruning (CGDP) technique is proposed in this

work, which utilizes the self-supervision to exclude the po-

tential distractors to the greatest extent and form a cleaner

and balanced training set for few-shot adaptation. More-

over, to sample enough hard examples, the training of FSCN

has to be performed on the whole dataset, which exists dis-

tractors similarly. However, instead of eliminating the dis-

tractors, we specially propose a distractor utilization loss to

make proper use of those potential unlabelled novel-class

objects in the base set through a semi-supervised manner.

In view of the data scarcity of the novel classes, such ex-

tra samples help to improve the final detection performance

with zero additional annotation cost [15, 14]. Here, we sum-

marize our main contributions as follow:

• We explore the limitations of the classifier rebalanc-

ing method (TFA) for FSOD problems and propose a

novel few-shot classification refinement framework for

exhaustively boosting its FSOD performance. A novel

few-shot correction network is developed to achieve

great semantic discriminability so as to eliminate false

positives caused by category confusion.

• We are the first to address the destructive distrac-

tor issue for FSOD. Instead of blindly treating it, a

confidence-guided filtering strategy is proposed to ex-

clude the distractors for base detector fine-tuning.

• A semi-supervised distractor utilization strategy is pro-

posed to cooperate with FSCN, which not only sta-

bilizes the training process but also significantly pro-

motes the learning on data-scarce novel classes with

no extra annotation cost.

• Our proposed FSOD framework achieves the state-of-

the-art results in various datasets with remarkable few-

shot performance and knowledge retention ability.

2. Related Works

2.1. Decoupled Classification Refinement for Object
Detection

Regarding the misaligned learning goals between the

proposal classification and bounding box regression tasks,

many effective techniques are proposed to address this issue

by introducing various detection refinement strategies. De-

coupled Classification Refinement (DCR) [4] proposes to

improve detection performance through a decoupled classi-

fication correction network, which is the most related work

to our research.However, our application is significantly

different from DCR. We specially targets the problem of

FSOD, which has the additional challenge of localizing

novel objects from just a few training samples, unlike the

DCR limited to the data-abundant applications. Moreover,

we propose the systematic approach to exploit the unique

distractor phenomenon of FSOD in a semi-supervised man-

ner for the refinement mechanism. To the best of our knowl-

edge, we are the first to adapt the hard example mining strat-

egy to address the FSOD problem.

2.2. Few­Shot Object Detection (FSOD)

Most of the recent few-shot detection approaches are

adapted from the few-shot recognition paradigms. A

distillation-based approach is proposed in [3] with less-

forgotten constraint and background depression regular-

ization. [7] emphasizes the class-specific information by

reweighting top-layer feature maps with channel-wise at-

tentions, so that the obtained features can be used to de-

tect novel object effectively. YOLO-LS [7] and Meta-

RCNN [19] propose to emphasize the class-specific feature

informative via a meta-learning based channel-attention

generator. Metric learning approaches are adopted for the

detection classification [8], and [17] proposes a cosine-

similarity based Faster-RCNN (TFA) with a category-

balance fine-tuning set and achieves the state-of-the-art per-

formance on public datasets. Context-transformer [20] pro-

poses to leverage the rich source-domain knowledge and ex-

ploit useful context cues from the target-domain to tackle

the challenging object confusion. ONCE [11] proposes a

new research area of incremental few-shot object detection,

where novel classes are added incrementally without using

the samples from base classes. MPSR [18] focus on issue of

scale variations caused by annotation scarcity, which gener-

ates multi-scale object pyramids to refine the prediction at

various scales.

3. Our Approach

3.1. Problem Definition

Our FSOD setting follows the classical formulation [7,

17]. Given a base set Dbs = {(Ibs
i ,ybs

i )} with sufficient
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Figure 3. Illustration of the proposed FSOD framework, where the FSCN provides extra classification refinement to eliminate the false

positives. When adapting to new few-shot tasks, separate strategies are proposed for the base detector and FSCN. For the fine-tuning of the

base detector, CGDP is proposed to filter out those base-set images that may contain unlabeled novel-class objects, e.g., the “bird” here. In

contrast, FSCN requires to train on the whole dataset for sampling enough false positives, thus a semi-supervised distractor utilization loss

is proposed to encourage the FSCN to learn from those confident unlabeled distractor proposals to boost the data-scarce classes, instead of

falsely treating them as negatives.

annotated samples for each class, where Ibs
i ∈ I denotes

an input image and ybs
i = {(cbsj , lj)}

Ni

j=1 denotes a list

of Ni bounding-box annotations containing box location

lj and category cbsj ∈ Cbs. Cbs is the space of base cate-

gories, Nbs = |Cbs| is the category number in Dbs. Dur-

ing the initial pre-training phase, an object detector F(·|θb)
is trained on Dbs for detecting objects in Cbs with param-

eters θb. The FSOD task is performed on a k-shot novel

set Dnv = {(Inv
i ,ynv

i )} with novel categories Cnv , where

Cbs ∩ Cnv = ∅ and |Cnv| = Nnv . The objective of FSOD

is to adapt the pre-trained detector parameters from θb to θ∗
through both sets Dbs∪Dnv , so that F(·|θ∗) can effectively

detect the objects from all classes in Cbs ∪ Cnv .

The definition of the distractor phenomenon in FSOD is

that some images {Ibs
i } in Dbs may possibly contain unla-

bel objects belonging to Cnv . According to previous works,

those objects are unlabeled in Dbs and will be treated as the

background during detector fine-tuning, which introduces

dramatic confusion for detector training. However, in real-

world scenarios, revisiting the massive Dbs to label out all

objects belonging to Cnv is not affordable, and more im-

portantly, conflicts the main purpose of few-shot learning.

Therefore, handling the distractor through the delicate algo-

rithm is of great significance to avoid the huge annotation

cost and improve the FSOD performance.

3.2. Framework Overview with Few­Shot Classifi­
cation Refinement

In view of the scarce training samples available for

FSOD problem, the learning difficulty is significantly en-

larged due to the intrinsic architecture limitation of detector,

which often results in less discriminative classifier and leads

to category confusion. Essentially, for object detectors, such

issue actually comes down to the overwhelming number of

misclassified false positives. Motivated by this, we aim to

tackle the challenging FSOD problem from the view of hard

example mining. Specifically, our framework exploits to al-

leviate the burden of differentiating false positives by lever-

aging a powerful few-shot classification refinement mecha-

nism. A decoupled correction network is employed to fur-

ther refine and enhance the proposal classification, which is

trained from the hard false positives sampled from the box

regressor of the base detector. Such error-oriented perspec-

tive plus the additional architecture-level enhancement also

provide a unified way to jointly address the few-shot adap-

tion and category confusion.
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The overall architecture of the proposed FSOD frame-

work is shown as in Fig. 3, which consists of two paral-

lel networks, i.e., the base detector Fd(·) and the FSCN

Fr(·). In this work, Fd(·) takes Faster-RCNN as a exam-

ple, the input image is processed by Fd(·) first to obtain the

primary proposal information. The proposed FSCN Fr(·)
takes the proposals of box regressor as inputs, which are

cropped from original image according to the proposal lo-

cation, denoted as Ip = Cr(I,p), where Cr(·) denotes

the crop function, and I and p denotes input image and

proposal boxes predicted by Fd(·), respectively. Similar as

the Faster-RCNN proposal classifier in Fd(·), FSCN Fr(·)
outputs a classification distribution vector sr with Nt + 1
elements, where Nt = Nbs + Nnv is the number of all

base+novel classes and the additional +1 is the background

class. Therefore, the proposed FSCN Fr(·) can be repre-

sented as

sr = Fr(Ip) = Fr

(

Cr(I,p)
)

, (1)

where sr = {sjr}
Nt+1

j=1 is the classification confidence vec-

tor for all Nt + 1 categories. The key idea is to augment

the base detector Fd(·) with FSCN Fr(·) in parallel to en-

hance the proposal classification capability. Since Fr(·) is

trained with false positives sampled from Fd(·), the pro-

posed FSOD architecture,

F(·) = Fd(·)⊕Fr(·), (2)

is endowed with stronger discriminative capability to elim-

inate the false positives, which is crucial for FSOD perfor-

mance.

3.3. Few­Shot Correction Network (FSCN)

3.3.1 Network Description

The proposed FSCN Fr(·) consists of two components: a

feature extractor φϑ and a linear classifier ϕw. The feature

extractor

zp = φϑ(Ip|ϑ), (3)

maps a 2D input image Ip to a feature embedding zp ∈ R
d,

where ϑ denotes its network parameters. The linear classi-

fier

sr = ϕw(zp|w), (4)

calculates the similarities to all classes followed by soft-

max, where w = {wj}
Nt+1

j=1 and wj ∈ R
d. In addition,

unlike image classification task where a single large object

is in the center of an image, objects in detection tasks may

appear from a wide range of scales or appear at an arbitrary

position. However, the effective receptive field of traditional

CNNs is usually small and spatially biased to the central re-

gion. As a result, objects located at the outer area of the

receptive field are more likely to be ignored. Hence, a good

correction network is required to have a sufficiently large

receptive field that can handle such complex appearance

of region proposals. In this work, a Compact Generalized

Non-Local (CGNL) module [21] is equipped with FSCN to

achieve global receptive field.

The key point of few-shot learning is to use a good

similarity metric that can be easily generalized to unseen

classes. In this work, we introduce cosine similarity metric

into FSCN, which can well encourage the unified recogni-

tion over all classes. Specifically, we use a zero-bias fully-

connection layer in ϕw followed by softmax. Given a pro-

posal image input Ip ∈ Ip, the classification confidence sjr
for category j can be calculated as

sjr = κ
φϑ(Ip)

||φϑ(Ip)||2
·

wT
j

||wj ||2
, (5)

where · denotes Frobenius inner product and || · ||2 denotes

the L2-normalization, κ is a learnable scale parameter used

to ensure the convergence of training [16].

3.3.2 Weight Imprinting for Novel Classes

To adapt the FSCN Fr(·) from base classes to novel

classes, we introduce a weight imprinting technique [12]

for FSOD to directly initialize its parameters for sequential

learning. Consider the Fr(·) trained from base categories

Cbs to be adapted to novel categories Cnv , the weights w

in ϕw is augmented from {wj}
Nbs+1

j=1 to {wj}
Nbs+Nnv+1

j=1 .

Hence, for those new-coming classes, an intuitive way to

set their weights is to average the corresponding normalized

feature vectors zp,

ẑj =
1

Nj

Nj
∑

i=1

φϑ(Ipi)

||φϑ(Ipi)||2
, Ipi ∈ Ij

p , (6)

where j = Nbs + 1, Nbs + 2, . . . , Nbs +Nnv; Ij
p denotes

the j-th class set of foreground region-proposal images ex-

tracted from Dnv , and |Ij
p | = Nj . The final weights wj

is calculated by normalizing the averaged features, where

wj = ẑj/||ẑj ||2. Note that there is one special background

class for the detection classification, which is shared among

both the base and novel sets. Similarly, its weights are in-

ferred by sampling background region proposals uniformly

from Dbs ∪ Dnv similar as for those novel classes.

3.4. Semi­Supervised Distractor Utilization Loss

Under the low-data constraint on novel classes, to tackle

the above mentioned issue of category confusion, the abun-

dant number of false positives sampled from base set be-

come particularly valuable, especially for those producing

high response to novel classes due to the shared visually-

similar appearances. However, without complete annota-
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tions, those unlabeled objects presented in base set (distrac-

tors) are often falsely emphasized as negatives, which is de-

structive to FSCN. With the commonly-used cross-entropy

loss, the encouraging gradients provided from the few-shot

training samples are easily suppressed by the discourag-

ing gradients produced from those unlabeled distractors. In-

spired by this, we delve into the most fundamental but im-

portant issue for training FSCN, i.e., how to avoid blindly

learning from distractors and even make proper use of them.

To address this, we proposed a semi-supervised distractor

utilization loss, which employs the confident unlabeled data

to promote the learning of few-shot classes through a semi-

supervised manner, thus improves the final detection perfor-

mance.

We notice that for each background proposal sampled

from the base set, there is a probability for it to be an un-

labeled foreground of novel class. The idea of the proposed

semi-supervised distractor utilization loss is to assign pos-

itive gradients to those potential foreground novel classes

as well as the original background class, so that the net-

work training is more motivated for those under-represented

novel classes. Consequently, the key issue is to determine

the possible foreground class for each background proposal

sampled from Dbs, we formulate it as a semi-supervised

learning problem and tackle it with the pseudo hard labeling

technique. Specifically, given a background proposal Ibp
from Dbs, its pseudo label can be determined according to

the prediction confidence of the current FSCN,

sr = Fr(Ibp) = {sjr}
Nbs+Nnv+1

j=1 ,

Cpl = argmax
(

{sjr}
Nbs+Nnv

j=Nbs+1

)

, Cpl ∈ Cnv.
(7)

However, if all the background proposals are labeled as

positive samples of novel classes, there will be no nega-

tive samples for FSCN training, which leads the FSCN to

produce a highly biased prediction. Therefore, such pre-

dicted pseudo label can not be directly employed to train

the network. To address this issue, we further introduce a

new concept of background augmentation, which defines a

Augmented Background class by merging the original back-

ground class Cb with the generated pseudo class Cp, de-

noted as set C+

b ,

C+

b = Cb ∪ Cp. (8)

For example, assuming there are 60 base class in Cbs, 20
novel class in Cnv and one background class Cb. For a back-

ground proposal that produces high activation to one novel

classes “human” (pseudo labeled class Cpl), we merge the

class “human” Cpl and the background class Cb into a new

augmented background class C+

b . Thus the new label space

Γbs have 60 base class Cbs, 19 novel class (Cnv\Cpl) with

one augmented background class C+

b . As a result, the overall

prediction score for the Augmented Background class C+

b is

to aggregate the softmax confidence from both Cb and Cpl

according to Eq. 8,

P (C+

b |Ibp) = P (Cb|Ibp) + P (Cpl|Ibp). (9)

Based on this modification, an improved cross-entropy

loss, which we termed as distractor utilization loss, is pro-

posed to not only alleviate the negative influence of distrac-

tors but also exploit the distractors to boost the training for

those data-scarce novel classes,

Ldul =
1

Nbs +Nnv

∑

c∈Γbs

− logP (c|Ip), (10)

where Γbs is the reformulated category space on Dbs, de-

fined as Γbs = C+

b ∪ Cbs ∪ (Cnv\Cpl), and C+

b is treated

as one Augmented Background class in Γbs. The proposed

distractor utilization loss Ldul assigns encouraging gradi-

ents to the potential corresponding novel classes to boost the

few-shot performance when facing distractors. In the mean-

while, the original gradients to background class persist as

well in regardless of distractor or not. Note that the distrac-

tor utilization loss is only needed to the proposals sampled

from Dbs, since for Dnv , the standard cross-entropy loss is

enough as full annotations are available under the common

FSOD setting.

However, only a small portion of backgrounds sampled

from base set are to be truly unlabeled objects of novel

classes, while the major portion are just hard negatives of

base classes. In practice, when applying the above Ldul

loss, if the merging strategy is applied to all backgrounds

sampled from base set, each will contribute an encourag-

ing gradient to novel class, and the accumulated gradient

is too strong and lead to a biased prediction towards novel

classes. To avoid this, we propose an unlabelled object

mining (UOM) strategy to automatically select the high-

possibility unlabelled objects. Without considering the ob-

ject occlusion, for a background proposal to be considered

as unlabeled objects, it should at least intersect not too much

with any known objects. Inspired by this, a spatial metric

Msp is developed for performing effective training sample

selection, which measures the maximal spatial intersection

between the candidate proposal and all known ground-truth

objects. Specifically, for a background proposal pb with lo-

cation lb sampled from a base set image, we calculate the

spatial metric Msp as,

Msp(pb) = max
all j

(Area(lb) ∩Area(lj)

Area(lb)

)

, (11)

where Area(·) denotes the box area specified by l, and lj
is the annotated box location of j-th base object in the cur-

rent image. Different from the conventional IOU metric, the

proposed intersection ratio represents a normalized measure

that focuses on the area of empty volume contained in each

region proposal. Thus, Ldul loss is only applied on those
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high-possibility background proposals to be novel classes,

which exploits the distractor for few-shot classes learning

effectively but avoid the unwanted prediction bias.

3.5. Confidence­Guided Dataset Pruning (CGDP)

While the effective training of FSCN has been addressed

in Section 3.4, we focus on the few-shot adaptation of base

detector Fd(·) in this subsection. The motivation for CGDP

is to form a small clean subset with less distractors from Dbs

to facilitate the base detector few-shot adaptation. Our ap-

proach is mainly motivated by the recent pool-based active

learning technique[1]. However, unlike the traditional active

learning that usually focuses on picking out the most infor-

mative unlabeled samples for human annotation, we aim at

developing an automatic pipeline by taking the advantage of

self-supervision to effectively clean the distractor samples.

Basically, our proposed CGDP is a two-stage process which

consists of the indicator learning stage and the dataset prun-

ing stage. Here, the indicator is to indicate the possibility to

have distractors for a image from Dbs.

For the first stage, we look for a simple yet effective way

to develop an efficient query function. Specifically, given a

base detector Fb(·) that is pre-trained from Dbs, an indi-

cator Fc
ind(·) is the classification branch obtained by fine-

tuning Fb(·) on Dind using normal cosine-similarity clas-

sification loss without considering the issues of distractors.

Here, Dind is a balanced training set made of the whole Dnv

and a small portion of Dbs, and only the remaining portion

of Dbs will be used for dataset pruning in next stage, de-

noted as Dpru, i.e., Dind ∪ Dpru = Dbs ∪ Dnv . Given an

input image Ibs, the classification confidences of all region

proposals are predicted by F
c
ind(·) as,

{

{sji}
Nbs+Nnv+1

j=1

}Np

i=1
= F

c
ind(Ibs), (12)

where sji is the confidence score of j-th novel class for i-
th proposal, and Np is total number of proposals. The pro-

posed query function Q(·) that estimates the likelihood of

an image to have distractors is defined as,

Q(Ibs) = max
i

max
j

{

{sji}
Nbs+Nnv

j=Nbs+1

}Np

i=1
. (13)

In the second pruning stage, Q(·) is used to select the

samples from Dpru in order to form a clean subset Dcln.

Specially, we construct a class-specific data pool for each

category in Cbs by sampling images from Dpru. Suppose

there are total Nci images in Dpru that contains the objects

of class ci ∈ Cbs, the data pool for class ci is constructed as

Pool(ci) =
{

Ici
j , Q(Ici

j )
}Nci

j=1
, Ici

j ∈ Dpru, ci ∈ Cbs,

(14)

where Ici
j is the j-th image that contains object from class

ci and Q(Ici
j ) is its corresponding likelihood of being with

Table 1. Evaluation on MS-COCO Novel Set

Shots Methods Novel AP Novel AP50

YOLO Low-Shot [7] 5.60 12.3

Meta-RCNN [19] 8.70 19.1

ONCE-NL [11] 5.1 -

MPSR [18] 9.8 17.9

10 TFA [17] 10.0 -

cos-FRCN [17] 9.8 15.3

cos-FRCN + CGDP 10.6 17.8

cos-FRCN + FSCN 11.1 18.5

cos-FRCN + CGDP + FSCN 11.3 20.3

YOLO Low-Shot [7] 9.10 19.0

Meta-RCNN [19] 12.4 25.3

ONCE-NL [11] - -

MPSR [18] 14.1 25.4

30 TFA [17] 13.7 -

cos-FRCN [17] 13.4 25.1

cos-FRCN + CGDP 14.3 27.8

cos-FRCN + FSCN 14.6 28.5

cos-FRCN + CGDP + FSCN 15.1 29.4

distractors. From each data pool, we select its top m sam-

ples which have the lowest likelihood in order to form the

clean balanced training set Dcln. It is also noted that Dcln

follows the original distributions of base classes in Dpru as

well as Dbs. Overall, the proposed CGDP pipeline can be

formulated as

(

F
c
ind(·),Dind, Q(·),Dpru

)

→ Dcln. (15)

4. Experiments

4.1. Implementation Details

We implement the proposed FSCN by using an Ima-

geNet pre-trained ResNet50-CGNL model [21]. Given a

mini-batch which contains nbs base-set images and nnv

novel-set images, for each image feed into F
∗

d(·), we only

reserve its top 300 candidate boxes and divide them into

three groups which are the foreground, false positives.

Given the classification confidence of a region proposal,

if the network’s response to one of its negative class is

larger than a pre-defined threshold 0.1, we consider this re-

gion proposal as a false positive detection. We then sam-

ple a total number of m boxes from these three groups uni-

formly [4]. In our experiments, we set nbs = 6, nnv = 2
and m = 32. Finally, a ROI-Align layer is used to crop the

selected boxes from the original image and reshape them

into the size of 224× 244. The threshold for unlabelled ob-

ject mining(UOM) is set to be 0.2. Due to space limitation,

more training details are included in appendix.

15401



Table 2. Evaluation on Pascal VOC Novel Set

Method/Shots
Novel Split 1 Novel Split 2 Novel Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLO Low-Shot [7] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3

Meta-RCNN [19] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

Context Transformer [20] 34.2 - - 44.2 - 26.0 - - 36.3 - 29.3 - - 40.8 -

MPSR [18] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7

TFA [17] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

cos-FRCN [17] 37.1 41.9 43.6 49.1 53.3 23.0 26.7 35.5 36.1 40.6 25.9 31.7 40.6 45.7 49.7

cos-FRCN+CGDP 37.3 41.8 43.9 49.6 53.4 23.2 26.7 36.1 36.3 41.7 26.6 33.0 40.5 45.9 50.6

cos-FRCN+FSCN 40.3 45.0 46.7 56.9 62.5 27.1 30.8 40.5 42.1 46.1 30.5 35.1 43.5 49.6 55.3

cos-FRCN+CGDP+FRCN 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6

4.1.1 Results on MS-COCO

We provide the mAP performance of the novel classes on

MS-COCO [10] in Table 1, and compare our approach

with the other six baselines, which are YOLO low-shot [7],

Meta-RCNN [19] , ONCE no-incremental [11], TFA [17],

MPSR [18], and context transformer [20]. Our approach

uses ResNet50 [6] as the backbone for the base detector,

which is similar to Meta-RCNN. However, we notice that a

stronger backbone FPN [9] is employed by TFA. For a fair

comparison, we re-implement its proposed cosine similar-

ity classification and balanced fine-tuning strategy with our

backbone (ResNet50), which roughly matches the original

results in TFA. Here, we denote this re-implemented base-

line as “cos-FRCN”.

Regarding the results, we have several observations. 1),

In all different numbers of training shots, our approach is

able to outperform the previous methods by large margins,

which achieve the state-of-the-art results. As we can see,

it almost doubles the performance of the previous meta-

learning approaches (YOLO low-shot) under the 10-shot

case, which validates the effectiveness of our approach.

2), As the distractor is a unique and extremely-challenging

problem for FSOD, the proposed CGDP can be seen as a

simple yet effective solution which brings significant im-

provement of nearly 1 point on novel classes. 3), The abso-

lute performance gain of FSCN is even larger than CGDP,

which indicates that the intrinsic architecture limitations of

Faster-RCNN is severer than the issue of distractors.

4.1.2 Results on Pascal VOC

We further present the evaluation results on Pascal VOC

as shown in Table. 2. Experiments are conducted under

the k-shot setting with three different dataset splits, where

k = 1, 2, 3, 5, 10. Our approach consistently outperform

the existing approaches with significant margin in nearly

all different splits/shots, which demonstrates that the effec-

tiveness of the proposed few-shot classification refinement

mechanism. It also worth to note that there is no significant

performance gain when introducing CGDP into the training

of cos-FRCN, which is quite different from the results on

MS-COCO. We conjecture this is because Pascal VOC con-

tains much less unlabeled objects than MS-COCO, which

makes the problem of distractors less obvious.

5. Conclusions

This paper casts a new viewpoint to address the challeng-

ing FSOD problem from both the architecture limitation

and destructive distractor phenomenon, where a two-level

learning approach is proposed to jointly address the above

issues in a unified manner. First, we propose a architecture-

level enhancement, where a novel few-shot correction net-

work is introduced to alleviate the burden of category confu-

sion. Second, instead of blindly treating distractor samples,

the data-level learning strategies are proposed to separately

address the few-shot adaption for both the base detector

and FSCN. CGDP effectively excludes the distractors for

the base detector adaptation by a confidence-guided filter-

ing strategy, while the semi-supervised distractor utilization

loss make use the distractors for boosting the data-scarce

classes in FSCN. Remarkably, through fusing the proposed

CGDP with the FSCN, we are the first to propose an in-

tegrated FSOD framework with excellent few-shot perfor-

mance and incredible knowledge retention ability.
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Weijer, and Antonio M López. Active learning for deep de-

tection neural networks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 3672–

3680, 2019. 7

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. YOLOv4: Optimal speed and accuracy of

object detection, 2020. 1

[3] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. LSTD:

A low-shot transfer detector for object detection. In AAAI,

2018. 3

[4] Bowen Cheng, Yunchao Wei, Honghui Shi, Rogerio Feris,

Jinjun Xiong, and Thomas Huang. Revisiting RCNN: On

awakening the classification power of Faster RCNN. In

ECCV, September 2018. 1, 2, 3, 7

[5] Ross Girshick. Fast R-CNN. In ICCV, pages 1440–1448,

2015. 1

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 8

[7] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,

and Trevor Darrell. Few-shot object detection via feature

reweighting. In ICCV, 2019. 3, 7, 8

[8] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,
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