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Abstract

Face forgery detection is raising ever-increasing interest

in computer vision since facial manipulation technologies

cause serious worries. Though recent works have reached

sound achievements, there are still unignorable problems:

a) learned features supervised by softmax loss are separa-

ble but not discriminative enough, since softmax loss does

not explicitly encourage intra-class compactness and inter-

class separability; and b) fixed filter banks and hand-crafted

features are insufficient to capture forgery patterns of fre-

quency from diverse inputs. To compensate for such limita-

tions, a novel frequency-aware discriminative feature learn-

ing framework is proposed in this paper. Specifically, we de-

sign a novel single-center loss (SCL) that only compresses

intra-class variations of natural faces while boosting inter-

class differences in the embedding space. In such a case,

the network can learn more discriminative features with

less optimization difficulty. Besides, an adaptive frequency

feature generation module is developed to mine frequency

clues in a completely data-driven fashion. With the above

two modules, the whole framework can learn more discrim-

inative features in an end-to-end manner. Extensive experi-

ments demonstrate the effectiveness and superiority of our

framework on three versions of the FF++ dataset.

1. Introduction

Benefiting from the great progress made in deep learn-

ing, the Variational AutoEncoders [21, 35] and Generative

Adversarial Networks based [15] face manipulation tech-

nology [38, 23, 44] enables ordinary people without profes-

sional skills and equipment to generate high-quality forged

faces. Derived from that, certain free apps [2] and open-

source projects [1, 3] quickly arise and gain popularity ex-

plosively. Unluckily, the technology may be abused for ma-

licious purposes, causing severe trust issues in our soci-

ety. Although digital forensics experts can analyze some in-
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Figure 1. The feature distribution of samples in the embed-

ding space. Left: learned features supervised by softmax loss are

broadly separable but not discriminative enough, since the intra-

class compactness and inter-class separability are not explicitly

constrained. Right: our SCL only encourages the intra-class com-

pactness of natural faces when constraining inter-class separabil-

ity.

fluential videos for evidence of manipulation, they will be

helpless in reviewing countless videos uploaded to the In-

ternet every day. Thus, it is of high significance to develop

efficient automatic detection algorithms.

Towards such a concern, many methods have been pro-

posed successively. Early research is keen on utilizing hand-

crafted features or modifying the structure of existing neural

networks[47, 5, 4, 34]. However, with remarkable progress

made in facial synthesis technology [20, 46, 12], such meth-

ods have been unable to reliably detect face forgery. After

that, the research mainstream is gradually turning to meth-

ods that introduce different information and prior knowl-

edge into backbone networks [10, 33, 29]. For example,

DeepRhythm [33] utilizes the minuscule periodic changes

of skin color due to blood pumping through the face.

In essence, all current popular detection methods are us-

ing the powerful data fitting capability of neural networks

to extract discriminative features for face forgery detec-

tion. And detection methods based on deep learning usu-

ally pose face forgery detection as a binary classification
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problem and use softmax loss1 to supervise the training of

CNN networks. However, learned features supervised by

softmax loss are not discriminative enough, since softmax

loss does not explicitly encourage intra-class compactness

and inter-class separability, as illustrated in the left of Fig-

ure 1. Recent work [22] has noticed this problem and at-

tempted to utilize triplet loss [37] to extract discriminative

features. However, regular metric learning methods usually

indiscriminately encourage the intra-class compactness of

natural and manipulated faces in the embedding space. Ad-

ditionally, feature distributions of manipulated faces vary

from one manipulation method to another considering var-

ious GAN fingerprints [48] and some unique operations,

as shown in the left of Figure 1, making it nontrivial to

aggregate all the manipulated faces. Therefore, constrain-

ing intra-class compactness of samples generated by varied

manipulation methods usually leads to a sub-optimal solu-

tion because of optimization difficulty and even damages

the performance owing to overfitting.

In addition, frequency-related cues are increasingly im-

portant for forgery detection since it’s hard to find visual

forgery clues. Although some studies [29, 9, 41, 13] have

introduced frequency information and achieved remarkable

results, their abilities to extract discriminative features are

limited because of employing fixed filter banks and hand-

crafted features. These methods based on incomprehensive

prior knowledge are insufficient to capture subtle forgery

patterns from the frequency domain due to the diversity of

background, gender, age, manipulation methods, etc.

With the above thoughts in mind, we propose a novel

Frequency-aware Discriminative Feature Learning frame-

work(FDFL). Explicitly, our framework mainly addresses

two problems: a) how to adopt metric learning to learn more

discriminative features for face forgery detection; and b)

how to adaptively extract frequency-related features. Cor-

responding to the two problems, two sub-modules are de-

veloped: single-center loss (SCL) and adaptive frequency

feature generation module (AFFGM), as shown in Figure 2.

In specific, our single-center loss aims at only reducing

intra-class variations of natural faces while increasing inter-

class differences in the embedding space, as shown in the

right of Figure 1. To this end, SCL minimizes the distance

from representations of natural faces to the center point.

Meanwhile, SCL encourages the distance from manipulated

faces to the center point greater than from natural faces by

at least a margin. Unlike regular metric learning methods,

SCL does not restrict the intra-class compactness of ma-

nipulated faces, which agrees better with the characteristics

of feature distribution of manipulated faces. Therefore, the

network supervised by SCL can learn more discriminative

features with less optimization difficulty. As for frequency-

1Following [27], we define the softmax loss as the combination of the

last fully connected layer, softmax function, and cross-entropy loss.

related features, we develop an AFFGM consisting of a

special data preprocessing and adaptive frequency informa-

tion mining block (AFIMB). The data preprocessing keeps

the position relationship of image blocks in the spatial do-

main consistent with their position relationship in the fre-

quency domain. In such a case, the preprocessed data is able

to directly employ the existing convolution network. The

AFIMB adaptively mines frequency clues in a data-driven

fashion, which avoids utilizing too much incomprehensive

prior knowledge. Compared to fixed filter banks and hand-

crafted features, AFFGM can capture forgery clues more

flexibly in the frequency domain.

Extensive experiments demonstrate the effectiveness and

superiority of our framework and we achieve state-of-the-

art results on three versions of the FF++ dataset [36]. Our

contributions can be summarized as follows:

• We propose a novel Frequency-aware discriminative

feature learning framework which adopts metric learn-

ing and adaptive frequency features learning for face

forgery detection.

• A single-center loss is designed to only compress intra-

class variations of natural faces while boosting inter-

class differences in the embedding space.

• An adaptive frequency feature generation module is

developed to mine subtle artifacts from the frequency

domain in a data-driven fashion.

2. Related work

With the development of neural networks and computer

graphics, a new generation of face manipulation technology

based on the Variational AutoEncoders [21, 35] and Gener-

ative Adversarial Networks [15] has been widely used. Cor-

respondingly, face forgery detection has gradually become

a research hotspot. In this section, we will briefly review

previous works.

Face forgery detection Early works focus on utilizing

hand-crafted features or modifying the structure of exist-

ing neural networks [47, 5, 19, 4, 34] to detect face forgery.

Yang et al. [47] utilize the inconsistency of the head pose

estimated from the central face and the whole face to iden-

tify manipulated faces. MesoNet [4] designs a shallow neu-

ral network that consists of two inception modules and

two classic convolution layers. Though sound performances

were achieved at that time, those methods are incapable of

reliably detecting face forgery now due to the rapid devel-

opment of face forgery technology. Especially when pow-

erful general feature extractors like xception [7] are applied

to forgery detection, the performance of early works is even

more unsatisfactory. Therefore, the research mainstream is

gradually turning to approaches which introduce different
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Figure 2. The Frequency-aware Discriminative Features Learning framework. AFFGM stands for the adaptive frequency feature generation

module. AFIMB represents the adaptive frequency information mining block. FC represents the fully connected layer and Lce represents

the cross-entropy loss. The whole framework is trained end-to-end under the joint supervision of SCL and softmax loss.

information and prior knowledge into the backbone net-

work to detect face forgery [10, 33, 29]. Dang et al. [10]

introduce location information of manipulated regions to

guide the network to focus on key regions. Qi et al. [33]

exploit bioinformatics that skin color will present minus-

cule changes periodically due to blood pumping through the

face. Face X-ray [24] innovatively uses self-generated data

to train the network to locate blending boundaries, which

greatly improves the generalization ability. Two-branch [29]

utilizes fixed filter banks to extract frequency information,

which limits the ability to extract discriminative features.

In our work, we exploit a simple and effective module to

adaptively mine frequency clues.

Metric learning Although metric learning has shown

its advantages in face recognition [37] and person re-

identification (re-ID) [17], learning discriminative features

with deep metric learning for face forgery detection is more

or less neglected. Center loss [43] and triplet loss [37] are

the two most relevant metric learning methods to our work.

Center loss [43] is designed to learn a center for features

of each class and drive features of the same class closer to

their corresponding center. Obviously, one disadvantage of

center loss is that it ignores inter-class separability. Triplet

loss [37] encourages features of data points with the same

identity to get closer than those with different identities.

However, triplet loss may suffer from the problem of time-

consuming mining of hard triplets and dramatic data expan-

sion. Kumar et al. [22] utilizes the network with the su-

pervision of triplet loss to detect face forgery. But triplet

loss performs poorly on the imagenet pre-trained backbone.

Two-branch [29] proposes a novel loss which compresses

the variability of natural faces and pushes away the manip-

ulated faces. But its motivation comes from anomaly de-

tection and the approach is very different from our SCL in

many aspects. For example, our center point is updatable,

while the center point of the two-branch is fixed. Addition-

ally, two-branch constrains the absolute distance from all

samples to the center point, whereas our SCL constrains the

relative distance between natural and manipulated samples

to the center point.

3. Proposed method

3.1. Overview

Aiming at solving the problems of previous methods

in discriminative feature learning and frequency informa-

tion mining, we propose a frequency-aware discriminative

feature learning framework. As illustrated in Figure 2, our

framework extracts features from the RGB domain and fre-

quency domain at the same time and merges them in the

early stage of the entire framework. After going through a

feature embedding, high-level representations are obtained.

At the end of the framework is a classifier that outputs

the prediction results of input samples. The mining of fre-

quency clues is achieved by our AFFGM (see Sec. 3.2). We

fuse the frequency domain features and RGB domain fea-

tures with a simple point-wise convolution block, which

contributes to the reduction of parameters and computa-

tional expense. Finally, with the joint supervision of our

single-center loss (see Sec. 3.3) and softmax loss, the net-

work learns an embedding space where natural faces are

clustered around the center point, while manipulated ones

are far away from the center point.

3.2. Adaptive frequency features generation module

With the success in synthesizing realistic faces, it’s

harder to find visual forgery clues. But the discrepancy be-
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Figure 3. Inconsistency in the frequency domain could serve as an

important forgery cue. The visualization of energy distribution in

a certain frequency band is shown in the right column.

tween natural and manipulated faces in the frequency do-

main, especially in middle and high frequency bands, is

pretty apparent as illustrated in Figure 3. Previous studies

mostly use fixed filter banks or hand-crafted methods from

other fields to extract frequency information [9, 13, 41, 29].

However, considering the diversity of background, gender,

age, skin color, and especially manipulation methods, these

methods based on incomprehensive prior knowledge are in-

sufficient to capture forgery patterns of frequency. In order

to tackle this problem, inspired by [16, 45, 31, 26, 42], we

propose an adaptive frequency feature generation module

(AFFGM) to efficiently mine subtle artifacts from the fre-

quency domain. Our AFFGM consists of two parts: data

preprocessing and adaptive frequency information mining

block. Next, we will introduce them respectively.

Data preprocessing The pipeline of data preprocessing is

shown in Figure 4. First, input RGB images are transformed

into YCbCr color space. Next, the 2D DCT transformation

is applied to each 8 × 8 block of images. It’s worth noting

that the two steps above are also widely used in current pop-

ular image compression standards, e.g., JPEG. We think that

will contribute to forgery detection from two aspects. On

the one hand, the acceleration tools of existing compression

algorithms can help improve the computational efficiency

of our preprocessing. On the other hand, it will make our

method more compatible with traces caused by compres-

sion. After that, the DCT-transformed coefficients from the

same frequency band in all 8 × 8 blocks are grouped into

a channel with their original position relationship retained.

Therefore, the transformed images can directly exploit ex-

isting neural networks. Finally, all frequency channels are

concatenated together to form one tensor. The shape of in-

put images will change before and after preprocessing. Sup-

pose the shape of the original input image is H×W×3, then

the shape of the input tensor becomes H/8 × W/8 × 192
after data preprocessing. Moreover, most energy of trans-

formed images is concentrated on the low-frequency bands

while the middle-frequency and high-frequency bands play

Y

Cb

Cr

RGB to YCbCr DCT transform DCT reshape DCT concatenate

Figure 4. The pipeline of data preprocessing of AFFGM.

more significant roles in forgery detection. Therefore, every

frequency channel is normalized by the mean and variance

calculated from the training dataset.

Adaptive frequency information mining block Unlike

previous methods, our AFFGM learns the frequency fea-

ture in a data-driven way, which avoids overly depending

on incomprehensive prior knowledge. As illustrated in Fig-

ure 2, we empirically design a simple and effective network

block to extract frequency features. In specific, the prepro-

cessed data first passes through a layer of 3× 3 convolution

block with three groups[18]. That means the data from dif-

ferent channels of Y, Cb, Cr is processed separately. Then,

it goes through an ordinary 3 × 3 convolution block and

a max-pooling layer successively. In that process, informa-

tion from different channels of Y, Cb, Cr interacts with each

other. After that, we employ a channel attention block which

consists of the aforementioned max-pooling layer and two

linear layers for the sake of feature enhancement. Finally, an

ordinary 1 × 1 convolution layer is used to further extract

frequency-related features.

3.3. Single­center loss

Current face forgery detection methods based on deep

learning usually use softmax loss to supervise network

training. However, the learned features supervised by soft-

max loss are essentially not discriminative enough, since

softmax loss only focuses on finding a decision bound-

ary to separate different classes. The intra-class compact-

ness and inter-class separability are not explicitly consid-

ered. Obviously, deep metric learning is a promising solu-

tion. However, most metric learning methods, such as triplet

loss [37] and center loss [43], usually indiscriminately com-

press intra-class variations of natural and manipulated faces

in embedding space. While feature distributions of manip-

ulated faces vary from one manipulation method to an-

other. That is because GAN fingerprints [48], manipulated

region, and other unique operations, e.g., post-processing

techniques, lead to specific artifacts for each manipulation

method. For example, Deepfakes [1] generates the whole

face while NeuralTextures [39] only manipulates the mouth
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region of the target person. Intuitively, their distribution in

the embedding space should be evidently different. A side

evidence would be that the generalization ability of features

learned by supervised learning is significantly weakened

on unseen manipulation methods. This implies that features

learned by supervised learning are highly related to manip-

ulation methods. The feature differences of samples gener-

ated by different manipulation methods make it difficult to

aggregate all the manipulated faces. Therefore, indiscrim-

inately constraining intra-class compactness in embedding

space usually leads to a sub-optimal solution due to opti-

mization difficulty and even damages the performance ow-

ing to overfitting. In order to solve this problem, we devise

a novel single-center loss.

Definition As Figure 2 indicates that the goal of SCL is

to minimize the distance from the representations of natu-

ral faces to the center point and to simultaneously push the

representations of manipulated ones away from the center

point. Let the given training dataset (xi, yi)
N

i=1
consist of

N samples xi ∈ X with the associated labels yi ∈ {0, 1}.

And these samples are embedded into D-dimensional vec-

tors with a neural network denoted by fθ(·). In our SCL, we

just set the center point C of natural faces. For simplicity,

we adopt fi to represent f(xi) in the following paper. Simi-

lar to center loss, our method updates the parametric centers

C at each iteration based on a mini-batch. Given a batch of

training data, we define SCL as:

Lsc = Mnat +max(Mnat −Mman +m
√
D, 0) (1)

where Mnat represents the mean Euclidean distance be-

tween representations of natural faces and the center point

C in a batch. And Mman represents the mean Euclidean

distance between representations of manipulated faces and

center point C. Their functions are denoted as:

Mnat =
1

|Ωnat|
∑

i∈Ωnat

‖ fi − C ‖2 (2)

Mman =
1

|Ωman|
∑

i∈Ωman

‖ fi − C ‖2 (3)

where Ωnat and Ωman represent the representation sets of

natural faces and manipulated faces respectively. As Eq. (1)

shows, our SCL makes representations of natural faces ag-

gregated around the center point. And it also pushes the dis-

tance from representations of manipulated faces to the cen-

ter point greater than from natural faces by a margin. The

Euclidean distance we employ is related to the arithmetic

square root of feature dimension, and hence in order to set

the hyperparameter easily, the margin is designed as m
√
D.

To compute the back-propagation gradients of the input

feature embeddings and the center point, we assume there

are s natural faces and t manipulated faces in a batch. And

yi = 0 and yi = 1 represent i-th sample is a natural face and

manipulated face respectively. The ✶[condition] is an indi-

cator function which outputs 1 if the condition is satisfied

and outputs 0 otherwise. For simplicity, we define

L = Mnat −Mman +m
√
D.

Then the derivatives of our SCL loss Eq. (1) with respect to

the feature embedding of i-th sample ∂Lsc

∂fi
and center point

∂Lsc

∂C
can be calculated as follows:

∂Lsc

∂fi
=















fi − C

s · ||fi − C||2
· (1 + ✶[L > 0]), yi = 0;

− fi − C

t · ||fi − C||2
· ✶[L > 0], yi = 1.

(4)
∂Lsc

∂C
=− 1

s
(
∑

i∈Ωnat

fi − C

||fi − C||2
) · (1 + ✶[L > 0])

+
1

t
(

∑

i∈Ωman

fi − C

||fi − C||2
) · ✶[L > 0].

(5)

The parametric center of SCL is randomly initialized and

updated based on the mini-batches instead of the whole

datasets, which will cause unstable training. Therefore, we

introduce softmax loss with global information to guide the

update of the center point. Moreover, softmax loss focuses

on mapping the samples to discrete labels and our SCL aims

to apply metric learning to the learned embeddings directly.

Combining the two losses is beneficial to achieve more dis-

criminative embeddings. The total loss can be written as:

Ltotal = Lsoftmax + λLsc (6)

where λ is a hyper-parameter which controls the trade-off

between the SCL and softmax loss.

4. Experiments

In this section, we first introduce the overall experi-

ment setup and then present extensive experimental results

to demonstrate the effectiveness and superiority of our ap-

proach.

4.1. Experimental setup

Dataset In order to facilitate comparison, our experiments

are conducted on the FF++ [36] dataset. FF++ is a large-

scale video dataset consisting of 1000 original videos that

have been manipulated by four face manipulation methods:

DeepFakes [1], Face2Face [40], FaceSwap[3], and Neural-

Textures [39]. According to various compression factors,

there are three versions of FF++ dataset: c0 (raw), c23 (light

compression), and c40 (heavy compression). Our experi-

ments are mainly conducted on the c40 version, the most
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challenging case. As for dataset preprocessing, we sample

20 frames from each manipulated video and 80 frames from

each original video. Compared to the setting of [36], the

number of frames we use for training is pretty less. Besides,

we utilize retinaface[11] to detect faces in each frame.

Evaluation metrics Following [29], we report video-

level AUC score and pAUC [30] score by respectively av-

eraging the AUC scores and pAUC scores of each frame

in a video. pAUC is a global metric at a low false alarm

rate. Given the significant class imbalance in the real world,

pAUC can better reflect the performance of methods in the

real world. To facilitate comparison with other methods, we

also report the accuracy score. Besides, some visualizations

(t-SNE [28]) are also reported to further evaluate the perfor-

mance.

Implementation detail Our framework is implemented

by PyTorch [32]. We use xception [7] pre-trained on ima-

genet, including the final fully connected layer, as our RGB

branch and feature embedding of FDFL, which means D in

Eq. (1) is equal to 1000. The fusion module is inserted be-

tween the entry flow and the middle flow of xception and

the face forgery classifier is a simple FC layer with two

nodes. The proposed modules, including the center point of

SCL, are all initialized randomly. More details and hyper-

parameters are provided in the supplementary material.

4.2. Ablation study

We perform the ablation study to analyze the effects of

each component in FDFL, especially our SCL. All experi-

ments are conducted on the challenging c40 version of the

FF++ dataset.

4.2.1 SCL

In this section, we will show the relevant results of SCL

experiments in detail to validate the effectiveness and supe-

riority of SCL. We conduct all experiments including triplet

loss and center loss only based on xception [7].

Parameter influence As indicated by the loss function in

Eq. (6), the margin m and the weight λ may affect the final

combination of the losses. Specifically, λ in Eq. (6) con-

trols the trade-off between softmax loss and SCL loss. And

m controls the relative distance between natural and manip-

ulated faces to the center point in the embedding space. To

study the impact of the two hyper-parameters, we present an

empirical analysis on the c40 version of the FF++ dataset.

The influence of hyper-parameter λ is presented in Fig-

ure 5(a). The experimental results show that our SCL is

quite robust to this parameter. For values from 0.001 to 1,

the trained models consistently achieve promising results.

(a) (b)

Figure 5. The detection performances achieve by (a) varying λ

when m is fixed as 0.1 and (b) varying m when λ is fixed as 0.5.

We assume that is because SCL and softmax loss are com-

plementary losses. SCL focuses on feature representations

directly, while softmax loss focuses on how to map feature

representations into a discrete label space. What’s more, the

global information retained by softmax loss can guide the

update of the center point of SCL. When λ is set to be 0,

which means the model is trained by using only softmax

loss, the performance is worst, only achieving an AUC of

0.861. But a 4% ∼ 6% improvement of AUC could be

reached by combining our SCL with softmax loss. In or-

der to investigate the influence of m, we fix λ to be 0.5, and

then take seven values from 0.05 to 0.35 at 0.05 intervals

as m. It should be emphasized that m is a scale factor and

the margin of the distance is proportional to the arithmetic

square root of the dimension of the feature space, as shown

in Eq. (1). As illustrated in Figure 5(b), our SCL can effec-

tively improve the performance when m changes within a

large range. When m is set to be 0.3 and λ to be 0.5, we get

the best results, an AUC of 0.916 and a pAUC0.1 of 0.790.

Comparison with other losses To validate the proposed

SCL loss, we conduct additional experiments on various

losses, including triplet loss with softmax loss and center

loss with softmax loss. Similar to Eq. (6), both the weight

of triplet loss and center loss are set as 0.01 and the margin

of triplet loss is set as 0.3. As can be seen from Table 1,

our SCL loss with softmax loss performs best among these

losses, obtaining an AUC of 0.916 and a pAUC0.1 of 0.790.

In addition, both triplet loss with softmax loss and center

loss with softmax loss improve subtly, compared to only

using softmax loss.

Loss function AUC pAUC0.1

softmax loss 0.860 0.652

center + softmax loss 0.868 0.666

triplet + softmax loss 0.863 0.655

SCL + softmax loss 0.916 0.790

Table 1. The performance of different losses on the c40 version of

FF++.

Visualization of learned representations In order to ex-

plore the influence of different losses on feature distribu-

tion more thoroughly, we adopt t-SNE [28] to visualize fea-

tures of the samples from the FF++ dataset. As is shown in

6463



Figure 6, some properties can be observed: a) The learned

features supervised by softmax loss appear as two clusters

with neighboring boundaries. b) The triplet loss has little

effect on feature distribution. We have tried to increase the

weight of triplet loss, but in such a case the network cannot

converge normally. c) The center loss significantly changes

the distribution of features. However, constraining the intra-

class compactness of manipulated faces leads to overfitting

to some extent. Hence, the performance gain is very small.

d) With the combination of SCL + softmax loss, the repre-

sentations of natural faces are gathered compactly and sepa-

rated from those of manipulated faces which are distributed

less compactly.

Results analysis As shown in Table 1 and Figure 6, our

SCL outperforms other losses, i.e., softmax loss, center loss,

and triplet loss. It is no wonder that softmax loss performs

poorly since it only focuses on finding a decision boundary

to separate different classes. As for triplet loss and center

loss, though they explicitly consider intra-class compact-

ness and inter-class separability, the results show that indis-

criminately constraining intra-class compactness of natural

and manipulated faces usually leads to a sub-optimal solu-

tion. This validates our analysis in Sec. 3.3 that different

face manipulation methods will produce different forgery

features due to GAN fingerprints [48] and some unique op-

erations, making it nontrivial to aggregate all of the manip-

ulated faces together. Compared to them, our SCL adopts

an asymmetric optimization goal for natural and manipu-

lated faces to learn discriminative features, which is more

compatible with the feature distribution of samples.

4.2.2 Fusion module

We have studied the effects of different structures of the fu-

sion module on performance and all experiments are con-

ducted only with the supervision of softmax loss. As shown

in Table 2, we explore concatenation, sum, and convolution

block with different kernel sizes and group numbers. From

the experimental results, We can see that: a) When a 1 × 1
convolution block is used as a fusion module and its group

is set as 1, the performance reaches best in terms of AUC

and pAUC0.1; b) Even simple concatenation and sum oper-

ation can still achieve good performance. This fully reflects

the effectiveness of our adaptive frequency feature genera-

tion module. In order to achieve the best results, we utilize

the 1 × 1 convolution block, whose group is set to be 1, as

the fusion module in all reference experiments.

4.2.3 The performance gain of each component

In order to evaluate the performance improvement from

each component, we quantitatively evaluate our FDFL

fusion module AUC pAUC0.1

concatenation 0.892 0.727

sum 0.893 0.732

3× 3, group=1 0.894 0.708

1× 1, group=1 0.906 0.769

3× 3, group=2 0.899 0.735

1× 1, group=2 0.892 0.742

Table 2. The performance of different fusion modules on the c40

version of FF++.

SCL AFFGM AUC pAUC0.1

- - 0.861 0.652√
- 0.916 0.790

-
√

0.906 0.769√ √
0.924 0.810

Table 3. The performance of different variants of FDFL on the c40

version of FF++.

framework and its variants: 1) the baseline (xception); 2)

FDFL w/o SCL; 3) FDFL w/o AFFGM. The quantita-

tive results are listed in Table 3. It can be seen that both

SCL and AFFGM can boost performance in terms of AUC

and pAUC0.1. Specifically, only with our SCL, AUC and

pAUC0.1 increased to 0.916 and 0.79 with an improvement

of 5.5% and 13.8% individually. And AFFGM can also con-

tribute an improvement of 4.5% in terms of AUC and 11.7%
in terms of pAUC0.1. These improvements prove the effec-

tiveness of our SCL and AFFGM. In addition, when SCL

and AFFGM are simultaneously integrated into the baseline

to form the complete FDFL framework, an AUC of 0.924

and a pAUC0.1 of 0.810 can be obtained. This fully val-

idates the ability of our SCL to supervise the network to

learn more discriminative features.

4.3. Comparison with previous methods

We compare our approach with previous face forgery

detection methods on the FF++ dataset. The results are

listed in Table 4. Xception [36] and Face X-ray [24] are

currently state-of-the-art image-based detection methods.

Our method outperforms them on various versions of FF++

dataset in terms of AUC, pAUC0.1, and accuracy. In the

most challenging c40 version, we achieve a 6.4%, 15.8%,

and 2.86% improvement in AUC, pAUC0.1, and accuracy

respectively. Although two-branch [29] is a video-based de-

tection method, we still surpass it, especially in the c40 ver-

sion. The results demonstrate the effectiveness and superi-

ority of our framework.

5. Limitations

Although we achieve remarkable results on the FF++

dataset, there exist limitations of our framework. On the

one hand, our framework lacks generalization ability on un-
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(a) (b) (c) (d)

Figure 6. The visualization of features supervised by (a) softmax loss, (b) triplet + softmax loss, (c) center + softmax loss, (d) SCL +

softmax loss. We randomly selected 5000 natural faces and manipulated ones respectively from the training dataset of the FF++ c40

version. Red dots represent natural faces and green dots represent manipulated faces (Best viewed in color).

Methods
c0 c23 c40

Acc AUC pAUC0.1 Acc AUC pAUC0.1 Acc AUC pAUC0.1

Steg. Features + SVM[14] 97.63% - - 70.97% - - 55.98% - -

Cozzolino et al.[8] 98.57% - - 78.45% - - 58.69% - -

Bayar and Stamm[6] 98.75% - - 82.97% - - 66.84% - -

Rahmouni et al.[34] 97.03% - - 79.08% - - 61.18% - -

DSP-FWA[25] - - - - 0.575 0.516 - 0.623 0.519

MesoNet[4] 95.23% - - 83.10% - - 70.47% - -

Xception[36] 99.26% - - 95.73% - - 81.00% - -

Face X-ray[24] - 0.988 - - 0.874 - - 0.616 -

Two-branch[29] - - - 96.43% 0.991 0.984 86.34% 0.911 0.766

Xception[36] † 98.14% 0.997∗ 0.995 94.24% 0.972 0.903 86.14% 0.861 0.652

FDFL(our) 99.43% 0.997∗ 0.998 96.69% 0.993 0.985 89.00% 0.924 0.810

Table 4. Quantitative results on the FF++ dataset with all three versions. c0 represents videos without compression, c23 represents videos

with light compression, c40 represents videos with heavy compression and † represents the results of our baseline. Two-branch [29] is a

video-based detection method and all others are image-based detection methods. The bold results are the best. The symbol * represents

there is a difference at the fourth decimal place and more precise data are provided in the supplementary material.

seen manipulation methods (the results are provided in sup-

plementary material). Our work and Face X-ray [24] imply

that the discriminative features learned by supervised learn-

ing are highly related to manipulation methods. In our view,

that is because forgery evidence is customized for specific

manipulation methods due to GAN fingerprints [48] and

some unique operations. If this explanation holds, not only

our approach, but all approaches based on supervised learn-

ing will lack generalization ability on unseen manipulation

methods. On the other hand, our framework ignores inter-

frame information. Current face manipulation methods gen-

erally do not impose constraints on the temporal dimension.

Therefore, the inconsistency between frames should be a

valuable cue for video face forgery detection.

6. Conclusion

In this paper, we propose a novel frequency-aware dis-

criminative feature learning framework that applies met-

ric learning and adaptive frequency features learning to

face forgery detection. Specifically, our single-center loss

only compresses intra-class variations of natural faces when

boosting inter-class separability in the embedding space. In

such a case, the network can learn more discriminative fea-

tures with less optimization difficulty. Besides, our adap-

tive frequency features generation module can effectively

mine subtle artifacts from the frequency domain in a data-

driven fashion, which avoids overly depending on incom-

prehensive prior knowledge. Extensive experiments demon-

strate the effectiveness and superiority of our FDFL and we

achieve state-of-the-art results on three versions of FF++

dataset.

In the future, we will explore how to effectively ex-

ploit inter-frame information and improve the generaliza-

tion ability of detection methods by semi-supervised and

unsupervised learning. In addition, it is worth studying

the application of SCL in other fields, such as face anti-

spoofing.
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