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Abstract

In this paper, we present a conceptually simple, strong,

and efficient framework for panoptic segmentation, called

Panoptic FCN. Our approach aims to represent and pre-

dict foreground things and background stuff in a unified

fully convolutional pipeline. In particular, Panoptic FCN

encodes each object instance or stuff category into a spe-

cific kernel weight with the proposed kernel generator and

produces the prediction by convolving the high-resolution

feature directly. With this approach, instance-aware and

semantically consistent prosperties for things and stuff can

be respectively satisfied in a simple generate-kernel-then-

segment workflow. Without extra boxes for localization or

instance separation, the proposed approach outperforms

previous box-based and -free models with high efficiency

on COCO, Cityscapes, and Mapillary Vistas datasets with

single scale input. Our code is made publicly available at

https://github.com/Jia-Research-Lab/PanopticFCN.1

1. Introduction

Panoptic segmentation, aiming to assign each pixel with

a semantic label and unique identity, is regarded as a chal-

lenging task. In panoptic segmentation [19], countable and

uncountable instances (i.e., things and stuff) are expected

to be represented and resolved in a unified workflow. One

main difficulty impeding unified representation comes from

conflicting properties requested by things and stuff. Specif-

ically, to distinguish among various identities, countable

things usually rely on instance-aware features, which vary

with objects. In contrast, uncountable stuff would prefer se-

mantically consistent characters, which ensures consistent

predictions for pixels with the same semantic meaning. An

example is given in Fig. 1, where embedding of individuals

should be diverse for inter-class variations, while characters

of grass should be similar for intra-class consistency.

1Part of the work was done in MEGVII Research.

(a) Separate representation (b) Unified representation

Figure 1. Compared with traditional methods, which often utilize

separate branches to handle things and stuff in 1(a), the proposed

Panoptic FCN 1(b) represents things and stuff uniformly with gen-

erated kernels. Here, an example with box-based stream for things

is given in 1(a). The shared backbone is omitted for concision.

For conflict at feature level, specific modules are usu-

ally tailored for things and stuff separately, as presented in

Fig. 1(a). In particular, instance-aware demand of things is

satisfied mainly from two streams, namely box-based [18,

50, 25] and box-free [51, 10, 6] methods. Meanwhile,

the semantic-consistency of stuff is met in a pixel-by-pixel

manner [33], where similar semantic features would bring

identical predictions. A classic case is Panoptic FPN [18],

which utilizes Mask R-CNN [12] and FCN [33] in sepa-

rated branches to respectively classify things and stuff, sim-

ilar to that of Fig. 1(a). Although attempt [51, 10, 6] has

been made to predict things without boxes, extra predictions

(e.g., affinities [10], and offsets [51]) together with post-

process procedures are still needed to distinguish among

instances, which slow down the whole system and hinder

it from being fully convolutional. Consequently, a unified

representation is required to bridge this gap.

In this paper, we propose a fully convolutional frame-

work for unified representation, called Panoptic FCN. In

particular, Panoptic FCN encodes each instance into a spe-

cific kernel and generates the prediction by convolutions di-

rectly. Thus, both things and stuff can be predicted together
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with a same resolution. In this way, instance-aware and se-

mantically consistent properties for things and stuff can be

respectively satisfied in a unified workflow, which is briefly

illustrated in Fig. 1(b). To sum up, the key idea of Panoptic

FCN is to represent and predict things and stuff uniformly

with generated kernels in a fully convolutional pipeline.

To this end, kernel generator and feature encoder are

respectively designed for kernel weights generation and

shared feature encoding. Specifically, in kernel genera-

tor, we draw inspirations from point-based object detec-

tors [20, 55] and utilize the position head to locate as

well as classify foreground objects and background stuff

by object centers and stuff regions, respectively. Then, we

select kernel weights [17] with the same positions from

the kernel head to represent corresponding instances. For

the instance-awareness and semantic-consistency described

above, a kernel-level operation, called kernel fusion, is fur-

ther proposed, which merges kernel weights that are pre-

dicted to have the same identity or semantic category. With

a naive feature encoder, which preserves the high-resolution

feature with details, each prediction of things and stuff can

be produced by convolving with generated kernels directly.

In general, the proposed method can be distinguished

from two aspects. Firstly, different from previous work

for things generation [12, 4, 45], which outputs dense pre-

dictions and then utilizes NMS for overlaps removal, the

deigned framework generates instance-aware kernels and

produces each specific instance directly. Moreover, com-

pared with traditional FCN-based methods for stuff predic-

tion [53, 3, 9], which select the most likely category in a

pixel-by-pixel manner, our approach aggregates global con-

text into semantically consistent kernels and presents results

of existing semantic classes in a whole-instance manner.

The overall approach, named Panoptic FCN, can be eas-

ily instantiated for panoptic segmentation, which will be

fully elaborated in Sec. 3. To demonstrate its superior-

ity, we give extensive ablation studies in Sec. 4.2. Fur-

thermore, experimental results are reported on COCO [29],

Cityscapes [8], and Mapillary Vistas [35] datasets. With-

out bells-and-whistles, Panoptic FCN outperforms previous

methods with efficiency, and respectively attains 44.3% PQ

and 47.5% PQ on COCO val and test-dev set. Meanwhile, it

surpasses all similar box-free methods by large margins and

achieves leading performance on Cityscapes and Mapillary

Vistas val set with 61.4% PQ and 36.9% PQ, respectively.

2. Related Work

Panoptic segmentation. Traditional approaches mainly

conduct segmentation for things and stuff separately. The

benchmark for panoptic segmentation [19] directly com-

bines predictions of things and stuff from different models,

causing heavy computational overhead. To solve this prob-

lem, methods have been proposed by dealing with things

and stuff in one model but in separate branches, including

Panoptic FPN [18], AUNet [25], and UPSNet [50]. From

the view of instance representation, previous work mainly

formats things and stuff from different perspectives. Fore-

ground things are usually separated and represented with

boxes [18, 52, 5, 24] or aggregated according to center off-

sets [51], while background stuff is often predicted with a

parallel FCN [33] branch. Although methods of [23, 10]

represent things and stuff uniformly, the inherent ambiguity

cannot be resolved well merely with the pixel-level affinity,

which yields the performance drop in complex scenarios. In

contrast, the proposed Panopic FCN represents things and

stuff in a uniform and fully convolutional framework with

decent performance and efficiency.

Instance segmentation. Instance segmentation aims to dis-

criminate objects in the pixel level, which is a finer rep-

resentation compared with detected boxes. For instance-

awareness, previous works can be roughly divided into two

streams, i.e., box-based methods and box-free approaches.

Box-based methods usually utilize detected boxes to locate

or separate objects [12, 32, 1, 21, 38]. Meanwhile, box-free

approaches are designed to generate instances without assis-

tance of object boxes [10, 4, 45, 46]. Recently, AdaptIS [40]

and CondInst [42] are proposed to utilize point-proposal for

instance segmentation. However, the instance aggregation

or object-level removal is still needed for results. In this

paper, we represent objects in a box-free pipeline, which

generates the kernel for each object and produces results by

convolving the detail-rich feature directly, with no need for

object-level duplicates removal [15, 37].

Semantic segmentation. Semantic segmentation assigns

each pixel with a semantic category, without considering

diverse object identities. In recent years, rapid progress has

been made on top of FCN [33]. Due to the semantically

consistent property, several attempts have been made to cap-

ture contextual cues from wider perception fields [53, 2, 3]

or establish pixel-wise relationship for long-range depen-

dencies [54, 16, 41]. There is also work to design net-

work architectures for semantic segmentation automati-

cally [30, 26], which is beyond the scope of this paper. Our

proposed Panoptic FCN adopts a similar method to repre-

sent things and stuff, which aggregates global context into a

specific kernel to predict corresponding semantic category.

3. Panoptic FCN

Panoptic FCN is conceptually simple: kernel generator

is introduced to generate kernel weights for things and stuff

with different categories; kernel fusion is designed to merge

kernel weights with the same identity from multiple stages;

and feature encoder is utilized to encode the high-resolution

feature. In this section, we elaborate on the above compo-

nents as well as the training and inference scheme.
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Figure 2. The framework of Panoptic FCN. The proposed framework mainly contains three components, namely kernel generator, kernel

fusion, and feature encoder. In kernel generator, position head is designed to locate and classify object centers along with stuff regions;

kernel head in each stage is used to generate kernel weights for both things and stuff. Then, kernel fusion is utilized to merge kernel weights

with the same identity from different stages. And feature encoder is adopted to encode the high-resolution feature with details. With the

generated kernel weight for each instance, both things and stuff can be predicted with a simple convolution directly. Best viewed in color.

3.1. Kernel Generator

Given a single stage feature Xi from the i-th stage in

FPN [27], the proposed kernel generator aims at generating

the kernel weight map Gi with positions for things Lth
i and

stuff Lst
i , as depicted in Fig. 2. To this end, position head

is utilized for instance localization and classification, while

kernel head is designed for kernel weight generation.

Position head. With the input Xi ∈ R
Ci×Wi×Hi , we sim-

ply adopt stacks of convolutions to encode the feature map

and generate X′
i, as presented in Fig. 2. Then we need to lo-

cate and classify each instance from the shared feature map

X
′
i. However, according to the definition [19], things can be

distinguished by object centers, while stuff is uncountable.

Thus, we adopt object centers and stuff regions to respec-

tively represent position of each individual and stuff cate-

gory. It means background regions with the same semantic

meaning are viewed as one instance. In particular, object

map L
th
i ∈ R

Nth×Wi×Hi and stuff map L
st
i ∈ R

Nst×Wi×Hi

can be generated by convolutions directly with the shared

feature map X
′
i, where Nth and Nst denote the number of

semantic category for things and stuff, respectively.

To better optimize L
th
i and L

st
i , different strategies are

adopted to generate the ground truth. For the k-th object in

class c, we split positive key-points onto the c-th channel of

the heatmap Y
th
i ∈ [0, 1]

Nth×Wi×Hi with Gaussian kernel,

similar to that in [20, 55]. With respect to stuff, we produce

the ground truth Y
st
i ∈ [0, 1]

Nst×Wi×Hi by bilinear inter-

polating the one-hot semantic label to corresponding sizes.

Hence, the position head can be optimized with Lth
pos and

Lst
pos for object centers and stuff regions, respectively.

Lth
pos =

∑

i

FL(Lth
i ,Yth

i )/Nth,

Lst
pos =

∑

i

FL(Lst
i ,Y

st
i )/WiHi,

Lpos =Lth
pos + Lst

pos,

(1)

where FL(·, ·) represents the Focal Loss [28] for optimiza-

tion. For inference, Dth
i =

{

(x, y) : ✶(Lth
i,c,x,y) = 1

}

and

Dst
i =

{

(x, y) : ✶(Lst
i,c,x,y) = 1

}

are selected to respec-

tively represent the existence of object centers and stuff re-

gions in corresponding positions with predicted categories

Oi. This process will be further explained in Sec. 3.4.

Kernel head. In kernel head, we first capture spatial cues

by directly concatenating relative coordinates to the feature

Xi, which is similar with that in CoordConv [31]. With the

concatenated feature map X
′′
i ∈ R

(Ci+2)×Wi×Hi , stacks of

convolutions are adopted to generate the kernel weight map

Gi ∈ R
Ce×Wi×Hi , as presented in Fig. 2. Given predic-

tions Dth
i and Dst

i from the position head, kernel weights

with the same coordinates in Gi are chosen to represent

corresponding instances. For example, assuming candidate

(xc, yc) ∈ Dth
i , kernel weight Gi,:,xc,yc

∈ R
Ce×1×1 is

selected to generate the result with predicted category c.
The same is true for Dst

i . We represent the selected ker-

nel weights in i-th stage for things and stuff as Gth
i and Gst

i ,

respectively. Thus, the kernel weight Gth
i and Gst

i together

with predicted categories Oi in the i-th stage can be pro-

duced with the proposed kernel generator.
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3.2. Kernel Fusion

Previous work [39, 12, 45] utilized NMS to remove

duplicate boxes or instances in the post-processing stage.

Different from them, the designed kernel fusion operation

merges repetitive kernel weights from multiple FPN stages

before final instance generation, which guarantees instance-

awareness and semantic-consistency for things and stuff, re-

spectively. In particular, given aggregated kernel weights

Gth and Gst from all the stages, the j-th kernel weight

Kj ∈ R
Ce×1×1 is achieved by

Kj = AvgCluster(G′
j), (2)

where AvgCluster denotes average-clustering operation,

and the candidate set G′
j = {Gm : ID(Gm) = ID(Gj)}

includes all the kernel weights, which are predicted to have

the same identity ID with Gj . For object centers, kernel

weight Gth
m is viewed as identical with Gth

j if the cosine

similarity between them surpasses a given threshold thres,

which will be further investigated in Table 3. For stuff re-

gions, all kernel weights in Gst, which share a same cate-

gory with Gst
j , are marked as one identity ID.

With the proposed approach, each kernel weight Kth
j in

Kth = {Kth
1 , ...,Kth

m } ∈ R
M×Ce×1×1 can be viewed as

an embedding for single object, where the total number of

objects is M . Therefore, kernels with the same identity are

merged as a single embedding for things, and each kernel

in Kth represents an individual object, which satisfies the

instance-awareness for things. Meanwhile, kernel weight

Kst
j in Kst = {Kst

1 , ...,Kst
n } ∈ R

N×Ce×1×1 represents

the embedding for all j-th class pixels, where the existing

number of stuff is N . With this method, kernels with the

same semantic category are fused into a single embedding,

which guarantees the semantic-consistency for stuff. Thus,

both properties requested by things and stuff can be fulfilled

with the proposed kernel fusion operation.

3.3. Feature Encoder

To preserve details for instance representation, high-

resolution feature F
h ∈ R

Ce×W/4×H/4 is utilized for fea-

ture encoding. Feature F
h can be generated from FPN in

several ways, e.g., P2 stage feature, summed features from

all stages, and features from semantic FPN [18]. These

methods are compared in Table 6. Given the feature F
h,

a similar strategy with that in kernel head is applied to en-

code positional cues and generate the encoded feature Fe ∈
R

Ce×W/4×H/4, as depicted in Fig. 2. Thus, given M and N
kernel weights for things Kth and stuff Kst from the kernel

fusion, each instance is produced by Pj = Kj ⊗ F
e. Here,

Pj denotes the j-th prediction, and ⊗ indicates the convolu-

tional operation. That means M +N kernel weights gener-

ate M+N instance predictions with resolution W/4×H/4
for the whole image. Consequently, the panoptic result can

be produced with a simple process [18].

3.4. Training and Inference

Training scheme. In the training stage, the central point

in each object and all the points in stuff regions are utilized

to generate kernel weights for things and stuff, respectively.

Here, Dice Loss [34] is adopted to optimize the predicted

segmentation, which is formulated as

Lseg =
∑

j

Dice(Pj ,Y
seg
j )/(M +N), (3)

where Y
seg
j denotes ground truth for the j-th prediction Pj .

To further release the potential of kernel generator, multi-

ple positives inside each object are sampled to represent the

instance. In particular, we select k positions with top pre-

dicted scores s inside each object in L
th
i , resulting in k×M

kernels as well as instances in total. This will be explored in

Table 7. As for stuff regions, the factor k is set to 1, which

means all the points in same category are equally treated.

Then, we replace the original loss with a weighted version

WDice(Pj ,Y
seg
j ) =

∑

k

wkDice(Pj,k,Y
seg
j ), (4)

where wk denotes the k-th weighted score with wk =
sk/

∑

i si. According to Eqs. (1) and (3), optimized target

L is defined with the weighted Dice Loss Lseg as

Lseg =
∑

j

WDice(Pj ,Y
seg
j )/(M +N), (5)

L = λposLpos + λsegLseg. (6)

Inference scheme. In the inference stage, Panoptic FCN

follows a simple generate-kernel-then-segment pipeline.

Specifically, we first aggregate positions Dth
i , Dst

i and cor-

responding categories Oi from the i-th position head, as il-

lustrated in the Sec. 3.1. For object centers, we preserve

the peak points in MaxPool(Lth
i ) utilizing a similar method

with that in [55]. Thus, the indicator for things ✶(Lth
i,c,x,y)

is marked as positive if point (x, y) in the c-th channel is

preserved as the peak point. Similarly, the indicator for

stuff regions ✶(Lst
i,c,x,y) is viewed as positive if point (x, y)

with category c is kept. With the designed kernel fusion

and the feature encoder, the prediction P can be easily pro-

duced. Specifically, we keep the top 100 scoring kernels of

objects and all the kernels of stuff after kernel fusion for in-

stance generation. The threshold 0.4 is utilized to convert

predicted soft masks to binary results. It should be noted

that both the heuristic process or direct argmax could be

used to generate non-overlap panoptic results. The argmax
could accelerate the inference but bring performance drop

(1.4% PQ). For fair comparison both from speed and accu-

racy, the heuristic procedure [18] is adopted in experiments.
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4. Experiments

In this section, we first introduce experimental settings

for Panoptic FCN. Then we conduct abundant studies on the

COCO [29] val set to reveal the effect of each component.

Finally, comparison with previous methods on COCO [29],

Cityscapes [8], and Mapillary Vistas [8] dataset is reported.

4.1. Experimental Setting

Architecture. From the perspective of network architec-

ture, ResNet [13] with FPN [27] are utilized for backbone

instantiation. P3 to P7 stages in FPN are used to provide sin-

gle stage feature Xi for the kernel generator that is shared

across all stages. Meanwhile, P2 to P5 stages are adopted

to generate the high-resolution feature F
h, which will be

further investigated in Table 6. All convolutions in kernel

generator are equipped with GroupNorm [47] and ReLU
activation. Moreover, a naive convolution is adopted at the

end of each head in kernel generator for feature projection.

Datasets. COCO dataset [29] is a widely used benchmark,

which contains 80 thing classes and 53 stuff classes. It in-

volves 118K, 5K, and 20K images for training, validation,

and testing, respectively. Cityscapes dataset [8] consists of

5,000 street-view fine annotations with size 1024 × 2048,

which are divided into 2,975, 500, and 1,525 images for

training, validation, and testing, respectively. Mapillary

Vistas [8] is a traffic-related dataset with resolutions rang-

ing from 1024× 768 to more than 4000× 6000. It includes

37 thing classes and 28 stuff classes with 18K, 2K, and 5K

images for training, validation, and testing, respectively.

Optimization. Network optimization is conducted using

SGD with weight decay 1e−4 and momentum 0.9. And

poly schedule with power 0.9 is adopted. Experimentally,

λpos is set to a constant 1, and λseg are respectively set to

3, 4, and 3 for COCO, Cityscapes, and Mapillary Vistas

datasets. For COCO, we set initial rate to 0.01 and follow

the 1× strategy in Detectron2 [48] by default. We ran-

domly flip and rescale the shorter edge from 640 to 800

pixels with 90K iterations. Herein, annotated object cen-

ters with instance scale range {(1,64), (32,128), (64,256),

(128,512), (256,2048)} are assigned to P3-P7 stages, re-

spectively. For Cityscapes, we optimize the network for

65K iterations with an initial rate 0.02 and construct each

mini-batch with 32 random 512 × 1024 crops from images

that are randomly rescaled from 0.5 to 2.0×. For Mapillary

Vistas, the network is optimized for 150K iterations with an

initial rate 0.02. In each iteration, we randomly resize im-

ages from 1024 to 2048 pixels at the shorted side and build

32 crops with the size 1024 × 1024. Due to the variation

in scale distribution, we modify the assigning strategy to

{(1,128), (64,256), (128,512), (256,1024), (512,2048)} for

Cityscapes and Mapillary Vistas datasets.

Table 1. Comparison with different settings of the kernel generator

on the COCO val set. deform and conv num respectively denote

deformable convolutions for position head and number of convo-

lutions in both heads of the kernel generator.

deform conv num PQ PQth PQst AP mIoU

✗ 1 38.4 43.4 31.0 28.3 39.9

✗ 2 38.9 44.1 31.1 28.9 40.1

✗ 3 39.2 44.7 31.0 29.6 40.2

✗ 4 39.2 44.9 30.8 29.4 39.9

✓ 3 39.9 45.0 32.4 29.9 41.2

Table 2. Comparison with different positional settings on the

COCO val set. coordw and coordf denote combining coordinates

for the kernel head, and feature encoder, respectively.

coordw coordf PQ PQth PQst AP mIoU

✗ ✗ 39.9 45.0 32.4 29.9 41.2

✓ ✗ 39.9 45.0 32.2 30.0 41.1

✗ ✓ 40.2 45.3 32.5 30.4 41.6

✓ ✓ 41.3 46.9 32.9 32.1 41.7

Table 3. Comparison with different similarity thresholds of kernel

fusion on the COCO val set. class-aware denotes only merging

kernel weights with the same predicted class. And thres indicates

the cosine similarity threshold thres for kernel fusion in Sec. 3.2.

class-aware thres PQ PQth PQst AP mIoU

✓ 0.80 39.7 44.3 32.9 29.9 41.7

✓ 0.85 40.8 46.1 32.9 31.5 41.7

✓ 0.90 41.3 46.9 32.9 32.1 41.7

✓ 0.95 41.3 47.0 32.9 31.1 41.7

✓ 1.00 38.7 42.6 32.9 25.4 41.7

✗ 0.90 41.2 46.7 32.9 30.9 41.7

Table 4. Comparison with different methods of removing repetitive

predictions. kernel-fusion and nms indicates the proposed kernel-

level fusion method and Matrix NMS [46], respectively.

kernel-fusion nms PQ PQth PQst AP mIoU

✗ ✗ 38.7 42.6 32.9 25.4 41.7

✗ ✓ 38.7 42.6 32.9 27.8 41.7

✓ ✗ 41.3 46.9 32.9 32.1 41.7

✓ ✓ 41.3 46.9 32.8 32.3 41.7

4.2. Componentwise Analysis

Kernel generator. Kernel generator plays a vital role in

Panoptic FCN. Here, we compare several settings inside

kernel generator to improve the kernel expressiveness in

each stage. As presented in Table 1, with the number of

convolutions in each head increasing, the network perfor-

mance improves steadily and achieves the peak PQ with 3

stacked Conv3× 3 whose channel number is 256. Simi-
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Table 5. Comparison with different channel numbers of the feature

encoder on the COCO val set. channel num represents the channel

number Ce of the feature encoder.

channel num PQ PQth PQst AP mIoU

16 39.9 45.0 32.1 30.8 41.3

32 40.8 46.3 32.5 31.7 41.6

64 41.3 46.9 32.9 32.1 41.7

128 41.3 47.0 32.6 32.6 41.7

Table 6. Comparison with different feature types for the feature

encoder on the COCO val set. feature type denotes the method to

gernerate high-resolution feature F
h in Sec. 3.3.

feature type PQ PQth PQst AP mIoU

FPN-P2 40.6 46.0 32.4 31.6 41.3

FPN-Summed 40.5 46.0 32.1 31.7 41.1

Semantic FPN [18] 41.3 46.9 32.9 32.1 41.7

Table 7. Comparison with different settings of weighted dice loss

on the COCO val set. weighted and k denote weighted dice loss

and the number of sampled points in Sec. 3.4, respectively.

weighted k PQ PQth PQst AP mIoU

✗ - 40.2 45.5 32.4 31.0 41.3

✓ 1 40.0 45.1 32.4 30.9 41.4

✓ 3 41.0 46.4 32.7 31.6 41.4

✓ 5 41.0 46.5 32.9 32.1 41.7

✓ 7 41.3 46.9 32.9 32.1 41.7

✓ 9 41.3 46.8 32.9 32.1 41.8

Table 8. Comparison with different training schedules on the

COCO val set. 1×, 2×, and 3× schedule denote the 90K, 180K,

and 270K training iterations in Detectron2 [48], respectively.

schedule PQ PQth PQst AP mIoU

1× 41.3 46.9 32.9 32.1 41.7

2× 43.2 48.8 34.7 34.3 43.4

3× 43.6 49.3 35.0 34.5 43.8

lar with [55], deformable convolutions [56] are adopted in

position head to extend the receptive field, which brings fur-

ther improvement, especially in stuff regions (1.4% PQ).

Position embedding. Due to the instance-aware property

of objects, position embedding is introduced to provide es-

sential cues. In Table 2, we compare among several posi-

tional settings by attaching relative coordinates [31] to dif-

ferent heads. An interesting finding is that the improvement

is minor (up to 0.3% PQ) if coordinates are attached to the

kernel head or feature encoder only, but it boosts to 1.4%

PQ when given the positional cues to both heads. It can be

attributed to the constructed correspondence in the position

between kernel weights and the encoded feature.

Table 9. Comparison with different settings of the feature encoder

on the COCO val set. deform and channel num represent de-

formable convolutions and the channel number Ce, respectively.

deform channel num PQ PQth PQst AP mIoU

✗ 64 43.6 49.3 35.0 34.5 43.8

✓ 256 44.3 50.0 35.6 35.5 44.0

Table 10. Upper-bound analysis on the COCO val set. gt position

and gt class denote utilizing the ground-truth position Gi and class

Oi in each position head for kernel generation, respectively.

gt position gt class PQ PQth PQst AP mIoU

✗ ✗ 43.6 49.3 35.0 34.5 43.8

✓ ✗ 49.8 52.2 46.1 38.2 54.6

✓ ✓ 65.9 64.1 68.7 45.5 86.6

+22.3 +14.8 +33.7 +11.0 +42.8
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Figure 3. Speed-Accuracy trade-off curve on the COCO val set.

All results are compared with Res50 except DeeperLab [51] based

on Xception-71 [7]. The latency is measured end-to-end from sin-

gle input to panoptic result. Details are given in Table 11.

Kernel fusion. Kernel fusion is a core operation in the pro-

posed method, which guarantees the required properties for

things and stuff, as elaborated in Sec. 3.2. We investigate

the fusion type class-aware and similarity thresholds thres

in Table 3. As shown in the table, the network attains the

best performance with thres 0.90. And the class-agnostic

manner could dismiss some similar instances with different

categories, which yields drop in AP. Furthermore, we com-

pare kernel fusion with Matrix NMS [46] which is utilized

for pixel-level removal. As presented in Table 4, the perfor-

mance saturates with the simple kernel-level fusion method,

and extra NMS brings no more gain.

Feature encoder. To enhance expressiveness of the en-

coded feature F
e, we further explore the channel number

and feature type used in feature encoder. As illustrated in

Table 5, the network achieves 41.3% PQ with 64 channels,

and extra channels contribute little improvement. For effi-
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Table 11. Comparisons with previous methods on the COCO val set. Panoptic FCN-400, 512, and 600 denotes utilizing smaller input

instead of the default setting. All our results are achieved on the same device with single input and no flipping. FPS is measured end-to-end

from single input to panoptic result with an average speed over 1,000 images, which could be further improved with more optimizations.

The simple enhanced version is marked with *. The model testing by ourselves according to released codes is denoted as †.

Method Backbone PQ SQ RQ PQth SQth RQth PQst SQst RQst Device FPS

box-based

Panoptic FPN [18] Res50-FPN 39.0 - - 45.9 - - 28.7 - - - -

Panoptic FPN†-1× Res50-FPN 39.4 77.8 48.3 45.9 80.9 55.3 29.6 73.3 37.7 V100 17.5

Panoptic FPN†-3× Res50-FPN 41.5 79.1 50.5 48.3 82.2 57.9 31.2 74.4 39.5 V100 17.5

AUNet [25] Res50-FPN 39.6 - - 49.1 - - 25.2 - - - -

CIAE [11] Res50-FPN 40.2 - - 45.3 - - 32.3 - - 2080Ti 12.5

UPSNet† [50] Res50-FPN 42.5 78.0 52.5 48.6 79.4 59.6 33.4 75.9 41.7 V100 9.1

Unifying [24] Res50-FPN 43.4 79.6 53.0 48.6 - - 35.5 - - - -

box-free

DeeperLab [51] Xception-71 33.8 - - - - - - - - V100 10.6

Panoptic-DeepLab [6] Res50 35.1 - - - - - - - - V100 20.0

AdaptIS [40] Res50 35.9 - - 40.3 - - 29.3 - - - -

RealTimePan [14] Res50-FPN 37.1 - - 41.0 - - 31.3 - - V100 15.9

PCV [43] Res50-FPN 37.5 77.7 47.2 40.0 78.4 50.0 33.7 76.5 42.9 1080Ti 5.7

SOLO V2 [46] Res50-FPN 42.1 - - 49.6 - - 30.7 - - - -

Panoptic FCN-400 Res50-FPN 40.7 80.5 49.3 44.9 82.0 54.0 34.3 78.1 42.1 V100 20.9

Panoptic FCN-512 Res50-FPN 42.3 80.9 51.2 47.4 82.1 56.9 34.7 79.1 42.7 V100 18.9

Panoptic FCN-600 Res50-FPN 42.8 80.6 51.6 47.9 82.6 57.2 35.1 77.4 43.1 V100 16.8

Panoptic FCN Res50-FPN 43.6 80.6 52.6 49.3 82.6 58.9 35.0 77.6 42.9 V100 12.5

Panoptic FCN∗ Res50-FPN 44.3 80.7 53.0 50.0 83.4 59.3 35.6 76.7 43.5 V100 9.2

ciency, we set the channel number of feature encoder to 64

by default. As for high-resolution feature generation, three

types of methods are further discussed in Table 6. It is clear

that Semantic FPN [18], which combines features from four

stages in FPN, achieves the top performance 41.3% PQ.

Weighted dice loss. The designed weighted dice loss aims

to release the potential of kernel generator by sampling k
positive kernels inside each object. Compared with the

original dice loss, which selects a single central point in

each object, improvement brought by the weighted dice loss

reaches 1.1% PQ, as presented in Table 7. This is achieved

by sampling 7 top-scoring kernels to generate results of

each instance, which are optimized together in each step.

Training schedule. To fully optimize the network, we

prolong the training iteration to the 3× training schedule,

which is widely adopted in recent one-stage instance-level

approaches [4, 45, 46]. As shown in Table 8, 2× training

schedule brings 1.9% PQ improvements and increasing it-

erations to 3× schedule contributes extra 0.4% PQ.

Enhanced version. We further explore model capacity by

combining existing simple enhancements, e.g., deformable

convolutions and extra channels. As illustrated in Table 9,

the simple reinforcement contributes 0.7% improvement

over the default setting, marked as Panoptic FCN*.

Upper-bound analysis. In Table 10, we give analysis to the

upper-bound of generate-kernel-then-segment fashion with

Res50-FPN backbone on the COCO val set. As illustrated

in the table, given ground truth positions of object centers

L
th
i and stuff regions Lst

i , the network yields 6.2% PQ from

more precise locations. And it will bring extra boost (16.1%

PQ) to the network if we assign ground truth categories

to the position head. Compared with the baseline method,

there still remains huge potential to be explored (22.3% PQ

in total), especially for stuff regions which could have even

up to 33.7% PQ and 42.8% mIoU gains.

Speed-accuracy. To verify the network efficiency, we plot

the end-to-end speed-accuracy trade-off curve on the COCO

val set. As presented in Fig. 3, the proposed Panoptic FCN

surpasses all previous box-free models by large margins on

both performance and efficiency. Even compared with the

well-optimized Panoptic FPN [18] from Detectron2 [48],

our approach still attains a better speed-accuracy balance

with different image scales. Details about these data points

are included in Table 11.

4.3. Main Results

We further conduct experiments on different scenarios,

namely COCO dataset for common context, Cityscapes and

Mapillary Vistas datasets for traffic-related environments.

220



Table 12. Experiments on the COCO test-dev set. All our results

are achieved with single scale input and no flipping. The simple

enhanced version and val set for training are marked with * and ‡.

Method Backbone PQ PQth PQst

box-based

Panoptic FPN [18] Res101-FPN 40.9 48.3 29.7

CIAE [11] DCN101-FPN 44.5 49.7 36.8

AUNet [25] ResNeXt152-FPN 46.5 55.8 32.5

UPSNet [50] DCN101-FPN 46.6 53.2 36.7

Unifying‡ [24] DCN101-FPN 47.2 53.5 37.7

BANet [5] DCN101-FPN 47.3 54.9 35.9

box-free

DeeperLab [51] Xception-71 34.3 37.5 29.6

SSAP [10] Res101-FPN 36.9 40.1 32.0

PCV [43] Res50-FPN 37.7 40.7 33.1

Panoptic-DeepLab [6] Xception-71 39.7 43.9 33.2

AdaptIS [40] ResNeXt-101 42.8 53.2 36.7

Axial-DeepLab [44] Axial-ResNet-L 43.6 48.9 35.6

Panoptic FCN Res101-FPN 45.5 51.4 36.4

Panoptic FCN DCN101-FPN 47.0 53.0 37.8

Panoptic FCN∗ DCN101-FPN 47.1 53.2 37.8

Panoptic FCN∗‡ DCN101-FPN 47.5 53.7 38.2

Table 13. Experiments on the Cityscape val set. All our results

are achieved with single scale input and no flipping. The simple

enhanced version is marked with *.

Method Backbone PQ PQth PQst

box-based

Panoptic FPN [18] Res101-FPN 58.1 52.0 62.5

AUNet [25] Res101-FPN 59.0 54.8 62.1

UPSNet [50] Res50-FPN 59.3 54.6 62.7

SOGNet [52] Res50-FPN 60.0 56.7 62.5

Seamless [36] Res50-FPN 60.2 55.6 63.6

Unifying [24] Res50-FPN 61.4 54.7 66.3

box-free

PCV [43] Res50-FPN 54.2 47.8 58.9

DeeperLab [51] Xception-71 56.5 - -

SSAP [10] Res50-FPN 58.4 50.6 -

AdaptIS [40] Res50 59.0 55.8 61.3

Panoptic-DeepLab [6] Res50 59.7 - -

Panoptic FCN Res50-FPN 59.6 52.1 65.1

Panoptic FCN∗ Res50-FPN 61.4 54.8 66.6

COCO. In Table 11, we conduct experiments on COCO

val set. Compared with recent approaches, Panoptic FCN

achieves superior performance with efficiency, which sur-

passes leading box-based [24] and box-free [43] methods

over 0.2% and 1.5% PQ, respectively. With simple en-

hancement, the gap enlarges to 0.9% and 2.2% PQ. Mean-

while, Panoptic FCN outperforms all top-ranking models

on COCO test-dev set, as illustrated in Table 12. In par-

ticular, the proposed method surpasses the state-of-the-art

approach in box-based stream with 0.2% PQ and attains

Table 14. Experiments on the Mapillary Vistas val set. All our

results are achieved with single scale input and no flipping. The

simple enhanced version is marked with *.

Method Backbone PQ PQth PQst

box-based

BGRNet [49] Res50-FPN 31.8 34.1 27.3

TASCNet [22] Res50-FPN 32.6 31.1 34.4

Seamless [36] Res50-FPN 36.2 33.6 40.0

box-free

DeeperLab [51] Xception-71 32.0 - -

AdaptIS [40] Res50 32.0 26.6 39.1

Panoptic-DeepLab [6] Res50 33.3 - -

Panoptic FCN Res50-FPN 34.8 30.6 40.5

Panoptic FCN∗ Res50-FPN 36.9 32.9 42.3

47.5% PQ with single scale inputs. Compared with the sim-

ilar box-free fashion, our method improves 1.9% PQ over

Axial-DeepLab [44] which adopts stronger backbone.

Cityscapes. Furthermore, we carry out experiments on

Cityscapes val set in Table 13. Panoptic FCN exceeds the

top box-free model [6] with 1.7% PQ and attains 61.4%

PQ. Even compared with the leading box-based model [24],

which utilizes Lovasz loss for further optimization, the pro-

posed method still achieves comparable performance.

Mapillary Vistas. In Table 14, we compare with other

state-of-the-art models on the large-scale Mapillary Vistas

val set with Res50-FPN backbone. As presented in the ta-

ble, the proposed Panoptic FCN exceeds previous box-free

methods by a large margin in both things and stuff. Specif-

ically, Panoptic FCN surpasses the leading box-based [36]

and box-free [6] models with 0.7% and 3.6% PQ, and attains

36.9% PQ with simple enhancement in the feature encoder.

5. Conclusion

We have presented the Panoptic FCN, a conceptually

simple yet effective framework for panoptic segmentation.

The key difference from prior works lies on that we rep-

resent and predict things and stuff in a fully convolutional

manner. To this end, kernel generator and kernel fusion are

proposed to generate the unique kernel weight for each ob-

ject instance or semantic category. With the high-resolution

feature produced by feature encoder, prediction is achieved

by convolutions directly. Meanwhile, instance-awareness

and semantic-consistency for things and stuff are respec-

tively satisfied with the designed workflow.
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