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Abstract

Despite learning-based visual odometry (VO) has shown

impressive results in recent years, the pretrained networks

may easily collapse in unseen environments. The large

domain gap between training and testing data makes them

difficult to generalize to new scenes. In this paper, we

propose an online adaptation framework for deep VO with

the assistance of scene-agnostic geometric computations

and Bayesian inference. In contrast to learning-based pose

estimation, our method solves pose from optical flow and

depth while the single-view depth estimation is continuously

improved with new observations by online learned uncer-

tainties. Meanwhile, an online learned photometric uncer-

tainty is used for further depth and pose optimization by

a differentiable Gauss-Newton layer. Our method enables

fast adaptation of deep VO networks to unseen environ-

ments in a self-supervised manner. Extensive experiments

including Cityscapes to KITTI and outdoor KITTI to indoor

TUM demonstrate that our method achieves state-of-the-art

generalization ability among self-supervised VO methods.

1. Introduction

Estimating camera motion from monocular videos plays

an essential role in many real-world applications, such as

autonomous driving and robotics. This problem is usually

solved by visual odometry (VO) or simultaneous localiza-

tion and mapping (SLAM). Classic SLAM/VO methods [7,

8, 10, 26] perform well in favorable conditions but often fail

in challenging situations (e.g. textureless region, dynamic

object) due to the reliance on low-level features and hand-

crafted pipeline. Since deep neural networks are able to

extract high-level features and infer end-to-end by learning

from data, many learning-based VO methods [21, 22, 39,

47] have been proposed to break through the limitations

of classic SLAM/VO. Among them, self-supervsied VO

methods are able to jointly learn camera pose, depth and

optical flow by minimizing photometric error [39], which

have shown promising results in recent years.

Pretrained on Cityscapes

Test on KITTI

Pretrained on KITTI Test on TUM

Figure 1. In this paper, we focus on the generalization ability to

unseen environments of deep VO. When the test data are different

from the training data, previous methods fail to generalize while

our method still performs well with very small trajectory error.

However, learning-based VO often fails during inference

when the scenes are different from the training data. The

inability of pretrained VO to generalize to unseen environ-

ments limits its wide applications [21, 44]. To this end, the

pretrained networks are required to achieve real-time online

adaptation in a self-supervised manner.

As a result, several previous works [3, 21, 44] have been

proposed to mitigate the domain generalization problem

of stereo matching and VO. However, the performance is

still much inferior to classic methods in terms of accuracy

and the pretrained networks suffer from slow convergence.

These methods treat VO as a black-box by learning all

components (pose, depth, optical flow, etc.) but ignore well-

defined geometric computations and optimization methods,

which leads to slow convergence during online adaptation.
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Existing deep VO methods predict depth by single-view

estimation, which is an ill-posed problem [22]. The learned

depth has a strong reliance on the training dataset. During

inference, the camera intrinsics, scene layouts and distances

are usually different. Meanwhile, the camera pose is learned

rather than calculated analytically, which requires favor-

able camera motion with sufficient disparity (e.g. KITTI

dataset). Therefore, these methods tend to fail when faced

with unseen or more complicated motion patterns. In

addition, existing learning-based methods do not explicitly

ensure multi-view geometric consistency during inference,

which leads to large scale drift in trajectories.

In order to improve the online adaptation of VO to

unseen environments, we propose a self-supervised frame-

work that combines the advantage of deep learning and

geometric computations. The proposed framework utilizes

scene-agnostic 3D geometry constraints and Bayesian in-

ference formulations to speed up online adaptation. During

inference, the single-view depth estimation is used as a

prior of the current scene geometry and is continuously

improved with incoming observations by a probabilistic

Bayesian updating framework. The refined depth is used

as Maximum A Posteriori (MAP) to train DepthNet for

better estimation at the next timestep. Instead of predicting

pose by PoseNet, our framework solves pose analytically

from optical flow and refined depth. Meanwhile, in order

to deal with observation noise, the proposed method online

learns depth and photometric uncertainties which are used

in the depth refinement process and differentiable Gauss-

Newton optimization, respectively. Finally, the optimized

pose, depth and flow are used for online self-supervision.

Our framework ensures scale consistency by exploiting

multi-view geometric constraints. The well-defined scene-

agnostic computation helps our VO framework achieve

good generalization ability across different scene condi-

tions. Our contributions can be summarized as follows:

• We propose a generalizable deep VO that uses scene-

agnostic geometric formulation and Bayesian infer-

ence to speed up self-supervised online adaptation.

• The predicted depth is continuously refined by a

Bayesian fusion framework, which is further used to

train depth and optical flow during online learning.

• We introduce online learned depth and photometric

uncertainties for better depth refinement and differen-

tiable Gauss-Newton optimization.

Our method achieves much better generalization than

state-of-the-art baselines when tested cross different do-

mains, including Cityscapes [4] to KITTI [13] and outdoor

KITTI to indoor TUM [31] datasets. Meanwhile, we also

achieve state-of-the-art depth estimation results on KITTI

and NYUv2 [30] datasets.

2. Related works

Learning-based VO has been widely studied in recent

years and shown impressive results [35, 37, 45]. Deep-

TAM [45] mimics the framework of parallel tracking and

mapping in classic SLAM/VO by using two networks for

depth and pose estimation simultaneously. Xue et al [37]

extends the VO pipeline to tracking, selecting memory and

refining modules, which shows superior performance under

challenging conditions. However, these methods require

ground truth which is often impractical to obtain. In order to

alleviate the need of ground truth data, self-supervised VO

has been proposed. SfMLearner [47] learns depth and pose

simultaneously by minimizing photometric loss between

warped and input image. Zhao et al. [43] and Ranjan

et al. [28] extend this idea to joint estimation of pose,

depth and optical flow. Monodepth2 [15] explicitly handles

non-rigid and occluded cases which are against static-

scene assumption. SAVO [22] exploits spatial-temporal

correlations over long sequence and utilizes RNN to reduce

scale drift. In this paper, we use the depth network of

Monodepth2 [15] for single-view depth estimation.

Online adaptation Most machine learning algorithms

assume that the training and testing data are sampled from

the same feature distribution. However, when the test data

are different from the training set, most pretrained models

suffer from a significant reduce in performance. In this

situation, online learning [23, 33] is an effective method

to solve the domain shift problem. Previous methods use

online gradient update [5] and probabilistic filtering [2] to

accelerate domain adaptaion. In the computer vision field,

Zhong et al. [44] proposes a self-supervised framework for

stereo matching in the open world. Li et al. [21] proposes

an online meta-learning algorithm for VO to continuously

adapt to unseen environments. However, these methods

learn all components by deep networks, leading to slow con-

vergence and inferior performance. In contrast, our method

combines the advantage of deep learning and well-defined

geometric computations to achieve better generalization.

3D Geometric computations In classic 3D computer

vision, the relative pose between two images and scene

depth can be solved analytically by multi-view geometric

constraints. Given a set of correspondences, the pose can be

solved by epipolar geometry [16, 17] with 2D-2D matching

or Perspective-n-Point (PnP) [19] with 3D-2D matching.

The depth of each correspondence can be recovered by

mid-point triangulation [26]. On the other hand, the depth

and pose can also be solved by minimizing photometric

error [7, 8] via classic optimizations. If more observations

are available, the 3D map can be further refined by Bundle

Adjustment (BA) [26] or filtering [10]. In this paper, we

adopt a Bayesian depth fusion method to refine single-

view depth estimation and propose a differentiable Gauss-

Newton layer to minimize weighted photometric residuals.
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Figure 2. The framework of our online adaptation method. FlowNet predicts dense optical flow Fk,t, Ft,k and photometric uncertainty Γt,

while DepthNet provides a prior depth estimation of the keyframe by estimating initial depth D0

k and uncertainty Σk. The relative pose

T t
k is solved analytically from selected correspondences. During online adaptation, the initial depth D0

k is continuously improved with

new triangulated depth patches in a Bayesian updating framework. The photometric loss weighted by Γt is minimized by a differentiable

Gauss-Newton layer. Finally, the optimized depth and pose are then used to self-supervise the online learning of DepthNet and FlowNet.

3. Method

In this section, we will introduce our framework in de-

tail. The system overview is illustrated in Fig. 2. Firstly, the

FlowNet predicts dense optical flow between the keyframe

Ik and current frame It (Section 3.1), and predicts photo-

metric uncertainty map Γt (Section 3.4) as a side output.

Meanwhile, the DepthNet estimates depth mean D0
k and

uncertainty Σk of keyframe, providing a prior of the current

scene geometry (Section 3.2). The relative pose T t
k is solved

by essential matrix or PnP from selected flow correspon-

dences. During online adaptation, we firstly reconstruct

the sparse depth of Ik by a differentiable triangulation

module. Then, the prior keyframe depth D0
k is continuously

improved by subsequent depth estimations in a Bayesian

updating framework (Section 3.3). Next, the differentiable

Gauss-Newton layer minimizes the photometric loss of

It and warped image Ît weighted by predicted Γt (Sec-

tion 3.5). Finally, the optimized depth D
′

k and flow F
′

k,t are

used as pseudo ground truth to supervise the online learning

of DepthNet and FlowNet (Section 3.6).

3.1. Pose recovery from optical flow

We use RAFT [32] to learn dense optical flow Fk,t

between keyframe Ik and current frame It. The optical flow

between Ik and It−1 is used as a prior to initialize current

flow prediction. However, the predicted flow is not accurate

for all pixels and the pose estimation error will increase

if the displacement becomes small. Thus we select robust

correspondences (pk, pt) with good forward-backward flow

consistency and moderate flow magnitude [42]:

‖Fk,t(pk) + Ft,k(pt)‖ < δ1, ‖Fk,t(pk)‖ > δ2, (1)

where we set δ1 = 0.1, δ2 = 3. We select It as a

new keyframe if the mean flow of robust correspondences

is larger than 30. Benefiting from this keyframe-based

scheme, the motion disparity between two frames are in-

creased, enabling more accurate pose and depth estimation.

Given 2D correspondences between pk, pt, the relative

pose T t
k = [R|t] is computed by solving essential matrix E

with RANSAC [9] algorithm:

pTt K
−TEK−1pk = 0, E = [t]×R, (2)

where K denotes camera intrinsics. The scale of up-to-scale

pose T t
k is recovered by aligning triangulated sparse depth

(detailed in Section 3.3) with keyframe depth. However,

when confronted with small translation or pure rotation, the

2D-2D estimation fails. In these cases, we recover pose

with PnP [19] by minimizing reprojection error:
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er =
∑

||KT t
kDkK

−1pk − pt||2, (3)

where the 2D correspondences in Ik are lifted to 3D with

depth Dk (detailed in Section 3.2-3.3) and intrinsics K.

3.2. Depth modeling

In this paper, we model the depth estimation and updat-

ing in a unified Bayesian framework. The inverse depth

zi = 1
di

of every pixel i is used since it obeys Gaussian-

like distribution and is more robust to distant objects. For

inverse depth measurement zti at time t, we model the

good measurement as Gaussian distribution around the

ground truth zi while the bad one is regarded as observation

noise which is uniformly distributed within the interval

[zmin
i , zmax

i ]. For every new observation zti , the probability

of being a inlier is ρti. Thus zti is modeled as [10]:

p(zti |zi, ρ
t
i) := ρtiN (zti |zi, τ

2
i ) + (1− ρti)U(z

t
i |z

min
i , zmax

i ),
(4)

where τ2i denotes the variance of a good measurement.

We follow [10] to set inverse depth variance τ2i as the

photometric disparity error of one pixel.

During online inference, we seek to find the Maximum A

Posteriori (MAP) estimation of zti at each timestep, which

can be approximated [34] by the product of a Gaussian

distribution for zti and a Beta distribution for inlier ratio ρti:

q(zti , ρ
t
i|a

t
i, b

t
i, μ

t
i, σ

t
i
2
) := Beta(ρti|a

t
i, b

t
i)N (zti |μ

t
i, σ

t
i
2
),
(5)

where ati, b
t
i are the parameters in Beta distribution, and

μt
i, σ

t
i
2

the mean and variance of Gaussian depth estimate.

The depth of keyframe is initialized with single-view

estimation d0k ∈ D0
k and inverse depth uncertainty σ0

i ∈ Σk

from DepthNet as follows:

μ0
i =

1

d0k
, σ0

i ∈ Σk, zmax
i = μ0

i + σ0
i ,

zmin
i =

{

μ0
i − σ0

i , if μ0
i − σ0

i > 0
1e−6, else

(6)

During adaptation, the DepthNet online learns the prior

knowledge of the new scene geometry. Besides, the learned

uncertainties can also serve to gauge the reliability in

probabilistic depth fusion.

3.3. Online depth refinement

Given the relative pose T t
k and 2D correspondences, the

subsequent depth estimation of keyframe can be further

calculated by two-view triangulation [26]:

dki = argmin
dk
i

[dis(Lk, d
k
i )

2 + dis(Lt, d
k
i )]

2, (7)

Result from pretrained KITTI model

Bayesian depth 

refinement

Refined depth at = 4

= 4= 3= 2= 1

Triangulated depth patches

Test on TUM

Figure 3. Illustration of online depth refinement process. When

tested on TUM dataset, the pretrained network predicts erroneous

depth. The initial guess is continuously updated by triangulated

depth patches in a Bayesian refinement framework which becomes

much more accurate after only 4 timesteps.

where dis() denotes the distance between dki and two camera

rays Lk, Lt generated from 2D correspondences. The mid-

point triangulation is naturally differentiable, enabling our

VO framework to perform end-to-end online learning.

The triangulated depth map Ds
k is usually very sparse

(∼2000 points) and we densify each point with a local 3×3

patch Ds
k

′

. The depth of each patch pixel is assumed the

same as the central point. The patch-based representation

allows larger region of depth filtering and provides more

valid gradients with a wider basin of convergence.

During online adaptation, Ds
k

′

is used to update the prior

depth estimate to get a MAP estimation zti according to

Eq. 5 as illustrated in Fig. 3. Meanwhile, the parame-

ters ati, b
t
i, μ

t
i, σ

t
i
2

in Eq. 5 are incrementally updated by

Bayesian formulation. The updating method can be found

in the supplementary materials. We assume the inverse

depth zti have converged to the ground truth zi once the

uncertainty σt
i
2

is lower than a threshold.

3.4. Photometric residuals with learned uncertainty

Given the estimated pose T t
k and refined depth Dk, one

can synthesize Ît by warping Ik to the target image It [47]:

pt ∼ KT t
kDk(pk)K

−1pk, (8)

However, view synthesis builds on the photometric con-

stancy assumption, which is often violated in practice. In

order to alleviate this issue, we regard these corner cases as
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observation noise and use deep neural network to predict a

posterior probability distribution p(I|μI , γ) for each RGB

pixel parametrized by mean μI and variance γ ∈ Γ over

ground truth intensity I . By assuming the observation

noise to be Laplacian, the online learning process can

be formulated as minimizing the negative log-likelihood,

which can be converted to a weighted photometric loss:

Lpho =
∑

−log p(I|μI , γ) =
‖Ît − It‖1

Γt
+ logΓt, (9)

where Γt denotes photometric uncertainty map.

3.5. Differentiable Gauss-Newton optimization

Furthermore, we propose to use a differentiable Gauss-

Newton [7] layer to miminize Lpho for optimized depth

D
′

k and pose T t
k

′

. The predicted Γt in Eq. 9 improves the

robustness to illumination change and occlusions. Specif-

ically, starting with an initial depth and pose Dk, T
t
k, we

compute the weighted photometric loss ri(p) for each pixel

pi in all frames Ii among two keyframes Ik1
, Ik2

:

ri(p) =
Îi(pi)− Ii(p)

γi
, γi ∈ Γt (10)

The first order derivatives with respect to Dk and T t
k are:

JD
i (p) =

1

γi

∂Îi(pi)

∂pi

∂pi
∂Dk(p)

, JT
i (p) =

1

γi

∂Îi(pi)

∂pi

∂pi
∂T t

k
(11)

Thus the increment δ to the current estimation is:

δ = −(JTJ)−1JT r, J = [JD JT ] (12)

where J denotes the stack of Jacobians {Ji(p)} and r de-

notes the stack of weighted photometric residuals {ri(p)}.

The Gauss-Newton algorithm is naturally differentiable and

we implement it as a layer in neural network. In practice,

we find that it converges within only 3 iterations.

3.6. Loss functions

We propose to use the following loss functions to online

learn DepthNet and FlowNet in a self-supervised manner.

Smoothness loss We introduce an edge-aware loss for

depth and flow to enforce local smoothness:

Lsmooth(G) =
1

N

∑

x,y

‖∇xG(x, y)‖e−‖∇xI(x,y)‖+

‖∇yG(x, y)‖e−‖∇yI(x,y)‖,

(13)

where G denotes optical flow or depth.

Depth loss We derive a loss function of depth by eval-

uating the negative log-likelihood of the estimated inverse

depth z̃i with uncertainty σi defined in Eq. 6. This allows

the network to atenuate the cost of difficult regions and to

focus more on well explained parts. We assume a Laplacian

distribution of inverse depth residuals:

p(z̃i|μi, σi) =
1

2σi
exp

(

−
|z̃i − μi|

σi

)

(14)

We use refined inverse depth z
′

k as μi for self-supervision.

Thus the negative log-likelihood becomes:

Ld =
∑

−log p(z̃i|μi, σi) =
‖1/D

′

k − 1/Dk‖1
Σk

+ logΣk

(15)

Intuitively, the network will tune the depth uncertainty σi

that best minimize the depth loss ‖1/D
′

k − 1/Dk‖1 while

being subject to the regularization term logΣk. In order to

enforce depth continuity, we modify Eq. 15 to:

Ld =
‖1/D

′

k − 1/Dk‖1
Σk

+ logΣk + Lsmooth(Dk) (16)

Flow loss The optimized depth and pose D
′

k, T
t
k

′

can

be used to synthesize optical flow F
′

k,t by calculating the

difference between warped coordinates p
′

t and pt. We use

F
′

k,t to supervise FlowNet during online adaptation:

Lflow = ‖Fk,t − F
′

k,t‖1 + Lsmooth(Fk,t) (17)

Photometric loss is defined in Eq. 9. Thus the total self-

supervised loss is:

L = Lpho + Ld + Lflow (18)

4. Experiments

4.1. Implementation details

Network Architectures Since our method focuses on

improving online adaptation of deep VO to achieve better

generalization, we adopt similar networks with existing

self-supervised VO methods. As for DepthNet, we use the

same architecture as Monodepth2 [15] and add a 5 × 5
convolution layer at the output to predict depth uncertainty

map Σk. The optical flow network is based on RAFT [32].

We add a 5 × 5 convolution + Sigmoid layer at output to

predict photometric uncertainty Γt at the same time.

Learning Settings Our model is implemented by Py-

Torch [27] on a single NVIDIA GTX 2080Ti. The images

are resized to 256× 832 for KITTI [13] and Cityscapes [4]

datasets while set 192 × 256 for TUM dataset [31]. The

FlowNet and DepthNet are pretrained in a self-supervised

manner for 1 × 105 iterations according to [28]. The

Adam [18] optimizer with β1 = 0.9, β2 = 0.99 is used.

The learning objective (Eq. 18) is used for both pretraining

and online adaptation with the learning rate of 1 × 10−4.

The uncertainty maps Γt,Σk are also jointly trained by

minimizing Eq. 18. During online adaptation, we retrain

FlowNet and DepthNet for 2 iterations in every time step.
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(a) Seq.00 (b) Seq.01 (c) Seq.02 (d) Seq.08

Figure 4. Selected trajectories of different methods on KITTI odometry dataset. We use pretrained network on Cityscapes to directly test on

KITTI while all the other methods use pretrained network on KITTI for testing. It can be seen that our method shows much more accurate

trajectories. Note that we do not use any mapping, pose graph optimization, loop closing or bundle adjustment techniques.

4.2. Cityscapes to KITTI

Firstly, we try to test the generalization ability of our

framework to different outdoor environments. We pretrain

our method on Cityscapes [4] dataset and test on KITTI [13]

dataset, which differ not only in scene contents and white

balance but also in camera intrinsics. We compare

with recent self-supervised VO baselines: GeoNet [39],

Vid2Depth [24], Zhan et al. [41], SAVO [22] and Li et

al. [21] as well as classic methods: ORB-SLAM2 [26]

(with and without loop closure) and VISO2 [14]. Besides,

we compare with Zhao et al. [43] and DF-VO [42] which

are state-of-the-art methods that combine the output of

pretrained networks with classic VO pipeline.

As for pose estimation, we evaluate on 11 KITTI se-

quences with ground truth poses [39]. It’s worthy to note

that all the other VO baselines are pretrained on KITTI,

while our method is only pretrained on Cityscapes and

directly tested on KITTI dataset. Although in such unfair

conditions, our method achieves state-of-the-art results even

compared with ORB-SLAM2 (LC) (shown in Table 1 and

Fig. 4). Meanwhile, different from most self-supervised

VO baselines, our method maintains a consistent scale of

the entire trajectory. Thus, instead of calculating abso-

lute trajectory error (ATE) on short sequence as previous

methods, we align trajectories with ground truth [13] by a

single scaling factor and compute translation/rotation error

terr/rerr on entire trajectory.

Our method outperforms all the other baselines (in-

cluding end-to-end learning and combination of geometric

computation methods) by a clear margin. The rotation and

translation errors are an order of magnitude smaller than

the other self-supervised baselines, indicating that pose,

depth and scale estimation collaborated with probabilistic

geometric computation is much better than learning-based

inference. As for classic baselines, ORB-SLAM2 is im-

plemented by a local map tracking with bundle adjustment

(c) fr3/long office hou valid (d) fr2/pioneer 360

Figure 5. Visual odometry results pretrained on outdoor KITTI

and tested on indoor TUM dataset. All the other learning-based

baselines tend to fail when faced with large domain shift. In

contrast, our method is still able to recover accurate VO estimation

by online adapting to challenging indoor datasets.

(BA) and ORB-SLAM2 (LC) processes the entire sequence

with loop closure, pose graph optimization and global BA

to ensure good performance. Our method doesn’t use

any optimization backend techniques but it still achieves

comparable results with ORB-SLAM2 (LC).

4.3. Outdoor KITTI to indoor TUM

In order to further evaluate the generalization ability to

more complex indoor environments, we test on TUM [31]

dataset using networks pretrained on KITTI. TUM indoor

dataset contains much more complicated motion patterns
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Method Seq.00 Seq.01 Seq.02 Seq.03 Seq.04 Seq.05 Seq.06 Seq.07 Seq.08 Seq.09 Seq.10

terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr terr/rerr
Vid2Depth [24] 59.97 22.59 9.34 4.18 55.20 14.61 27.02 10.39 1.89 1.19 51.14 21.86 58.07 26.83 51.21 36.64 45.82 18.10 44.52 12.11 21.45 12.50

GeoNet [39] 27.60 5.72 12.25 4.15 42.21 6.14 19.21 9.78 9.09 7.55 20.12 7.67 9.28 4.34 8.27 5.93 18.59 7.85 23.94 9.81 20.73 9.10

Zhan et al. [41] 6.23 2.44 23.78 1.75 6.59 2.26 15.76 10.62 3.14 2.02 4.94 2.34 5.80 2.06 6.49 3.56 5.45 2.39 11.89 3.62 12.82 3.40

SAVO [22] 18.67 3.12 9.86 1.23 17.58 4.29 15.01 6.54 3.35 1.18 9.82 2.53 5.27 4.30 9.85 4.03 21.37 3.65 9.52 3.64 6.45 2.41

Li et al. [21] 8.42 3.91 17.36 4.60 14.38 2.62 18.24 0.92 3.28 4.40 7.58 3.31 4.36 2.28 5.58 3.12 7.51 2.63 5.89 3.34 4.79 0.83

VISO2 [14] 12.66 2.73 41.93 7.68 9.47 1.19 3.93 2.21 2.50 1.78 15.10 3.65 6.80 1.93 10.80 4.67 14.82 2.52 3.69 1.25 21.01 3.26

DF-VO [42] 2.25 0.58 66.98 17.04 3.60 0.52 2.67 0.50 1.43 0.29 1.10 0.30 1.03 0.30 0.97 0.27 1.60 0.32 2.61 0.29 2.29 0.37

D3VO [38] (stereo) - - 1.07 - 0.80 - - - - - - - 0.67 - - - 1.00 - 0.78 - 0.62 -

Zhao et al. [43] 4.45 1.13 62.54 2.71 4.64 0.91 6.86 1.26 4.76 3.31 2.93 0.90 3.48 1.32 2.57 1.21 5.09 1.19 6.81 0.72 4.39 1.05

ORB-SLAM2 [26] 11.43 0.58 107.57 0.89 10.34 0.26 0.97 0.19 1.30 0.27 9.04 0.26 14.56 0.26 9.77 0.36 11.46 0.28 9.30 0.26 2.57 0.32

ORB-SLAM2 (LC) 2.35 0.35 109.10 0.45 3.32 0.31 0.91 0.19 1.56 0.27 1.84 0.20 4.99 0.23 1.91 0.28 9.41 0.30 2.88 0.25 3.30 0.30

Ours (w/o RDS) 4.67 1.28 6.99 2.83 4.33 1.05 8.73 1.14 3.78 2.09 4.20 1.98 5.02 3.61 7.24 1.11 3.30 2.78 7.99 2.53 5.21 2.87

Ours (w/o PU) 2.28 0.87 5.42 1.40 3.98 1.87 7.76 0.99 2.92 1.04 3.63 1.28 4.92 2.07 8.25 2.39 3.28 1.69 4.60 1.13 3.25 1.70

Ours 1.32 0.45 2.83 0.65 1.42 0.45 1.77 0.39 1.22 0.27 1.07 0.44 1.02 0.41 2.06 1.18 1.50 0.42 1.87 0.46 1.93 0.30

Table 1. Quantitative comparison on KITTI dataset. Our method is pretrained on Cityscapes and tested on KITTI, while all the other

learning-based methods are pretrained on KITTI. LC: loop closure, w/o: without, RDS: refined depth for online supervision, PU:

photometric uncertainty. terr: translational root mean square error (RMSE) drift (%); rerr: average rotational RMSE drift (◦/100m).

Vid2Depth GeoNet Zhan et al. SAVO Li et al. DF-VO Zhao et al. DSO ORB-SLAM2 Ours Ours Ours

Sequence [24] [39] [41] [22] [21] [42] [43] [7] (LC) [26] (w/o RDS) (w/o PU)

fr2/desk 0.698 0.462 0.570 0.402 0.214 0.306 0.485 X X 0.158 0.572 0.221

fr2/pioneer 360 0.581 0.662 0.453 0.402 0.218 0.599 0.693 X X 0.201 0.638 0.254

fr2/pioneer slam 0.367 0.301 0.309 0.338 0.190 0.585 0.354 0.737 X 0.176 0.481 0.210

fr2/360 kidnap 0.564 0.579 0.430 0.421 0.357 0.745 0.468 X 0.582 0.384 0.605 0.371

fr3/cabinet 0.492 0.282 0.316 0.281 0.272 0.447 0.227 X X 0.213 0.453 0.276

fr3/long office hou valid 0.401 0.316 0.327 0.297 0.237 0.227 0.534 0.327 0.042 0.133 0.529 0.168

fr3/nostr texture near loop 0.328 0.277 0.340 0.440 0.255 0.564 0.348 0.093 0.057 0.159 0.401 0.186

fr3/str notexture far 0.227 0.258 0.235 0.216 0.177 0.505 0.175 0.543 X 0.104 0.432 0.201

fr3/str notexture near 0.235 0.198 0.217 0.204 0.128 0.603 0.218 0.481 X 0.207 0.579 0.224

Table 2. Quantitative evaluation of different methods pretrained on KITTI and tested on TUM-RGBD dataset. We evaluate relative pose

error (RPE) which is presented as translational RMSE in [m/s]. LC: loop closure, X: fail. w/o RDS: without refined depth for online

supervision. w/o PU: without online learned photometric uncertainty.

and challenging conditions. As shown in Table 2 and Fig. 5,

learning-based baselines have large errors when confronted

with significant domamin shift and different motion patterns

(from fast planar motion to small motion in xyz axies). On

the contrary, our method yields promising results due to

fast online adaptation. Besides, our method is more robust

than classic methods (ORB-SLAM2 [26] and DSO [7]) in

textureless scenes, abrupt motion and illumination changes,

indicating that it tends to find out robust correspondences

and online learns depth/photometric uncertainty in chal-

lenging conditions.

4.4. Depth evaluation on KITTI and NYUv2

We demonstrate the effectiveness of using optimized

D
′

k for self-supervision by evaluating different single-view

depth estimation methods on KITTI [13] and NYUv2 [30]

datasets. We only use triangulation and Bayesian updating

for training. During test, our method predicts single-view

depth without refinement. As for KITTI, we take Eigen et

al. [6] split for training and test. As for NYUv2, we use

the raw training set and evaluate depth prediction results

on labeled test set. The predicted depth is multiplied by a

scaling factor to match the median with ground truth [6].

Table 3, 4 and Fig. 6 show the depth evaluation re-

sults on KITTI and NYUv2 datasets. Benefiting from the

patch-based depth triangulation and multi-frame refinement

process, our method is able to synthesize refined depth

for self-supervision. The learned depth is more accurate

and preserves sharper edges with fine details than other

methods. More qualitative results and analysis can be found

in the supplementary materials.

4.5. Ablation studies

In order to demonstrate the effectiveness of each com-

ponent, we present ablation studies on various versions of

our method on KITTI, TUM and NYUv2 datasets (shown

in Table 1, 2, 3, 4). ‘w/o RDS’ means without the final

step of retraining both DepthNet and FlowNet. It can be

seen that the performance of pose and depth estimation

shows a considerable improvement when the refined depth

is used for online training the DepthNet. Besides, it

can be noticed that KITTI contains many moving objects

(cars, people) and all these datasets have many sequences

with changing camera exposure time. The online learned
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Method Supervision Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner [47] - 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [12] stereo 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Vid2Depth [24] - 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet [39] - 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Zhan et al. [41] stereo 0.135 1.132 5.585 0.229 0.820 0.933 0.971

Mahjourian et al. [25] - 0.163 1.240 6.220 0.250 0.762 0.916 0.968

SAVO [22] - 0.150 1.127 5.564 0.229 0.823 0.936 0.974

SC-SfMLearner [1] - 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Zhao et al. [43] - 0.113 0.704 4.581 0.184 0.871 0.961 0.984

Monodepth2 [15] (w/o pretrain) - 0.132 1.044 5.142 0.210 0.845 0.948 0.977

Monodepth2 (ImageNet pretrain) - 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ranjan et al. [28] - 0.148 1.149 5.464 0.226 0.815 0.935 0.973

Ours (w/o RDS) - 0.136 1.087 5.118 0.210 0.843 0.952 0.980

Ours (w/o PU) - 0.115 0.799 4.282 0.253 0.882 0.965 0.981

Ours - 0.106 0.701 4.129 0.210 0.889 0.967 0.984

Table 3. Depth estimation results on KITTI dataset by Eigen et al. [6] split. The results are capped at 80 meters. As for error metrics Abs

Rel, Seq Rel, RMSE and RMSE log, lower value is better; as for accuracy metrics δ, higher value is better. w/o RDS: without refined depth

for online supervision. w/o PU: without online learned photometric uncertainty.

Input GeoNet SAVO OursMonodepth2

Figure 6. Depth estimation results on KITTI dataset. Thanks to our triangulation process and multi-frame depth refinement, our method

shows better predictions and preserves sharp edges while other methods tend to predict vague depth. Best viewed in color.

Error Accuracy δ < 1.25n

Method Rel log10 RMSE n = 1 n = 2 n = 3

Make3D [29] 0.349 - 1.214 0.447 0.745 0.987

Li et al. [20] 0.232 0.094 0.821 0.621 0.886 0.968

MS-CRF [36] 0.121 0.052 0.586 0.811 0.954 0.987

DORN [11] 0.115 0.051 0.509 0.828 0.965 0.992

Zhou et al. [46] 0.208 0.086 0.712 0.674 0.900 0.968

Zhao et al. [43] 0.201 0.085 0.708 0.687 0.903 0.968

P2Net* [40] 0.147 0.062 0.553 0.801 0.951 0.987

Ours (w/o RDS) 0.225 0.090 0.702 0.711 0.882 0.970

Ours (w/o PU) 0.142 0.087 0.631 0.784 0.923 0.976

Ours 0.139 0.071 0.528 0.805 0.967 0.989

Table 4. Depth estimation results on NYUv2 dataset. Supervised

methods are shown in the first rows. *The inference resolution of

P2Net is 288× 384 with 5-frame left-right flipping augmentation.

photometric uncertainty (w/o PU) helps a lot on KITTI and

TUM for pose estimation. We suggest readers to refer to

supplementary materials for more qualitative comparisons.

5. Conclusions

In this paper, we propose an online adaptation frame-

work for deep VO with the assistance of scene-agnostic

geometric computations and Bayesian inference. The pre-

dicted single-view depth is continuously improved with

incoming observations by Baysian depth filter. Meanwhile,

we explicitly model depth and photometric uncertainties

to deal with the observation noise. The optimized pose,

depth and flow from differentiable Gauss-Newton layer are

used for online self-supervision. Extensive experiments on

various environment shifting demonstrate that our method

has much better generalization ability than state-of-the-art

learning-based VO methods.
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