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Abstract

Model-based 3D pose and shape estimation methods re-

construct a full 3D mesh for the human body by estimat-

ing several parameters. However, learning the abstract pa-

rameters is a highly non-linear process and suffers from

image-model misalignment, leading to mediocre model per-

formance. In contrast, 3D keypoint estimation methods

combine deep CNN network with the volumetric represen-

tation to achieve pixel-level localization accuracy but may

predict unrealistic body structure. In this paper, we ad-

dress the above issues by bridging the gap between body

mesh estimation and 3D keypoint estimation. We propose a

novel hybrid inverse kinematics solution (HybrIK). HybrIK

directly transforms accurate 3D joints to relative body-part

rotations for 3D body mesh reconstruction, via the twist-

and-swing decomposition. The swing rotation is analyti-

cally solved with 3D joints, and the twist rotation is derived

from the visual cues through the neural network. We show

that HybrIK preserves both the accuracy of 3D pose and

the realistic body structure of the parametric human model,

leading to a pixel-aligned 3D body mesh and a more accu-

rate 3D pose than the pure 3D keypoint estimation methods.

Without bells and whistles, the proposed method surpasses

the state-of-the-art methods by a large margin on various

3D human pose and shape benchmarks. As an illustrative

example, HybrIK outperforms all the previous methods by

13.2 mm MPJPE and 21.9 mm PVE on 3DPW dataset. Our

code is available at https://github.com/Jeff-sjtu/HybrIK.

1. Introduction

Recovering the 3D surface from a monocular RGB im-

age is a fundamentally ill-posed problem. It has a wide rage

of application scenarios [52, 31, 27, 28, 8]. With the de-

velopment of the parametric statistical human body shape

models [2, 29, 47], a realistic and controllable 3D mesh of
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Figure 1. Closing the loop between the 3D skeleton and the

parametric model via HybrIK. A 3D skeleton predicted by the

neural network can be transformed into a parametric body mesh

by inverse kinematics without loss of accuracy. The parametric

body mesh can generate structural realistic 3D skeleton by forward

kinematics.

human body can be generated from only a few parameters,

e.g. shape parameters and relative rotations of body parts.

Recent studies develop the model-based methods [7, 18, 23]

to obtain these parameters from the monocular RGB input

and produce 3D pose and shape of human bodies.

Most of the model-based methods can be catego-

rized into two classes: optimization-based approach

and learning-based approach. Optimization-based ap-

proaches [13, 7, 47] estimate the body pose and shape by

an iterative fitting process. The parameters of the statistical

model are tuned to reduce the error between its 2D projec-

tion and 2D observations, e.g. 2D joint locations and silhou-

ette. However, the optimization problem is non-convex and

takes a long time to solve. The results are sensitive to the

initialization. These issues shift the spotlight towards the

learning-based approaches. With a parametric body model,

learning-based approaches use neural networks to regress

the model parameters directly [18, 23, 20]. But the parame-

ter space in the statistical model is abstract, making it diffi-

cult for the networks to learn the mapping function.

This challenge prompts us to look into the field of 3D

keypoint estimation. Instead of the direct regression, previ-

ous methods [48, 60] adopt volumetric heatmap as the target

representation to learn 3D joint locations and have achieved
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impressive performance. This inspires us to build a collabo-

ration between the 3D joints and the body mesh (Fig. 1). On

the one hand, the accurate 3D joints facilitate the 3D body

mesh estimation. On the other hand, the shape prior in para-

metric body model in turn fixes the unrealistic body struc-

ture issue of the 3D keypoint estimation methods. Since the

current 3D keypoint estimation methods lack explicit mod-

elling of the distribution of body bone length, it may predict

unrealistic body structures like left-right asymmetry and ab-

normal proportions of limbs. By leveraging the parametric

body model, the presented human shape better conforms to

the actual human body.

In this work, we propose a hybrid analytical-neural in-

verse kinematics solution (HybrIK) to bridge the gap be-

tween 3D keypoint estimation and body mesh estimation.

Inverse kinematics (IK) process is the mathematical process

of finding the relative rotations to produce the desired loca-

tions of body joints. It is an ill-posed problem because there

is no unique solution. The core of our approach is to pro-

pose an innovative IK solution via twist-and-swing decom-

position. The relative rotation of a skeleton part is decom-

posed into twist and swing, i.e. a longitudinal rotation and

an in-plane rotation. In HybrIK, we composite the entire

rotation recursively along the kinematic tree by analytically

calculating swing rotation and predicting twist rotation. A

critical characteristic of our approach is that the relative ro-

tation estimated by HybrIK is naturally aligned with the 3D

skeleton, without the need for additional optimization pro-

cedures in the previous approaches [7, 47, 23]. All oper-

ations in HybrIK are differentiable, which allows us to si-

multaneously train 3D joints and human body mesh in an

end-to-end manner. Besides, experiments indicate that Hy-

brIK raises the performance of body mesh estimation to the

same level as 3D keypoint estimation and takes a step for-

ward. The proposed approach is benchmarked in various 3D

human pose and shape datasets, and it significantly outper-

forms state-of-the-art approaches [23, 38] by 21.9 mm PVE

on 3DPW [67], 6.6 mm PA-MPJPE on Human3.6M [16]

and 10.8 AUC on MPI-INF-3DHP [33].

The contributions of our approach can be summarized as

follows:

• We propose HybrIK, a hybrid analytical-neural IK so-

lution that converts the accurate 3D joint locations to

full 3D human body mesh. HybrIK is differentiable

and allows end-to-end training.

• Our approach closes the loop between the 3D skeleton

and the parametric model. It fixes the alignment issue

of current model-based body mesh estimation methods

and the unrealistic body structure problem of 3D key-

point estimation methods at the same time.

• Our approach achieves state-of-the-art performance

across various 3D human pose and shape benchmarks.

2. Related Work

3D Keypoint Estimation. Many works formulate 3D hu-

man pose estimation as the problem of locating the 3D

joints of the human body. Previous studies can be divided

into two categories: single-stage and two-stage approaches.

Single-stage approaches [49, 54, 34, 74, 36, 61, 37, 69] di-

rectly estimate the 3D joint locations from the input im-

age. Various representations are developed, including 3D

heatmap [49], location-map [34] and 2D heatmap + z re-

gression [74]. Two-stage approaches first estimate 2D

pose and then lift them to 3D joint locations by a learned

dictionary of 3D skeleton [1, 53, 64, 56, 76, 77] or re-

gression [46, 71, 40, 11, 32, 59]. Two-stage approaches

highly rely on the accurate 2D pose estimators, which have

achieved impressive performance by the combination of

powerful backbone network [58, 15, 42, 44, 45] and the 2D

heatmap.

These privileged forms of supervision contribute to the

recent performance leaps of 3D keypoint estimation. How-

ever, the human structural information is modelled implic-

itly by the neural network, which can not ensure the output

3D skeletons to be realistic. Our approach combines the ad-

vantages of both the 3D skeleton and parametric model to

predict accurate and realistic human pose and shape.

Model-based 3D Pose and Shape Estimation. Pioneer

works on the model-based 3D pose and shape estimation

methods use parametric human body model [2, 29, 47] as

the output target because they capture the statistics prior

of body shape. Compared with the model-free meth-

ods [65, 24, 38], the model-based methods directly predict

controllable body mesh, which can facilitate many down-

stream tasks for both computer graphics and computer vi-

sion. Bogo et al. [7] propose SMPLify, a fully automatic

approach, without manual user intervention [57, 13]. This

optimization paradigm was further extended with silhouette

cues [26], volumetric grid [65], multiple people [73] and

whole-body parametric model [47].

With the advances of the deep learning networks, there

are increasing studies that focus on the learning-based

methods, using a deep network to estimate the pose and

shape parameters. Since the mapping from RGB image

to shape space and relative body-part rotation is hard to

learn, many works use some form of intermediate repre-

sentation to alleviate this problem, such as keypoints and

silhouettes [50], semantic part segmentation [43] and 2D

heatmap input [63]. Kanazawa et al. [18] use an adversarial

prior and an iterative error feedback (IEF) loop to reduce

the difficulty of regression. Arnab et al. [4] and Kocabas

et al. [20] exploit temporal context, while Guler et al. [14]

use a part-voting expression and test-time post-processing

to improve the regression network. Kolotouros et al. [23]

leverage the optimization paradigm to provide extra 3D su-
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pervision from unlabeled images.

In this work, we address this challenging learning prob-

lem by a transformation from the pixel-aligned 3D joints to

the relative body-part rotations.

Body-part Rotation in Pose Estimation. The core of our

approach is to calculate the relative rotation of human body

parts through a hybrid IK process. There are several works

that estimate the relative rotations in the 3D pose estima-

tion literature. Zhou et al. [75] use the network to predict

the rotation angle of each body joint, followed by an FK

layer to generate the 3D joint coordinates. Pavllo et al. [51]

switch to quaternions, while Yoshiyasu et al. [72] directly

predict the 3×3 rotation matrices. Mehta et al. [35] first es-

timate the 3D joints and then use a fitting procedure to find

the rotation Euler angles. Previous approaches are either

limited to a hard-to-learn problem or require an additional

fitting procedure. Our approach recovers the body-part ro-

tation from 3D joint locations in a direct, accurate and feed-

forward manner.

Inverse Kinematics Process. The inverse kinematics

(IK) problem has been extensively studied during recent

decades. Numerical solutions [6, 70, 12, 19, 68, 9] are

simple ways to implement the IK process, but they suf-

fer from time-consuming iterative optimization. Heuristic

methods are efficient solutions to the IK problem. For ex-

ample, CDC[30], FABRIK[3] and IK-FA[55] have a low

computational cost for each heuristic iteration. In some spe-

cial cases, there exist analytical solutions to the IK prob-

lem. Tolani et al. [62] propose a reliable algorithm by the

combination of analytical and numerical methods. Kall-

mann et al. [17] solve the IK for arm linkage, i.e. a three-

joint system. Recently, researchers have been interested in

using neural networks to solve the IK problem in robotic

control [10], motion retargeting [66] and hand pose estima-

tion [41, 22].

In this work, we combine the interpretable characteristic

of analytical solution and the flexibility of the neural net-

work, introducing a feed-forward hybrid IK algorithm with

twist-and-swing decomposition. Twist-and-swing decom-

position is introduced by Baerlocher et al. [5]. The twist

angles are limited based on the particular body joint. In our

works, the twist angles are estimated by neural networks,

which is more flexible and can be generalized to all body

joints. Compared with previous analytical solutions [17]

designed for specific joint linkage, our algorithm can be ap-

plied to the entire body skeleton in a direct and differen-

tiable manner.

3. Method

In this section, we present our hybrid analytical-neural

inverse kinematics solution that boosts 3D human pose and

shape estimation (Fig. 2). First, in §3.1, we briefly describe

the forward kinematics process, the inverse kinematics pro-

cess and the SMPL model. In §3.2, we introduce the pro-

posed inverse kinematics solution, HybrIK. Then, in §3.3,

we present the overall learning framework to estimate the

pixel-aligned body mesh and realistic 3D skeleton. Finally,

we provide the necessary implementation details in §3.4.

3.1. Preliminary

Forward Kinematics. Forward kinematics (FK) for hu-

man pose usually refers to the process of computing the re-

constructed pose Q = {qk}
K
k=1, with the rest pose template

T = {tk}
K
k=1 and the relative rotations R = {Rpa(k),k}

K
k=1

as input:

Q = FK(R,T), (1)

where K is the number the body joints, qk ∈ R
3 denotes the

reconstructed 3D location of the k-th joint, tk ∈ R
3 denotes

the k-th joint location of the rest pose template, pa(k) re-

turn the parent’s index of the k-th joint, and Rpa(k),k is the

relative rotation of k-th joint with respect to its parent joint.

FK can be performed by recursively rotating the template

body part from the root joint to the leaf joints:

qk = Rk(tk − tpa(k)) + qpa(k), (2)

where Rk ∈ SO(3) is the global rotation of the k-th joint

with respect to the canonical rest pose space. The global

rotation can be calculated recursively:

Rk = Rpa(k)Rpa(k),k. (3)

For the root joint that has no parent, we have q0 = t0.

Inverse Kinematics. Inverse kinematics (IK) is the re-

verse process of FK, computing relative rotations R that

can generate the desired locations of input body joints P =
{pk}

K
k=1. This process can be formulated as:

R = IK(P,T), (4)

where pk denotes the k-th joint of the input pose. Ideally,

the resulting rotations should satisfy the following condi-

tion:

pk − ppa(k) = Rk(tk − tpa(k)) ∀1 ≤ k ≤ K. (5)

Similar to the FK process, we have p0 = t0 for the root joint

that has no parent. While the FK problem is well-posed, the

IK problem is ill-posed because there is either no solution

or because there are many solutions to fulfill the target joint

locations.

SMPL Model. In this work, we employ the SMPL [29]

parametric model for human body representation. SMPL

allows us to use shape parameters and pose parameters
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Figure 2. Overview of the proposed framework. A 3D heatmap is generated by the deconvolution layers and used to regress the 3D joints

P. The shape parameters β and the twist angle Φ are learned from the visual cues through the fully-connected layers. These results are

then sent to the HybrIK process to solve the relative rotation, i.e. the pose parameters θ. Finally, with the pose and shape parameters, we

can obtain the reconstructed body mesh M , and the reconstructed pose Q via a further FK process or linear regression.

to control the full human body mesh. The shape param-

eters β ∈ R
10 are parameterized by the first 10 princi-

pal components of the shape space. The pose parame-

ters θ are modelled by relative 3D rotation of K = 23
joints, θ = (θ1, θ2, · · · , θK). SMPL provides a differen-

tiable function M(θ, β) that takes the pose parameters θ

and the shape parameters β as input and outputs a triangu-

lated mesh M ∈ R
N×3 with N = 6980 vertices. Conve-

niently, the reconstructed 3D joints Qsmpl can be obtained

by an FK process, i.e. Qsmpl = FK(R,T). Also, the joints

of Human3.6M [16] can be obtained by a linear combina-

tion of the mesh vertices through a linear regressor W , i.e.

Qh36m = WM .

3.2. Hybrid AnalyticalNeural Inverse Kinematics

Estimating the human body mesh by direct regression of

the relative rotations is too difficult [18, 23, 20]. Here, we

propose a hybrid analytical-neural inverse kinematics solu-

tion (HybrIK) to leverage 3D keypoints estimation to boost

3D body mesh estimation. Since 3D joints cannot uniquely

determine the relative rotation, we decompose the original

rotation into twist and swing. The 3D joints are utilized to

calculate the swing rotation analytically, and we exploit the

visual cues by a neural network to estimate the 1-DoF twist

rotation. In HybrIK, the relative rotations are solved recur-

sively along the kinematic tree. We conduct error analysis

and further develop an adaptive solution to reduce the re-

construction error.

Twist-and-Swing Decomposition. In the analytical IK

formulation, some body joints are usually assigned lower

degree-of-freedom (DoFs) to simplify the problem, e.g. 1
or 2 DoFs [21, 62, 17]. In this work, we consider a gen-

eral case where each body joint is assumed to have full 3
DoFs. As illustrated in Fig. 3, a rotation R ∈ SO(3) can be

decomposed into a twist rotation Rtw and a swing rotation

Twist Swing

(a) Original Rotation

(b) Twist-and-Swing Decompostion

�t �p

�p = R�t

�p = RswRtw�t

Figure 3. Illustration of the twist-and-swing decomposition. (a)

The original rotation turns the right palm-down hand to the front

and the palm to the left in one step. (b) With twist-and-swing

decomposition, the rotation can be divided into two steps: First,

turn the palm 90
◦, and then move the entire hand to the front.

Rsw. Given the start template body-part vector ~t and the tar-

get vector ~p, the solution process of R can be formulated

as:

R = D(~p,~t,φ) = Dsw(~p,~t)Dtw(~t, φ) = RswRtw, (6)

where φ is the twist angle that estimated by a neural net-

work, Dsw(·) is a closed-form solution of the swing rota-

tion, and Dtw(·) transforms φ to the twist rotation. Here, R

should satisfy the condition in Eq. 5, i.e. ~p = R~t.

- Swing: The swing rotation has the axis ~n that is per-

pendicular to ~t and ~p. Therefore, it can be formulated as:

~n =
~t× ~p

‖ ~t× ~p ‖
, (7)

and the swing angle α satisfies:

cosα =
~t · ~p

‖~t‖‖~p‖
, sinα =

‖ ~t× ~p ‖

‖~t‖‖~p‖
. (8)
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Hence, the closed-form solution of the swing rotation Rsw

can be derived by the Rodrigues formula:

Rsw = Dsw(~p,~t) = I + sinα[~n]× + (1− cosα)[~n]2
×
, (9)

where [~n]× is the skew symmetric matrix of ~n and I is the

3× 3 identity matrix.

- Twist: The twist rotation is rotating around ~t itself.

Thus, with ~t itself the axis and φ the angle, we can deter-

mine twist rotation Rtw:

Rtw = Dtw(~t, φ) = I+
sinφ

‖~t‖
[~t]×+

(1− cosφ)

‖~t‖2
[~t]2

×
, (10)

where [~t]× is the skew symmetric matrix of ~t.

Note that function Dsw and Dtw are fully differentiable,

which allows us to integrate the twist-and-swing decompo-

sition into the training process. Although we need a neural

network to learn the twist angle, the difficulty of learning

is significantly reduced. Compared with the 3-DoF rotation

that is directly regressed in previous work [18, 23, 20], the

twist angle is only a 1-DoF variable. Moreover, due to the

physical limitation of the human body, the twist angle has a

small range of variation. Therefore, it is much easier for the

networks to learn the mapping function. We further analyze

its variation in §4.2.

Naive HybrIK. The IK process can be performed recur-

sively along the kinematic tree like the FK process. First of

all, we need to determine the global root rotation R0, which

has a closed-form solution using the locations of spine,

left hip, right hip and Singular Value Decomposition

(SVD). Detailed mathematical proof is provided in the sup-

plemental document. Then, in each step, e.g. the k-th step,

we assume the rotation of the parent joint Rpa(k) is known.

Hence, we can reformulate Eq. 5 with Eq. 3 as:

R−1
pa(k)(pk − ppa(k)) = Rpa(k),k(tk − tpa(k)). (11)

Let ~pk = R−1
pa(k)(pk − ppa(k)) and ~tk = (tk − tpa(k)), we

can solve the relative rotation via Eq. 6:

Rpa(k),k = D(~pk,~tk, φk), (12)

where φk is the network predicting twist angle for the k-th

joint. The set of twist angle is denoted as Φ = {φk}
K
k=1.

Since the rotation matrices are orthogonal, their inverse

equals to their transpose, i.e. R−1
pa(k) = RT

pa(k), which keeps

the solving process differentiable.

The whole process is named Naive HybrIK and summa-

rized in Alg. 1. Note that we solve the relative rotation

Rpa(k),k instead of the global rotation Rk. The reason is

that if we directly decompose the global rotation, the result-

ing twist angle will depend on all ancestors’ rotations along

the kinematic tree, which increases the variation of the dis-

tal limb joints and the difficulty for the network to learn.

Algorithm 1: Naive HybrIK

Input: P, T, Φ
Output: R

1 Determine R0;

2 for k along the kinematic tree do

3 ~pk ← R−1
pa(k)(pk − ppa(k));

4 ~tk ← (tk − tpa(k));

5 Rsw
pa(k),k ← D

sw(~pk,~tk);

6 Rtw
pa(k),k ← D

tw(~tk, φk);

7 Rpa(k),k ← Rsw
pa(k),kR

tw
pa(k),k;

Adaptive HybrIK. Although the Naive HybrIK process

seems effective, it follows an unstated hypothesis: ‖pk −
ppa(k)‖ = ‖tk − tpa(k)‖. Otherwise, there is no solution for

Eq. 5. Unfortunately, in our case, the body-parts predicted

by the 3D keypoint estimation method are not always con-

sistent with the rest pose template. In Naive HybrIK, Eq. 6

can still be solved because the condition is turned into:

pk − ppa(k) = Rk(tk − tpa(k)) + ~ǫk, (13)

where ~ǫk denotes the error in the k-th step, which has the

same direction of pk − ppa(k) and ‖~ǫk‖ = |‖pk − ppa(k)‖ −
‖tk− tpa(k)‖|. To analyze the reconstruction error, we com-

pare the difference between the input pose P and the recon-

structed pose Q:

‖P−Q‖ ⇔
K∑

k=1

‖pk − qk‖, (14)

where Q = FK(R,T) = FK(IK(P,T),T). Combining

Eq. 2 and Eq. 13, we have:

pk − qk = ppa(k) − qpa(k) + ~ǫk

= ppa2(k) − qpa2(k) + ~ǫpa(k) + ~ǫk

= . . . =
∑

i∈A(k)

~ǫi,
(15)

where pa2(k) denotes the parent index of the pa(k)-th joint,

and A(k) denotes the set of ancestors of the k-th joint. That

means the difference between the input joint pk and the re-

constructed joint qk will accumulate along the kinematic

tree, which brings more uncertainty to the distal joint.

To address this error accumulation problem, we further

propose Adaptive HybrIK. In Adaptive HybrIK, the target

vector is adaptively updated by the newly reconstructed par-

ent joints. Let ~pk = R−1
pa(k)(pk − qpa(k)) and ~tk the same as

the one in the naive solution. In this way, the condition in

Adaptive HybrIK can be formulated as:

pk − qpa(k) = Rk(tk − tpa(k)) + ~ǫk. (16)
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Figure 4. Example of the reconstruction error. The rest pose is

rotated to q1 and q2 by two steps. In the first step, due to the bone-

length inconsistency, the reconstruction error is ~ǫ1. In the second

step, Naive HybrIK takes p2 − p1 as the target direction, resulting

in the accumulation of error ~ǫ1 + ~ǫ2. Instead, Adaptive HybrIK

selects the reconstructed joint q1 to form the target direction p2 −
q1, which reduces the error to only ~ǫ2.

Therefore, we have:

pk − qpa(k) = qk − qpa(k) + ~ǫk

⇒ pk − qk = ~ǫk.
(17)

Compared to the naive solution (Eq. 15), the reconstructed

error of the adaptive solution only depends on the current

joint and will not accumulate from its ancestors. As illus-

trated in Fig. 4, in Naive HybrIK, once the parent joint is

out of position, its children will continue this mistake. In-

stead, in Adaptive HybrIK, the solved relative rotation is al-

ways pointing towards the target joint and reduce the error.

We conduct empirical experiments in §4.2 to validate its ro-

bustness. Note that an iterative global optimization process

can further reduce the error, but it is non-differentiable and

does not allow end-to-end training. Adaptive HybrIK is ro-

bust enough and remains differentiable. The whole process

is summarized in Alg. 2.

3.3. Learning Framework

The overall framework of our approach is illustrated in

Fig. 2. Firstly, a neural network is utilized to predict 3D

joints P, the twist angle Φ and the shape parameters β.

Secondly, the shape parameters are used to obtain the rest

pose T by the SMPL model. Then, by combining P, T and

Φ, we perform HybrIK to solve the relative rotations R of

the 3D pose, i.e. the pose parameters θ. Finally, with the

functionM(θ, β) provided by the SMPL model, the body

mesh M is obtained. The reconstructed pose Q can be ob-

tained from M by FK or a regressor, which is guaranteed to

be realistic. Since the HybrIK process is differentiable, the

whole framework is trained in an end-to-end manner.

3D Keypoint Estimation. We adopt a simple yet effective

architecture to estimate the 3D body keypoints. Following

[60], we use ResNet as our backbone and 3 deconvolution

layers followed by a 1 × 1 convolution to generate the 3D

Algorithm 2: Adaptive HybrIK

Input: P, T, Φ
Output: R

1 Determine R0;

2 for k along the kinematic tree do

3 qpa(k) ← Rpa(k)(tpa(k) − tpa2(k)) + qpa2(k) ;

4 ~pk ← R−1
pa(k)(pk − qpa(k));

5 ~tk ← (tk − tpa(k));

6 Rsw
pa(k),k ← D

sw(~pk,~tk);

7 Rtw
pa(k),k ← D

tw(~tk,φk);

8 Rpa(k),k ← Rsw
pa(k),kR

tw
pa(k),k;

heatmaps. The soft-argmax operation is used to obtain 3D

pose from the heatmap in a differentiable manner. We su-

pervise the predicted pose coordinates with ℓ1 loss:

Lpose =
1

K

K∑

k=1

‖pk − p̂k‖1, (18)

where p̂k denotes the ground-truth joint.

Twist Angle Estimation. Instead of the direct regression

of scalar value φk, we choose to learn a 2-dimensional vec-

tor (cφk
, sφk

) that represents cosφk and sinφk to avoid the

discontinuity problem. The ℓ2 loss is applied:

Ltw =
1

K

K∑

k=1

‖(cφk
, sφk

)− (cos φ̂k, sin φ̂k)‖2, (19)

where φ̂k denotes the ground-truth twist angle.

Collaboration with SMPL. The SMPL model allows us

to obtain the rest pose skeleton with the additive offsets ac-

cording to the shape parameters β:

T = W (M̄T +BS(β)), (20)

where M̄T is the mesh vertices of mean rest pose, and

BS(β) is the blend shapes function provided by SMPL.

Then the pose parameters θ are calculated by HybrIK in

a differentiable manner. In the training phase, we supervise

the shape parameters β:

Lshape = ‖β − β̂‖2, (21)

and the rotation parameters θ:

Lrot = ‖θ − θ̂‖2. (22)

The overall loss of the learning framework is formulated as:

L = Lpose + µ1Lshape + µ2Lrot + µ3Ltw, (23)

where µ1, µ2 and µ3 are weights of the loss items.
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Figure 5. Distribution of the twist angle. Only a few joints have

a range over 30◦. Other joints have a limited range of twist angle.

3.4. Implementation Details

Here we elaborate more implementation details. We use

ResNet-34 [15] as the network backbone, initialized with

ImageNet pre-trained weights. The ResNet output is di-

vided into two branches. The first branch is to generate 3D

heatmaps. The second branch consists of an average pool-

ing, two fully-connected layers with 1024 neurons (each

with a dropout layer in between) and a final layer of 56

neurons (10 for β, 46 for Φ). The input image is resized

to 256 × 192. The learning rate is set to 1 × 10−3 at first

and reduced by a factor of 10 at the 90th and 120th epoch.

We use the Adam solver and train for 140 epochs, with a

mini-batch size of 32 per GPU and 8 GPUs in total. In all

experiments, µ1 = 1 and µ2 = µ3 = 1× 10−2. In the test-

ing phase, the absolute depth of the root joint is obtained

from RootNet [37]. Implementation is in PyTorch.

4. Empirical Evaluation

In this section, we first describe the datasets employed

for training and quantitative evaluation. Next, ablation ex-

periments are conducted to evaluate the proposed HybrIK.

Finally, we report our results and compare the proposed

method with state-of-the-art approaches.

4.1. Datasets

3DPW: It is a challenging outdoor benchmark for 3D

pose and shape estimation. We use this dataset only for

evaluation on its test set.

MPI-INF-3DHP: It consists of both constrained indoor

and complex outdoor scenes. Following [18, 23], we use its

train set for training and evaluate on its test set.

Human3.6M: It is an indoor benchmark for 3D pose es-

timation. Following [18, 23], we use 5 subjects (S1, S5, S6,

S7, S8) for training and 2 subjects (S9, S11) for evaluation.

MSCOCO: It is a large-scale in-the-wild 2D human pose

datasets. We incorporate its train set for training.

Random Twist Estimated Twist Zero Twist

24 jts 14 jts Vert. 24 jts 14 jts Vert. 24 jts 14 jts Vert.

Error 0.1 40.0 67.3 0.1 6.1 10.0 0.1 6.8 12.1

Table 1. Reconstruction error with different twist angle. The

accurate twist angles significantly reduce the reconstruction error.

4.2. Ablation Study

In this study, we evaluate the effectiveness of the twist-

and-swing decomposition and the HybrIK algorithm. All

evaluation is conducted on the 3DPW test set as it contains

challenging in-the-wild scenes to demonstrate the strength

of our model. More experimental results are provided in the

supplemental document.

Analysis of the twist rotation. To demonstrate the effec-

tiveness of twist-and-swing decomposition, we first count

the distribution of the twist angle in the 3DPW test set. The

distribution is illustrated in Fig. 5. As expected, due to the

physical limitation, only neck, elbow and wrist have a

wide range of variations. All other joints have a limited

range of twist angle (less than 30◦). It indicates that the

twist angle can be reliably estimated.

Besides, we develop an experiment to see how the twist

angles affect the reconstructed pose and shape. We take

the ground-truth 24 SMPL joints and shape parameters as

the input of the HybrIK process. As for the twist angle,

we compare random values in [−π, π] and the values es-

timated by the network. We evaluation the mean error of

the reconstructed 24 SMPL joints, the 14 LSP joints, the

body mesh and the twist angle. Here, following previous

works [7, 18, 23], the 14 LSP joints are regressed from the

body mesh by a pretrained regressor. Quantitative results

are reported in Tab. 1. It shows that the accurate regressed

twist angles significantly reduce the error on the mesh ver-

tices and the LSP joints that regressed from the mesh. Since

most of the twist angles are close to zeros, the zero twist

angles produce acceptable performance. Notice that the

wrong twist angles do not affect the reconstructed SMPL

joints. Only the swing rotations change the joint locations.

Robustness of HybrIK. To demonstrate the superiority

of Adaptive HybrIK over Naive HybrIK, we compare the

reconstructed joints error of these two algorithms. First,

we feed the ground-truth joints, twist angle and shape pa-

rameters to the two IK algorithms to see whether they will

introduce extra error. Then we add jitters to the input to

observe the performance of the HybrIK algorithm with the

noisy joints. As shown in Tab. 3, when the input joints are

correct, both HybrIK algorithms introduce negligible errors.

For noisy joints input, the Naive HybrIK algorithm accu-

mulates errors along the kinematic tree, while the Adaptive

HybrIK algorithm is more robust to the noise.
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3DPW Human3.6M MPI-INF-3DHP

Method PA-MPJPE ↓ MPJPE ↓ PVE ↓ PA-MPJPE ↓ MPJPE ↓ PCK ↑ AUC ↑ MPJPE ↓

SMPLify [7] - - - 82.3 - - - -

HMR [18] 81.3 130.0 - 56.8 88.0 72.9 36.5 124.2

Kolotouros et al. [25] 70.2 - - 50.1 - - - -

Pavlakos et al. [50] - - - 75.9 - - - -

Arnab et al. [4] 72.2 - - 54.3 77.8 - - -

SPIN [23] 59.2 96.9 116.4 41.1 - 76.4 37.1 105.2

Moon et al. [39]∗ 58.6 93.2 - 41.7 55.7 - - -

Ours (Naive HybrIK) 49.0 80.2 94.6 35.3 55.8 85.9 41.7 91.5

Ours (Adaptive HybrIK) 48.8 80.0 94.5 34.5 54.4 86.2 42.2 91.0

Table 2. Benchmark of state-of-the-art models on 3DPW, Human3.6M and MPI-INF-3DHP datasets. “∗” denotes the method is

trained on different datasets. “-” shows the results that are not available.

GT Joints ±10 mm ±20 mm ±30 mm

Naive HybrIK 0.1 16.2 34.0 53.4

Adaptive HybrIK 0.1 9.8 20.2 31.2

Table 3. Naive vs. Adaptive with different input joints. MPJPE of

24 joints is reported. Adaptive HybrIK is more robust to the jitters.

Error correction capability of HybrIK. In this exper-

iment, we examine the error correction capability of the

HybrIK algorithm. The HybrIK algorithm is fed with the

3D joints, twist angles and shape parameters that predicted

by the neural network. Additionally, we apply the SM-

PLify [7] algorithm on the predicted pose and compare it to

our method. As shown in Tab. 4, the error of reconstructed

joints after HybrIK is reduced the error to 79.2mm, while

SMPLify raises the error to 114.3 mm. The error correction

capability of HybrIK comes from the fact that the network

may predict unrealistic body pose, e.g. left-right asymmetry

and abnormal limbs proportions. In contrast, the rest pose

is generated by the parametric statistical body model, which

guarantees that the reconstructed pose is consistent with the

realistic body shape distribution. Since our proposed frame-

work is agnostic to the way we obtain 3D joints, we can

improve the performance of any single-stage 3D keypoint

estimation methods.

4.3. Comparison with the Stateoftheart

To make a fair comparison with previous 3D human pose

and shape estimation methods, we use a regressor to ob-

tain the 14 LSP joints from the body mesh for the evalua-

tion on 3DPW and Human3.6M datasets and 17 joints for

MPI-INF-3DHP dataset. Procrustes aligned mean per joint

position error (PA-MPJPE), mean per joint position error

(MPJPE), Percentage of Correct Keypoints (PCK) and Area

Under Curve (AUC) are reported to evaluate the 3D pose re-

sults. We also report Per Vertex Error (PVE) to evaluate the

entire estimated body mesh.

In Tab. 2, we compare our method with previous 3D hu-

man pose and shape estimation methods, including both

Predicted Pose HybrIK SMPLify [7]

MPJPE (24 jts) ↓ 88.2 mm 79.2 mm 114.3 mm

Table 4. Error correction capability of HybrIK. HybrIK im-

proves the results predicted by the 3D keypoint estimation method.

model-based and model-free methods, on 3DPW, Hu-

man3.6M and MPI-INF-3DHP datasets. Without bells and

whistles, our method surpasses all previous state-of-the-art

methods by a large margin on all three datasets. It is worth

noting that our method improve 21.9 mm PVE on 3DPW

dataset, which shows that it is accurate and reliable to re-

cover body mesh through inverse kinematics.

5. Conclusion

In this paper, we bridge the gap between 3D keypoint

estimation and body mesh estimation via a novel hybrid

analytical-neural inverse kinematics solution, HybrIK. It

transforms the 3D joint locations to a pixel-aligned accurate

human body mesh, and then obtains a more accurate and re-

alistic 3D skeleton from the reconstructed 3D mesh, closing

the loop between the 3D skeleton and the parametric body

model. Our method is fully differentiable and allows simul-

taneously training of 3D joints and human body mesh in

an end-to-end manner. We demonstrate the effectiveness of

our method on various 3D pose and shape datasets. The pro-

posed method surpasses state-of-the-art methods by a large

margin. Besides, comprehensive analyses demonstrate that

HybrIK is robust and has error correction capability. We

hope HybrIK can serve as a solid baseline and provide a

new perspective for the 3D human pose and shape estima-

tion task.
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