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Abstract

The success of supervised learning hinges on the as-

sumption that the training and test data come from the same

underlying distribution, which is often not valid in practice

due to potential distribution shift. In light of this, most ex-

isting methods for unsupervised domain adaptation focus

on achieving domain-invariant representations and small

source domain error. However, recent works have shown

that this is not sufficient to guarantee good generalization

on the target domain, and in fact, is provably detrimen-

tal under label distribution shift. Furthermore, in many

real-world applications it is often feasible to obtain a small

amount of labeled data from the target domain and use

them to facilitate model training with source data. In-

spired by the above observations, in this paper we pro-

pose the first method that aims to simultaneously learn in-

variant representations and risks under the setting of semi-

supervised domain adaptation (Semi-DA). First, we provide

a finite sample bound for both classification and regres-

sion problems under Semi-DA. The bound suggests a prin-

cipled way to obtain target generalization, i.e., by align-

ing both the marginal and conditional distributions across

domains in feature space. Motivated by this, we then in-

troduce the LIRR algorithm for jointly Learning Invariant

Representations and Risks. Finally, extensive experiments

are conducted on both classification and regression tasks,

which demonstrate that LIRR consistently achieves state-

of-the-art performance and significant improvements com-

pared with the methods that only learn invariant represen-

tations or invariant risks. Our code will be released at

LIRR@github

1. Introduction

The success of supervised learning hinges on the key as-

sumption that test data should share the same distribution

*Equal contribution.
†Work done while at Carnegie Mellon University

with the training data. Unfortunately, in most of the real-

world applications, data are dynamic, meaning that there is

often a distribution shift between the training (source) and

test (target) domains. To this end, unsupervised domain

adaptation (UDA) methods aim to approach this problem

by adapting the predictive model from labeled source data

to the unlabeled target data. Recent advances in UDA focus

on learning domain-invariant representations that also lead

to a small error on the source domain. The goal is to learn

representations, along with the source predictor, that can

generalize to the target domain [1, 2, 3, 4, 5, 6]. However,

recent works [7, 8, 9] have shown that the above conditions

are not sufficient to guarantee good generalizations on the

target domain. In fact, if the marginal label distributions are

distinct across domains, the above method provably hurts

target generalization [7].

On the other hand, while labeled target data is usually

more difficult or costly to obtain than labeled source data, it

can lead to better accuracy [10]. Furthermore, in many prac-

tical applications, e.g., vehicle counting, object detection,

speech recognition, etc., it is often feasible to at least obtain

a small amount of labeled data from the target domain so

that it can facilitate model training with source data [11, 12].

Motivated by these observations, in this paper we focus on a

more realistic setting of semi-supervised domain adaptation

(Semi-DA). In Semi-DA, in addition to the large amount of

labeled source data, the learner also has access to a small

amount of labeled data from the target domain. Again, the

learner’s goal is to produce a hypothesis that well general-

izes to the target domain, under the potential shift between

the source and the target. Semi-DA is a more-realistic set-

ting that allows practitioners to design better algorithms that

can overcome the aforementioned limitations in UDA. The

key question in this scenario is: how to maximally exploit

the labeled target data for better model generalization?

In this paper, we address the above question under the

Semi-DA setting. In order to first understand how perfor-

mance discrepancy occurs, we derive a finite-sample gener-

alization bound for both classification and regression prob-

lems under Semi-DA. Our theory shows that, for a given
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predictor, the accuracy discrepancy between two domains

depends on two terms: (i) the distance between the marginal

feature distributions, and (ii) the distance between the opti-

mal predictors from source and target domains. Our obser-

vation naturally leads to a principled way of learning in-

variant representations (to minimize discrepancy between

marginal feature distributions) and risks (to minimize dis-

crepancy between conditional distributions over the fea-

tures) across domains simultaneously for a better general-

ization on the target. In light of this, we introduce our novel

bound minimization algorithm LIRR, a model of jointly

Learning Invariant Representations and Risks for such pur-

poses. As a comparison, existing works either focus on

learning invariant representations only [2, 3, 6, 5], or learn-

ing invariant risks only [13, 14, 15, 16, 17, 18], but not

both. However, these are not sufficient to reduce the ac-

curacy discrepancy for good generalizations on the target.

To our best knowledge, LIRR is the first work that subtly

combine above learning objectives with sound theoretical

justification. LIRR jointly learns invariant representations

and risks, and as a result, better mitigates the accuracy dis-

crepancy across domains. To better understand our method,

we illustrate the proposed algorithm, LIRR, in Fig. 1.

In summary, our work provides the following contribu-

tions:

• Theoretically, we provide finite-sample generalization

bounds for Semi-DA on both classification (Theorem 4.1)

and regression (Theorem 4.2) problems. Our bounds in-

form new directions for simultaneously optimizing both

marginal and conditional distributions across domains for

better generalization on the target. To the best of our

knowledge, this is the first generalization analysis in the

Semi-DA setting that takes into account both the shifts be-

tween the marginal and the conditional distributions from

source and target domains.

• To bridge the gap between theory and practice, we pro-

vide an information-theoretic interpretation of our theo-

retical results. Based on this perspective, we propose a

bound minimization algorithm, LIRR, to jointly learn in-

variant representations and invariant optimal predictors,

in order to mitigate the accuracy discrepancy across do-

mains for better generalizations.

• We systematically analyze LIRR with extensive experi-

ments on both classification and regression tasks. Com-

pared with methods that only learn invariant representa-

tions or invariant risks, LIRR demonstrates significant im-

provements on Semi-DA. We also analyze the adaptation

performance with an increasing amount of labeled target

data, which shows LIRR even surpasses oracle method

Full Target trained only on labeled target data, suggesting

that LIRR can successfully exploit the structure in source

data to improve generalization on the target domain.

2. Related Work

2.1. Domain Adaptation

Most existing research on domain adaptation focuses

on the unsupervised setting, i.e. the data from target do-

main are fully unlabeled. Recent deep unsupervised do-

main adaptation (UDA) methods usually employ a con-

joined architecture with two streams to represent the models

for the source and target domains, respectively [19]. Be-

sides the task loss on the labeled source domain, another

alignment loss is designed to align the source and target

domains, such as discrepancy loss [1, 20, 19, 21, 22, 23],

adversarial loss [24, 3, 25, 26, 27], and self-supervision

loss [28, 29, 30, 31, 32, 33, 34]. Semi-DA deals with the

domain adaptation problem where some target labels are

available [35, 36, 37, 38]. [12] empirically observed that

UDA methods often fail in improving accuracy in Semi-DA

and proposed a min-max entropy approach that adversari-

ally optimizes an adaptive few-shot model. Different from

these works, our proposed method aims to align both the

marginal feature distributions as well as the conditional dis-

tributions of the label over the features, which can overcome

the limitations that exist in UDA methods that only align

feature distributions [7].

2.2. Invariant Risk Minimization

In a seminal work, [13] consider the question that data

are collected from multiple envrionments with different dis-

tributions where spurious correlations are due to dataset bi-

ases. This part of spurious correlation will confuse model

to build predictions on unrelated correlations [39, 40, 41]

rather than true causal relations. IRM [13] estimates invari-

ant and causal variables from multiple environments by reg-

ularizing on predictors to find data represenation matching

for all environments. [14] extends IRM to neural predic-

tions and employ the environment aware predictor to learn

a rationale feature encoder. As a comparison, in this work

we argue that IRM is not sufficient to ensure reduced accu-

racy discrepancy across domains, and we propose to align

the marginal features as well simultaneously.

3. Preliminaries

3.1. Unsupervised Domain Adaptation

We use X and Y to denote the input and output space, re-

spectively. Similarly, Z stands for the representation space

induced from X by a feature transformation g : X 7→ Z .

Accordingly, we use X,Y, Z to denote random variables

which take values in X ,Y,Z . Throughout the paper, a

domain corresponds to a joint distribution on the input

space X and output space Y . We use DS (DT ) to de-

note the source (target) domain and subsequently we also

use DS(Z)(DT (Z)) to denote the marginal distributions
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Figure 1: Overview of the proposed model. Learning invariant representations induces indistinguishable representations

across domains, but there can still be mis-classified samples (as stated in red circle) due to misaligned optimal predictors.

Besides learning invariant representations, LIRR model jointly learns invariant risks to better align the optimal predictors

across domains.

of DS(DT ) over Z. Furthermore, let D be a categori-

cal variable that corresponds to the index of domain, i.e.,

D ∈ {S, T}. The overall sampling process for our data can

then be specified by first drawing a value of D, and then de-

pending on the value of D, we sample from the correspond-

ing distribution DD. Under this setting, the probabilities of

Pr(D = T ) and Pr(D = S) then determine the relative

sample sizes of our target and source data.

A hypothesis over the feature space Z is a function h :
Z → [0, 1]. The error of a hypothesis h under distribution

DS and feature transformation g is defined as: εS(h, f) :=
EDS

[|h(g(X))− f(X)|]. In classification setting, in which

f and h are binary classification functions, above defini-

tion reduces to the probability that h disagrees with f under

DS : EDS
[|h(g(X)) − f(X)|] = PrDS

(h(g(X)) 6= Y ).
In regression, the above error is then the usual mean abso-

lute error, i.e., the ℓ1 loss. As a common notation, we also

use ε̂S(h) to denote the empirical risk of h on the source

domain. Similarly, εT (h) and ε̂T (h) are the true risk and

the empirical risk on the target domain. For a hypothesis

class H, we use V Cdim(H) and Pdim(H) to denote the

VC-dimension and pseudo-dimension of H, respectively.

3.2. Semi­supervised Domain Adaptation

Formally, in Semi-DA the learner is allowed to have ac-

cess to a small amount of labeled data in target domain DT .

Let S = {(x
(S)
i , y

(S)
i )}ni=1 be a set of labeled data sampled

i.i.d. from DS . Similarly, we have T = {(x
(T )
j )}kj=1 as

the set of target unlabeled data sampled from DT , and we

let T̃ = {(x
(T̃ )
j , y

(T̃ )
j )}mj=1 be the small set of labeled data

where m ≤ k. Usually, we also have m ≪ n, and the goal

of the learner is to find a hypothesis h ∈ H by learning from

S, T and T̃ so that h has a small target error εT (h).

Clearly, with the additional small amount of labeled data

T̃ , one should expect a better generalization performance

than what the learner could hope to achieve in the setting

of unsupervised domain adaptation. To this end, we first

state the following generalization upper bound from [7] in

the setting of unsupervised domain adaptation:

Theorem 3.1. [7] Let 〈DS(X), fS〉 and 〈DT (X), fT 〉 be

the source and target domains. For any function class H ⊆
[0, 1]X , and ∀h ∈ H, the following inequality holds:

εT (h) ≤ εS(h) + dH(DS(X),DT (X))

+ min{EDS
[|fS − fT |],EDT

[|fS − fT |]}.
(1)

The dH(·, ·) is known as the H-divergence [42], a

pseudo-metric parametrized by H to measure the discrep-

ancy between two distributions. It should be noted that the

above theorem is a population result, hence it does not give

a finite sample bound. Furthermore, the setting above is

noiseless, where fS and fT correspond to the groundtruth

labeling functions in source and target domains. Neverthe-

less, it provides an insight on achieving domain adaptation

through bounding the error difference on source and tar-

get domains: to simultaneously minimize the distances be-

tween feature representations and between the optimal la-

beling functions. In the next section we shall build on this

result to derive finite sample bound in semi-supervised do-

main adaptation.

4. Generalization Bounds for Semi-supervised

Domain Adaptation

In this section, we derive a finite-sample generalization

bound for Semi-DA, where the model has access to both a

large amount of labeled data S from the source domain, and

a small amount of labeled data T̃ from the target domain.

For this purpose, we first introduce the definition of H on

both classification and regression settings, and then present
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our theoretical results of the generalization upper bounds

for Semi-DA.

Definition 4.1. Let H be a family of binary functions from

Z to {0, 1}, and AH be the collection of subsets of Z de-

fined as AH := {h−1(1) | h ∈ H}. The distance between

two distributions D and D′ based on H is: dH(D,D′) :=
supA∈AH

|PrD(A)− PrD′(A)|.

With the above definition, we have the symmetric differ-

ence w.r.t. itself as: H∆H = {h(z) ⊕ h′(z) | h, h′ ∈ H},

where ⊕ is the XOR operation. Next, considering that for

a joint distribution D over Z × Y in our setting, there may

be noise in the conditional distribution PrD(Y | Z). It is

then necessary to define a term to measure the noise level

of each domain. To this end, in classification, we define

the noise on the source domain nS := ES [|Y − fS(Z)|],
where fS : Z → [0, 1] is the conditional mean function,

i.e., fS(Z) = ES [Y | Z]. Similar definition also applies to

the target domain, where we use nT to denote the noise in

target. In regression, with ℓ1 loss, we define fS : Z → R

to be the conditional median function of Pr(Y | Z), i.e.

fS(Z) := infy{y ∈ R : 1/2 ≤ Pr(Y ≤ y | Z)}. Now we

are ready to state the main results in this section:

Theorem 4.1. (Classification generalization bound in

Semi-DA). Let H be a hypothesis set with functions h :
Z → {0, 1} and V Cdim(H) = d, D̂S (resp. D̂T ) be the

empirical distribution induced by samples from DS (resp.

DT ). For 0 < δ < 1, then w.p. at least 1 − δ over the n
samples in S and m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤
m

n+m
ε̂T̃ (h) +

n

n+m
ε̂S(h)

+
n

n+m

{
dH∆H(D̂S(Z), D̂T (Z)) +

min{ES [|fS(Z)− fT̃ (Z)|],ET [|fS(Z)− fT̃ (Z)|]}
}

+
n

n+m
|nS + nT̃ |

+O

(√
(
1

m
+

1

n
)log

1

δ
+

d

n
log

n

d
+

d

m
log

m

d

)
.

Next, by replacing the VC dimension in the above the-

orem with Pseudo-dimension (Pdim), we can also prove a

corresponding generalization bound in regression as well:

Theorem 4.2. (Regression generalization bound in Semi-

DA). Let H be a hypothesis set with functions h : Z →
[0, 1] and Pdim(H) = d, D̂S (resp. D̂T ) be the empirical

distribution induced by samples from DS (resp. DT ). Then

we define H̃ := {I|h(x)−h′(x)|>t : h, h
′ ∈ H, 0 ≤ t ≤ 1}.

For 0 < δ < 1, then w.p. at least 1 − δ over the n samples

in S and m samples in T̃ , for all h ∈ H, we have:

εT (h) ≤
m

n+m
ε̂T̃ (h) +

n

n+m
ε̂S(h)

+
n

n+m

{
dH̃(D̂S(Z), D̂T (Z)) +

min{ES [|fS(Z)− fT̃ (Z)|],ET [|fS(Z)− fT̃ (Z)|]}
}

+
n

n+m
|nS + nT̃ |

+O

(√
(
1

m
+

1

n
)log

1

δ
+

d

n
log

n

d
+

d

m
log

m

d

)
.

Remark 4.1. It is worth pointing out that both nS and nT

are constants that only depend on the underlying source and

target domains, respectively. Hence |nS + nT | essentially

captures the the amplitude of noise. The last two terms of

the bound come from standard concentration analysis for

uniform convergence.

Due to space limit, we leave more discussions on how to

extend from binary to multi-class, from ℓ1 to ℓp loss, and

bridging the gap between theory and practice in appendix.

Compared with previous results [42, 7, 9, 43, 44], our

bounds is the first in the Semi-DA literature which contains

empirical error terms from both the source and target do-

mains and free of the joint optimal errors term, e.g., the λ in

Theorem 3 of [42]. The difference here is significant since

the joint optimal errors depend on the choice of the hypoth-

esis class H and in fact it can change arbitrarily as the fea-

ture space changes. In fact, it has been recently shown that

the change of λ during representation learning is precisely

the cause that fails classic domain invariant learning in the

setting of unsupervised domain adaptation. Furthermore,

these bounds imply a natural and principled way for a bet-

ter generalization to the target domain by learning invariant

representations and risks simultaneously. Note that this is in

sharp contrast to previous works where only invariant rep-

resentations are pursued [2, 6].

5. Learning Invariant Representations and

Risks

Motivated by the generalization error bounds in Theo-

rem 4.1 and Theorem 4.2 in Sec. 4, in this section we pro-

pose our bound minimization algorithm LIRR. Since the

last two terms reflect the noise level, complexity measures

and error caused by finite samples, respectively, we then

hope to optimize the upper bound by minimizing the first

four terms. The first two terms are the convex combination

of empirical errors of h on S and T , which can be opti-

mized with the labeled source and target data. The third

term measures the distance of representations between the

source and target domains, which is a good inspiration for

us to learn the invariant representation across domains. The
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fourth term corresponds to the distance of the optimal clas-

sifiers between S and T . To minimize this term, the model

is forced to learn the data representations that induce the

same optimal predictors for both source and target domains,

which exactly corresponds to the principle of invariant risk

minimization [13]. Several efforts in the fairness repre-

sentation area [15, 16] and domain generalization [17, 18]

area have proposed similar ideas of invariant risk. How-

ever, LIRR is the first work to combine both invariant rep-

resentation and invariant risk minimization for applications

in semisupervised domain adaptation.

5.1. Information Theoretic Interpretation

To better understand why the bound minimization strat-

egy can solve the intrinsic problems of Semi-DA, in what

follows we provide interpretations from an information-

theoretic perspective.

Invariant Representations Learning invariant represen-

tations corresponds to minimizing the third term of the

bound Theorem 4.1 and bound Theorem 4.2. We consider

a feature transformation Z = g(X) that can obtain the in-

variant representation Z from input X . The invariance on

representations can be described as achieving statistical in-

dependence D ⊥ Z, where D stands for the domain index.

This independence is equivalent to the minimization of mu-

tual information I(D;Z). To see this, if I(D;Z) = 0, then

DS(Z) = DT (Z), so the third term in the bounds will van-

ish. Intuitively, this means that by looking at the represen-

tations Z, even a well-trained domain classifier C(·) cannot

correctly guess the domain index D.

Invariant Risks Learning invariant risks corresponds to

minimizing the fourth term of the bound Theorem 4.1 and

bound Theorem 4.2. Inspired by [13], we want to identify

a subset of feature representations through feature trans-

formation Z = g(X) that best supports an invariant opti-

mal predictor for source and target domains. That means

the identified feature representation Z = g(X) can induce

the same optimal predictors. This objective can be inter-

preted with a conditional independence D ⊥ Y | Z, which

is equivalent to minimizing I(D;Y | Z). To see this,

when the conditional mutual information of I(D;Y | Z)
equals 0, the two conditional distributions PrS(Y | Z) and

PrT (Y | Z) coincide with each other. As a result, the Bayes

optimal predictors, which only depend on the conditional

distributions of Y | Z, become the same across domains,

so the fourth term in our bounds Theorem 4.1, Theorem 4.2

will vanish.

In summary, our learning objective on invariant repre-

sentations and invariant risks are achievable with the joint

minimization of I(D;Z) and I(D;Y | Z). It is instructive

to present the integrated form as in Eq. 2. In words, the inte-

grated form suggests the independence of D ⊥ (Y, Z). We

regard the independence as an intrinsic objective for domain

adaptation since it implies an alignment of the joint distri-

butions over (Y, Z) across domains, as opposed to only the

marginal distributions over Z in existing works.

I(D;Y, Z) = I(D;Z)︸ ︷︷ ︸
Invariant Representation

+ I(D;Y | Z)︸ ︷︷ ︸
Invariant Risk

. (2)

5.2. Algorithm Design

To learn invariant representations, that is achieving

marginal independence of Y ⊥ Z and minimization on

min I(Y ;Z), we adopt the adversarial training method as

in [2]. The invariant representation objective focuses on

learning the feature transformation g(·) to obtain the invari-

ant representations from input X , which can fool the do-

main classifier C. This part of the objective function can be

described as in Eq. 3.

Lrep(g, C) = EX∼DS(X)[log(C(g(X)))]

+ EX∼DT (X)[log(1− C(g(X)))].
(3)

To learn invariant risks, that is achieving conditional in-

dependence of D ⊥ Y | Z, we resort to the conditional mu-

tual information minimization on I(D;Y | Z), and further

convert min I(D;Y | Z) objective to the minimization of

the difference between the following conditional entropies:

I(D;Y | Z) = H(Y | Z)−H(Y | D,Z). (4)

The following proposition gives a variational form of the

conditional entropy as infimum over a family of cross-

entropies, where L denotes the cross-entropy loss.

Proposition 5.1 ([45]). H(Y | Z) = inff E[L(Y ; f(Z))].

Using the above variational form, the minimization of

the conditional entropies could be transformed to a min-

imization of the cross-entropy losses of domain-invariant

predictor fi and domain-dependent predictor fd. The learn-

ing objective of the two predictors can be shown as in Eq. 5

and Eq. 6, respectively. Notice that the domain-dependent

loss Ld should be no greater than the domain-invariant loss

Li, because of the additional domain information.

min
g,fi

Li = E(x,y)∼DS ,D
T̃
[L(y, fi(g(x)))], (5)

min
g,fd

Ld = Ed∼DE(x,y)∼Dd
[L(y, fd(g(x), d))]. (6)

Hence, the overall learning objective of Eq. 4 can be re-

written with the following loss functions.

min
g,fi

max
fd

Lrisk = Li + λrisk(Li − Ld). (7)
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The first term of Eq. 7 regards to the supervised train-

ing on source and target labeled data; the second term re-

gards to approaching the minimization objective of H(Y |
Z) − H(Y | D,Z), as well as achieving the predictions’

invariance between fi and fd over the same representation

z. If we take the example of binary classification of bear

and dog as in Eq . 1, if fi and fd have their prediction of

bear according to a proper representation of animal’s shape,

then any domain information will not contribute to the pre-

diction, thus the predictor captures the invariant part and

achieves invariant risks.

In general, as the factorization in Eq. 2 suggests, in order

to achieve improved adaptation performance by minimiz-

ing the accuracy discrepancy between domains, we need to

enforce the joint independence of (Y, Z) ⊥ D by learn-

ing feature transformation g. To achieve it, we propose our

learning objective of LIRR as in Eq. 8, where λrisk and λrep

are set to 1 by default.

min
g,fi

max
C,fd

LLIRR(g, fi, fd, C)

= Lrisk(g, fi, fd) + λrepLrep(g, C).
(8)

At a high level, the first term Lrisk(g, fi, fd) in the above

optimization formulation stems from the minimization of

I(Y ;D | Z), and the second term Lrep(g, C) is designed to

minimize I(D;Z).

6. Experiments

To empirically corroborate the effectiveness of LIRR, in

this section we conduct experiments on both classification

and regression tasks under the setting of Semi-DA and com-

pare LIRR to existing methods. We first introduce the ex-

perimental settings, and then present analysis to the exper-

imental results. We also provide ablation study for the ex-

periments on both classification and regression tasks. More

experimental settings, implementation details, and results

are discussed in the Appendix.

6.1. Image Classification

Datasets To verify the effectiveness of LIRR on im-

age classification problems, we conduct experiments on

NICO [46], VisDA2017 [47], OfficeHome [48], and Do-

mainNet [49] datasets. NICO is dedicatedly designed for

O.O.D. (out-of-distribution) image classification. It has two

superclasses animal and vehicle, and each superclass con-

tains different environments1, e.g. bear on grass or snow.

VisDA2017 contains Train (T) domain and Validation (V)

domain with 12 classes in each domain. Office-Home in-

cludes four domains: RealWorld (RW), Clipart (C), Art (A),

1For animal, we sample 8 classes from environments grass and snow as

two domains. For vehicle, we sample 7 classes from environments sunset

and beach as two domains.

and Product (P), with 65 classes in each domain. Domain-

Net is the largest domain adaptation dataset for image clas-

sification with over 600k images from 6 domains: Clipart

(C), Infograph (I), Painting (P), Quickdraw (Q), Real (R),

and Sketch (S), with 345 classes in each domain. For each

dataset, we randomly pick source-target pairs for evalua-

tion. To meet the setting of Semi-DA, we randomly select

a small ratio (1% or 5%) of the target data as labeled target

samples for training. More information about datasets will

be detailed in appendix.

Baselines We compare our approach with the follow-

ing representative domain adaptation methods: DANN [2],

CDAN [4], IRM [13], ADR [50], and MME [12]; S+T, a

model trained with the labeled source and the few labeled

target samples without using unlabeled target samples; and

Full T, a model trained with the fully labeled target. All

these methods are implemented and evaluated under the

Semi-DA setting.

6.2. Traffic Counting Regression

Datasets To verify the effectiveness of LIRR on regres-

sion problems, we conduct experiments on WebCamT

dataset [51] for the Traffic Counting Regression task. Web-

CamT has 60,000 traffic video frames annotated with vehi-

cle bounding boxes and counts, collected from 16 surveil-

lance cameras with different locations and recording time.

We pick three source-target pairs with different visual sim-

ilarities: 253→398, 170→398, 511→398 (digit denotes

camera ID).

Baselines The baseline models for this task are generally

aligned with our classification experiments except the meth-

ods that can not be applied to the regression task (e.g. MME,

ADR, and CDAN). Thus, for the traffic counting regression

task, we compare with the baseline methods: ADDA [3],

DANN, IRM, S+T, and FullT.

6.3. Experimental Results Analysis

Classification Tasks The classification results are shown

in Table 1 with 1% and 5% labeled target data. LIRR out-

performs the baselines on all the five adaptation datasets,

which consistently indicates its effectiveness. As our learn-

ing objective suggests, LIRR can be viewed as achieving

D ⊥ (Y, Z), which combines the benefits of achieving

D ⊥ Y and D ⊥ Y | Z. In contrast, DANN, CDAN,

and ADDA can be viewed as only achieving D ⊥ Z or its

variant form; and IRM can be viewed as an approximation

to achieve D ⊥ Y | Z using gradient penalty. LIRR out-

performs all these methods on different datasets with 1% or

5% labeled target data, demonstrating simultaneously learn-

ing invariant representations and risks achieves better gen-

eralization for domain adaptation than only learning one of
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Table 1: Accuracy (%) comparison (higher means better) on NICO, OfficeHome, DomainNet, and VisDA2017 with 1%

(above) and 5% (below) labeled target data (mean ± std). Highest accuracies are highlighted in bold.

1% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017

Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.

S+T 70.06±2.14 80.08±1.21 71.37±1.54 70.07±1.28 69.20±0.15 74.63±0.13 48.65±0.12 48.37±0.08 57.44±0.07 44.16±0.05 76.17±0.15

DANN 83.80±1.73 81.57±1.51 72.69±1.35 72.03±1.05 72.20±0.23 78.13±0.26 52.47±0.21 51.53±0.19 60.23±0.15 46.36±0.15 78.91±0.25

CDAN 82.33±0.59 78.25±0.74 75.53±0.55 74.31±0.47 72.98±0.33 79.15±0.31 53.80±0.33 50.67±0.25 60.53±0.23 44.66±0.22 80.23±0.41

ADR 73.06±1.20 76.74±0.89 72.85±0.95 69.47±0.81 70.55±0.27 76.62±0.28 49.47±0.31 49.94±0.21 59.63±0.22 44.73±0.21 80.40±0.36

IRM 78.55±0.34 78.27±0.51 64.58±2.41 69.10±2.36 71.13±0.25 77.60±0.24 51.53±0.21 51.86±0.13 58.04±0.12 46.96±0.15 80.79±0.27

MME 87.12±0.76 79.52±0.43 78.69±0.86 74.21±0.78 72.66±0.18 78.07±0.17 52.78±0.16 51.04±0.12 60.35±0.12 45.09±0.14 80.52±0.35

LIRR 86.80±0.61 84.78±0.53 71.85±0.58 72.04±0.75 73.12±0.19 79.58±0.22 54.33±0.24 52.39±0.15 61.20±0.10 47.31±0.11 81.67±0.22

LIRR+CosC 89.67±0.72 89.73±0.68 81.00±0.89 79.98±0.95 73.62±0.21 80.20±0.23 53.84±0.19 53.42±0.09 61.79±0.11 47.83±0.10 82.31±0.21

Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

5% labeled target NICO Animal NICO Traffic OfficeHome Domainnet VisDA2017

Method Grass to Snow Snow to Grass Sunset to Beach Beach to Sunset Art to Real Real to Prod. Prod. to Clip. Real to Clip. Sketch to Real Clip. to Sketch Train to Val.

S+T 75.83±1.89 83.38±1.23 86.45±1.08 86.13±0.87 72.10±0.13 78.84±0.12 54.51±0.10 59.80±0.13 66.14±0.11 51.71±0.09 82.87±0.12

DANN 76.13±0.73 84.61±1.21 84.13±1.20 87.50±1.09 75.47±0.22 80.41±0.21 59.37±0.20 61.31±0.14 68.21±0.20 52.78±0.22 83.95±0.10

CDAN 82.33±0.59 83.08±2.13 86.97±0.47 87.50±0.56 74.92±0.29 80.57±0.33 59.14±0.31 62.18±0.22 68.49±0.19 53.77±0.21 83.31±0.32

ADR 80.36±0.31 80.97±0.98 84.50±0.91 75.29±0.87 75.47±0.27 79.27±0.26 58.24±0.27 61.22±0.38 67.96±0.37 53.19±0.32 83.57±0.43

IRM 81.57±1.01 84.29±1.10 85.71±2.20 83.61±2.17 74.71±0.21 79.67±0.25 58.98±0.22 60.69±0.30 67.81±0.28 52.31±0.25 82.62±0.29

MME 87.80±0.87 85.50±0.95 92.02±0.85 90.76±0.81 75.24±0.22 82.45±0.18 61.75±0.19 62.31±0.11 69.02±0.18 53.88±0.14 84.12±0.22

LIRR 85.90±0.98 85.24±0.73 90.77±0.42 88.90±0.39 76.14±0.18 83.64±0.21 62.61±0.17 62.74±0.21 69.35±0.13 54.05±0.17 84.47±0.19

LIRR+CosC 88.97±0.45 88.22±0.55 92.70±0.87 91.50±1.05 76.63±0.19 83.45±0.22 62.84±0.23 63.03±0.17 69.52±0.09 54.44±0.12 85.06±0.17

Full T 94.52±0.74 97.98±0.23 99.80±0.87 97.64±0.96 83.67±0.12 91.42±0.05 78.27±0.23 72.40±0.05 77.11±0.07 62.66±0.07 89.56±0.14

Table 2: Mean absolute error (MAE, lower means better) comparison on WebCamT with 1% and 5% labeled target data

(mean ± std). The best is emphasized in bold.

Method
253 to 398 170 to 398 511 to 398

1% 5% 1% 5% 1% 5%

S+T 3.20±0.03 2.42±0.02 3.12±0.02 2.07±0.01 3.45±0.02 2.82±0.04

ADDA 3.13±0.01 2.34±0.03 3.05±0.03 2.05±0.01 2.87±0.03 2.45±0.02

DANN 3.08±0.02 2.38±0.02 3.01±0.04 2.01±0.02 2.95±0.03 2.41±0.04

IRM 3.11±0.02 2.27±0.03 2.91±0.02 2.02±0.01 2.89±0.05 2.33±0.03

LIRR 2.96±0.02 2.13±0.01 2.84±0.01 1.98±0.02 2.80±0.03 2.25±0.01

Full T 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01 1.68±0.01

them. Such results are consistent with our theoretical anal-

ysis and algorithm design objective. Besides, when apply-

ing LIRR along with the cosine classifier (CosC) module,

which is also used in MME, the performance further out-

performs MME by a larger margin.

Regression Tasks The traffic counting regression results

are shown in Table 2 with 1% and 5% labeled target data.

The superiority of LIRR over baseline methods is supported

by its lowest MAE on all the settings. DANN and ADDA

are the representative methods of learning invariant repre-

sentations, while IRM is the representative method of learn-

ing invariant risks. Both DANN, ADDA, and IRM achieve

lower error than S+T, which means learning invariant rep-

resentations or invariant risks can benefit Semi-DA to some

extent on the regression task. Similar with the observations

from the classification experiments, LIRR outperforms both

DANN, ADDA, and IRM, demonstrating simultaneously

learning invariant representations and risks achieves better

adaptation than only aligning one of them.

6.4. Ablation Study

Comparisons with Optimizing Single Invariant Objec-

tive As pointed out in Sec. 6.3, LIRR is simultaneously

learning invariant representations and risks, while DANN,

CDAN, ADDA can be viewed as only achieving invariant

representations or its variant forms, and IRM is an approx-

imation to solely achieve invariant risks. From the results

on both classification and regression tasks, we can further

acknowledge the importance of simultaneously optimizing

these two invariant items together. As shown in Table 1 and

2, all the methods that only minimize one single invariant

objective perform worse than LIRR, indicating our method

is effective and consistent to the theoretical results.

Increasing Proportions of Labeled Target Data Revis-

iting Theorem 4.1 and Theorem 4.2, we know that as the

proportion of the labeled target data rises, the upper bound

of ǫT (h) gets tighter. Accordingly, the margin between

LIRR and other methods becomes larger, as shown in Fig. 2.

Another riveting observation from Fig. 2 is, LIRR and its

variant LIRR+CosC achieve better performance than the or-
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Figure 2: Performance comparison with increasing number of labeled target data, from Domain Art to RealWorld on Office-

home dataset. X axis: the ratio of labeled target data; Y axis: accuracy.

acle by large margin with 25% or 30% labeled target data.

Stunning but plausible, with source and a few labeled tar-

get data, LIRR can learn more robust representations and

achieve better performance on the target, comparing with

the model trained by the fully labeled target data.

Cosine Classifier As introduced in [12], cosine classifier

is proved to be helpful for improving the model’s perfor-

mance on Semi-DA. As shown in Table. 1, the same phe-

nomenon can be found when comparing the performance

of LIRR and LIRR+CosC. For almost all the cases, LIRR

plus cosine classifier module achieves higher accuracy than

LIRR alone.

6.5. Visualization Results

Fig. 3 visualizes the counting results of different algo-

rithms on Camera 511 to 398 scenario, WebCamT. The red

line represents the LIRR method we proposed while the

black line represents the gt count. It’s rather clear to see that

LIRR have a better ability of cross domain regression fit-

ting than other methods, especially the area within the green

bounding box with dot lines. In order to vividly showcase

the learned feature representation which supports the invari-

ant risks across domains. We employ Grad-CAM [52] to

visualize the most influential part in prediction in Fig 4.

7. Conclusion

In this paper, we argue that, compared with UDA, the

setting of Semi-DA is more realistic and enjoys broader

practical applications with potentially better utility. To this

end, in this paper we propose the first finite-sample gener-

alization bounds for both classification and regression prob-

lems under Semi-DA. Our results shed new light on Semi-

DA by suggesting a principled way of simultaneously learn-

Camera 511

Camera 398

Figure 3: The line chart of the regression results of different

DA methods on Camera 511 to 398, WebCamT.

Figure 4: Grad-CAM [52] results of different model. LIRR

appropriately captures the invariant part of the same object

in different domains, e.g. the shape of horse leads to invari-

ant prediction across snow and grass domain.

ing invariant representations and risks across domains, lead-

ing to a bound minimization algorithm - LIRR. Extensive

experiments on real-world datasets, including both image

classification and traffic counting tasks, demonstrate the ef-

fectiveness.
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