Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation

Bo Li13*, Yezhen Wang23*, Shanghang Zhang1*, Dongsheng Li3
Kurt Keutzer1, Trevor Darrell1, Han Zhao4†
1BAIR, UC Berkeley \hspace{1em} 2UC San Diego \hspace{1em} 3Microsoft Research Asia \hspace{1em} 4UIUC

Abstract

The success of supervised learning hinges on the assumption that the training and test data come from the same underlying distribution, which is often not valid in practice due to potential distribution shift. In light of this, most existing methods for unsupervised domain adaptation focus on achieving domain-invariant representations and small source domain error. However, recent works have shown that this is not sufficient to guarantee good generalization on the target domain, and in fact, is provably detrimental under label distribution shift. Furthermore, in many real-world applications it is often feasible to obtain a small amount of labeled data from the target domain and use them to facilitate model training with source data. Inspired by the above observations, in this paper we propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA). First, we provide a finite sample bound for both classification and regression problems under Semi-DA. The bound suggests a principled way to obtain target generalization, i.e., by aligning both the marginal and conditional distributions across domains in feature space. Motivated by this, we then introduce the LIRR algorithm for jointly Learning Invariant Representations and Risks. Finally, extensive experiments are conducted on both classification and regression tasks, which demonstrate that LIRR consistently achieves state-of-the-art performance and significant improvements compared with the methods that only learn invariant representations or invariant risks. Our code will be released at LIRR@github

1. Introduction

The success of supervised learning hinges on the key assumption that test data should share the same distribution with the training data. Unfortunately, in most of the real-world applications, data are dynamic, meaning that there is often a distribution shift between the training (source) and test (target) domains. To this end, unsupervised domain adaptation (UDA) methods aim to approach this problem by adapting the predictive model from labeled source data to the unlabeled target data. Recent advances in UDA focus on learning domain-invariant representations that also lead to a small error on the source domain. The goal is to learn representations, along with the source predictor, that can generalize to the target domain [1, 2, 3, 4, 5, 6]. However, recent works [7, 8, 9] have shown that the above conditions are not sufficient to guarantee good generalizations on the target domain. In fact, if the marginal label distributions are distinct across domains, the above method provably hurts target generalization [7].

On the other hand, while labeled target data is usually more difficult or costly to obtain than labeled source data, it can lead to better accuracy [10]. Furthermore, in many practical applications, e.g., vehicle counting, object detection, speech recognition, etc., it is often feasible to at least obtain a small amount of labeled data from the target domain so that it can facilitate model training with source data [11, 12]. Motivated by these observations, in this paper we focus on a more realistic setting of semi-supervised domain adaptation (Semi-DA). In Semi-DA, in addition to the large amount of labeled source data, the learner also has access to a small amount of labeled data from the target domain. Again, the learner’s goal is to produce a hypothesis that well generalizes to the target domain, under the potential shift between the source and the target. Semi-DA is a more-realistic setting that allows practitioners to design better algorithms that can overcome the aforementioned limitations in UDA. The key question in this scenario is: how to maximally exploit the labeled target data for better model generalization?

In this paper, we address the above question under the Semi-DA setting. In order to first understand how performance discrepancy occurs, we derive a finite-sample generalization bound for both classification and regression problems under Semi-DA. Our theory shows that, for a given...
predictor, the accuracy discrepancy between two domains depends on two terms: (i) the distance between the marginal feature distributions, and (ii) the distance between the optimal predictors from source and target domains. Our observation naturally leads to a principled way of learning invariant representations (to minimize discrepancy between marginal feature distributions) and risks (to minimize discrepancy between conditional distributions over the features) across domains simultaneously for a better generalization on the target. In light of this, we introduce our novel bound minimization algorithm LIRR, a model of jointly Learning Invariant Representations and Risks for such purposes. As a comparison, existing works either focus on learning invariant representations only [2, 3, 6, 5], or learning invariant risks only [13, 14, 15, 16, 17, 18], but not both. However, these are not sufficient to reduce the accuracy discrepancy for good generalizations on the target. To our best knowledge, LIRR is the first work that subtly combine above learning objectives with sound theoretical justification. LIRR jointly learns invariant representations and risks, and as a result, better mitigates the accuracy discrepancy across domains. To better understand our method, we illustrate the proposed algorithm, LIRR, in Fig. 1.

In summary, our work provides the following contributions:

• Theoretically, we provide finite-sample generalization bounds for Semi-DA on both classification (Theorem 4.1) and regression (Theorem 4.2) problems. Our bounds inform new directions for simultaneously optimizing both marginal and conditional distributions across domains for better generalization on the target. To the best of our knowledge, this is the first generalization analysis in the Semi-DA setting that takes into account both the shifts between the marginal and the conditional distributions from source and target domains.

• To bridge the gap between theory and practice, we provide an information-theoretic interpretation of our theoretical results. Based on this perspective, we propose a bound minimization algorithm, LIRR, to jointly learn invariant representations and invariant optimal predictors, in order to mitigate the accuracy discrepancy across domains for better generalizations.

• We systematically analyze LIRR with extensive experiments on both classification and regression tasks. Compared with methods that only learn invariant representations or invariant risks, LIRR demonstrates significant improvements on Semi-DA. We also analyze the adaptation performance with an increasing amount of labeled target data, which shows LIRR even surpasses oracle method Full Target trained only on labeled target data, suggesting that LIRR can successfully exploit the structure in source data to improve generalization on the target domain.

2. Related Work

2.1. Domain Adaptation

Most existing research on domain adaptation focuses on the unsupervised setting, i.e. the data from target domain are fully unlabeled. Recent deep unsupervised domain adaptation (UDA) methods usually employ a conjoined architecture with two streams to represent the models for the source and target domains, respectively [19]. Besides the task loss on the labeled source domain, another alignment loss is designed to align the source and target domains, such as discrepancy loss [1, 20, 19, 21, 22, 23], adversarial loss [24, 3, 25, 26, 27], and self-supervision loss [28, 29, 30, 31, 32, 33, 34]. Semi-DA deals with the domain adaptation problem where some target labels are available [35, 36, 37, 38]. [12] empirically observed that UDA methods often fail in improving accuracy in Semi-DA and proposed a min-max entropy approach that adversarially optimizes an adaptive few-shot model. Different from these works, our proposed method aims to align both the marginal feature distributions as well as the conditional distributions of the label over the features, which can overcome the limitations that exist in UDA methods that only align feature distributions [7].

2.2. Invariant Risk Minimization

In a seminal work, [13] consider the question that data are collected from multiple environments with different distributions where spurious correlations are due to dataset biases. This part of spurious correlation will confuse model to build predictions on unrelated correlations [39, 40, 41] rather than true causal relations. IRM [13] estimates invariant and causal variables from multiple environments by regularizing on predictors to find data representation matching for all environments. [14] extends IRM to neural predictions and employ the environment aware predictor to learn a rationale feature encoder. As a comparison, in this work we argue that IRM is not sufficient to ensure reduced accuracy discrepancy across domains, and we propose to align the marginal features as well simultaneously.

3. Preliminaries

3.1. Unsupervised Domain Adaptation

We use \(\mathcal{X} \) and \(\mathcal{Y} \) to denote the input and output space, respectively. Similarly, \(\mathcal{Z} \) stands for the representation space induced from \(\mathcal{X} \) by a feature transformation \(g : \mathcal{X} \rightarrow \mathcal{Z} \). Accordingly, we use \(X, Y, Z \) to denote random variables which take values in \(\mathcal{X}, \mathcal{Y}, \mathcal{Z} \). Throughout the paper, a domain corresponds to a joint distribution on the input space \(\mathcal{X} \) and output space \(\mathcal{Y} \). We use \(D_S \) (\(D_T \)) to denote the source (target) domain and subsequently we also use \(D_S(Z)(D_T(Z)) \) to denote the marginal distributions.
of $\mathcal{D}_S(\mathcal{D}_T)$ over Z. Furthermore, let D be a categorical variable that corresponds to the index of domain, i.e., $D \in \{S,T\}$. The overall sampling process for our data can then be specified by first drawing a value of D, and then depending on the value of D, we sample from the corresponding distribution \mathcal{D}_D. Under this setting, the probabilities of $\Pr(D = T)$ and $\Pr(D = S)$ then determine the relative sample sizes of our target and source data.

A hypothesis over the feature space Z is a function $h : Z \to [0,1]$. The error of a hypothesis h under distribution \mathcal{D}_S and feature transformation g is defined as: $\varepsilon_S(h,f) := \mathbb{E}_{\mathcal{D}_S}[|h(g(X)) - f(X)|]$. In classification setting, in which f and h are binary classification functions, above definition reduces to the probability that h disagrees with f under $\mathcal{D}_S : \mathbb{E}_{\mathcal{D}_S}[|h(g(X)) - f(X)|] = \Pr_{\mathcal{D}_S}(h(g(X)) \neq Y)$. In regression, the above error is then the usual mean absolute error, i.e., the ℓ_1 loss. As a common notation, we also use $\widehat{\varepsilon}_S(h)$ to denote the empirical risk of h on the source domain. Similarly, $\varepsilon_T(h)$ and $\widehat{\varepsilon}_T(h)$ are the true risk and the empirical risk on the target domain. For a hypothesis class \mathcal{H}, we use $\text{VCdim}(\mathcal{H})$ and $\text{Pdim}(\mathcal{H})$ to denote the VC-dimension and pseudo-dimension of \mathcal{H}, respectively.

3.2. Semi-supervised Domain Adaptation

Formally, in Semi-DA the learner is allowed to have access to a small amount of labeled data in target domain \mathcal{D}_T. Let $S = \{(x_i^{(S)}, y_i^{(S)})\}_{i=1}^n$ be a set of labeled data sampled i.i.d. from \mathcal{D}_S. Similarly, we have $T = \{(x_j^{(T)})\}_{j=1}^k$ as the set of target unlabeled data sampled from \mathcal{D}_T, and we let $\hat{T} = \{(x_j^{(T)}, y_j^{(T)})\}_{j=1}^m$ be the small set of labeled data where $m \leq k$. Usually, we also have $m \ll n$, and the goal of the learner is to find a hypothesis $h \in \mathcal{H}$ by learning from S, T and \hat{T} so that h has a small target error $\varepsilon_T(h)$.

Clearly, with the additional small amount of labeled data \hat{T}, one should expect a better generalization performance than what the learner could hope to achieve in the setting of unsupervised domain adaptation. To this end, we first state the following generalization upper bound from [7] in the setting of unsupervised domain adaptation:

Theorem 3.1. [7] Let $\langle \mathcal{D}_S(X), f_S \rangle$ and $\langle \mathcal{D}_T(X), f_T \rangle$ be the source and target domains. For any function class $\mathcal{H} \subseteq [0,1]^X$, and $\forall h \in \mathcal{H}$, the following inequality holds:

$$
\varepsilon_T(h) \leq \varepsilon_S(h) + d_\mathcal{H}(\mathcal{D}_S(X), \mathcal{D}_T(X))
$$

$$
+ \min\{\mathbb{E}_{\mathcal{D}_S}[|f_S - f_T|], \mathbb{E}_{\mathcal{D}_T}[|f_S - f_T|]\}.
$$

The $d_\mathcal{H}(\cdot, \cdot)$ is known as the \mathcal{H}-divergence [42], a pseudo-metric parametrized by \mathcal{H} to measure the discrepancy between two distributions. It should be noted that the above theorem is a population result, hence it does not give a finite sample bound. Furthermore, the setting above is noiseless, where f_S and f_T correspond to the groundtruth labeling functions in source and target domains. Nevertheless, it provides an insight on achieving domain adaptation through bounding the error difference on source and target domains: to simultaneously minimize the distances between feature representations and between the optimal labeling functions. In the next section we shall build on this result to derive finite sample bound in semi-supervised domain adaptation.

4. Generalization Bounds for Semi-supervised Domain Adaptation

In this section, we derive a finite-sample generalization bound for Semi-DA, where the model has access to both a large amount of labeled data S from the source domain, and a small amount of labeled data \hat{T} from the target domain. For this purpose, we first introduce the definition of \mathcal{H} on both classification and regression settings, and then present
our theoretical results of the generalization upper bounds for Semi-DA.

Definition 4.1. Let \mathcal{H} be a family of binary functions from \mathcal{Z} to $\{0, 1\}$, and \mathcal{A}_H be the collection of subsets of \mathcal{Z} defined as $\mathcal{A}_H := \{h^{-1}(1) \mid h \in \mathcal{H}\}$. The distance between two distributions D and D' based on \mathcal{H} is: $d_H(D, D') := \sup_{A \in \mathcal{A}_H} |P_{D}(A) - P_{D'}(A)|$.

With the above definition, we have the symmetric difference w.r.t. itself as: $\mathcal{H} \Delta \mathcal{H} = \{h(z) \oplus h'(z) \mid h, h' \in \mathcal{H}\}$, where \oplus is the XOR operation. Next, considering that for a joint distribution D over $\mathcal{Z} \times \mathcal{Y}$ in our setting, there may be noise in the conditional distribution $P_{D}(\mathcal{Y} \mid \mathcal{Z})$. It is then necessary to define a term to measure the noise level of each domain. To this end, in classification, we define the noise on the source domain $n_S := E_S[|Y - f_S(Z)|]$, where $f_s : \mathcal{Z} \rightarrow [0, 1]$ is the conditional mean function, i.e., $f_s(Z) = E_S[Y \mid Z]$. Similar definition also applies to the target domain, where we use n_T to denote the noise in target. In regression, with ℓ_1 loss, we define $f_s : \mathcal{Z} \rightarrow \mathbb{R}$ to be the conditional median function of $Pr(Y \mid Z)$, i.e. $f_s(Z) := \inf_{\epsilon \in \mathbb{R}} \{y \in \mathbb{R} : 1/2 \leq Pr(Y \leq y \mid Z)\}$. Now we are ready to state the main results in this section:

Theorem 4.1. (Classification generalization bound in Semi-DA). Let \mathcal{H} be a hypothesis set with functions $h : \mathcal{Z} \rightarrow \{0, 1\}$ and $VCdim(\mathcal{H}) = d$, \mathcal{D}_S (resp. \mathcal{D}_T) be the empirical distribution induced by samples from \mathcal{D}_S (resp. \mathcal{D}_T). For $0 < \delta < 1$, then w.p. at least $1 - \delta$ over the n samples in S and m samples in T, for all $h \in \mathcal{H}$, we have:

$$
\epsilon_T(h) \leq \frac{m}{n + m} \tilde{\epsilon}_T(h) + \frac{n}{n + m} \tilde{\epsilon}_S(h)
+ \frac{n}{n + m} \{d_{H \Delta \mathcal{H}}(\mathcal{D}_S(Z), \mathcal{D}_T(Z)) + \min\{E_S[|f_s(Z) - f_T(Z)|], E_T[|f_s(Z) - f_T(Z)|]\}
+ \frac{n}{n + m} |n_S + n_T|
+ O\left(\sqrt{(\frac{1}{m} + \frac{1}{n}) \log \frac{1}{\delta} + \frac{d}{n} \log \frac{n}{d} + \frac{d}{m} \log \frac{m}{d}}\right).
$$

Next, by replacing the VC dimension in the above theorem with Pseudo-dimension ($Pdim$), we can also prove a corresponding generalization bound in regression as well:

Theorem 4.2. (Regression generalization bound in Semi-DA). Let \mathcal{H} be a hypothesis set with functions $h : \mathcal{Z} \rightarrow [0, 1]$ and $Pdim(\mathcal{H}) = d$, \mathcal{D}_S (resp. \mathcal{D}_T) be the empirical distribution induced by samples from \mathcal{D}_S (resp. \mathcal{D}_T). Then we define $\mathcal{H}' := \{|h(x) - h'(x)| > t : h, h' \in \mathcal{H}, 0 \leq t \leq 1\}$. For $0 < \delta < 1$, then w.p. at least $1 - \delta$ over the n samples in S and m samples in T, for all $h \in \mathcal{H}$, we have:

$$
\epsilon_T(h) \leq \frac{m}{n + m} \tilde{\epsilon}_T(h) + \frac{n}{n + m} \tilde{\epsilon}_S(h)
+ \frac{n}{n + m} \{d_{H \Delta \mathcal{H}}(\mathcal{D}_S(Z), \mathcal{D}_T(Z)) + \min\{E_S[|f_s(Z) - f_T(Z)|], E_T[|f_s(Z) - f_T(Z)|]\}
+ \frac{n}{n + m} |n_S + n_T|
+ O\left(\sqrt{(\frac{1}{m} + \frac{1}{n}) \log \frac{1}{\delta} + \frac{d}{n} \log \frac{n}{d} + \frac{d}{m} \log \frac{m}{d}}\right).
$$

Remark 4.1. It is worth pointing out that both n_S and n_T are constants that only depend on the underlying source and target domains, respectively. Hence $|n_S + n_T|$ essentially captures the amplitude of noise. The last two terms of the bound come from standard concentration analysis for uniform convergence.

Due to space limit, we leave more discussions on how to extend from binary to multi-class, from ℓ_1 to ℓ_p loss, and bridging the gap between theory and practice in appendix.

Compared with previous results [42, 7, 9, 43, 44], our bounds is the first in the Semi-DA literature which contains empirical error terms from both the source and target domains and free of the joint optimal error terms, e.g., the λ in Theorem 3 of [42]. The difference here is significant since the joint optimal errors depend on the choice of the hypothesis class \mathcal{H} and in fact can change arbitrarily as the feature space changes. In fact, it has been recently showed that the change of λ during representation learning is precisely the cause that fails classic domain invariant learning in the setting of unsupervised domain adaptation. Furthermore, these bounds imply a natural and principled way for a better generalization to the target domain by learning invariant representations and risks simultaneously. Note that this is in sharp contrast to previous works where only invariant representations are pursued [2, 6].

5. Learning Invariant Representations and Risks

Motivated by the generalization error bounds in Theorem 4.1 and Theorem 4.2 in Sec. 4, in this section we propose our bound minimization algorithm LIRR. Since the last two terms reflect the noise level, complexity measures and error caused by finite samples, respectively, we then hope to optimize the upper bound by minimizing the first four terms. The first two terms are the convex combination of empirical errors of h on S and T, which can be optimized with the labeled source and target data. The third term measures the distance of representations between the source and target domains, which is a good inspiration for us to learn the invariant representation across domains. The
fourth term corresponds to the distance of the optimal classifiers between S and T. To minimize this term, the model is forced to learn the data representations that induce the same optimal predictors for both source and target domains, which exactly corresponds to the principle of invariant risk minimization [13]. Several efforts in the fairness representation area [15, 16] and domain generalization [17, 18] area have proposed similar ideas of invariant risk. However, LIRR is the first work to combine both invariant representation and invariant risk minimization for applications in semisupervised domain adaptation.

5.1. Information Theoretic Interpretation

To better understand why the bound minimization strategy can solve the intrinsic problems of Semi-DA, in what follows we provide interpretations from an information-theoretic perspective.

Invariant Representations Learning invariant representations corresponds to minimizing the third term of the bound Theorem 4.1 and bound Theorem 4.2. We consider a feature transformation $Z = g(X)$ that can obtain the invariant representation Z from input X. The invariance on representations can be described as achieving statistical independence $D \perp Z$, where D stands for the domain index. This independence is equivalent to the minimization of mutual information $I(D; Z)$. To see this, if $I(D; Z) = 0$, then $D_S(Z) = D_T(Z)$, so the third term in the bounds will vanish. Intuitively, this means that by looking at the representations Z, even a well-trained domain classifier $C(\cdot)$ cannot correctly guess the domain index D.

Invariant Risks Learning invariant risks corresponds to minimizing the fourth term of the bound Theorem 4.1 and bound Theorem 4.2. Inspired by [13], we want to identify a subset of feature representations through feature transformation $Z = g(X)$ that best supports an invariant optimal predictor for source and target domains. That means the identified feature representation $Z = g(X)$ can induce the same optimal predictors. This objective can be interpreted with a conditional independence $D \perp Y \mid Z$, which is equivalent to minimizing $I(D; Y \mid Z)$. To see this, when the conditional mutual information of $I(D; Y \mid Z)$ equals 0, the two conditional distributions $P_{D_S}(Y \mid Z)$ and $P_{D_T}(Y \mid Z)$ coincide with each other. As a result, the Bayes optimal predictors, which only depend on the conditional distributions of $Y \mid Z$, become the same across domains, so the fourth term in our bounds Theorem 4.1, Theorem 4.2 will vanish.

In summary, our learning objective on invariant representations and invariant risks are achievable with the joint minimization of $I(D; Z)$ and $I(D; Y \mid Z)$. It is instructive to present the integrated form as in Eq. 2. In words, the integrated form suggests the independence of $D \perp (Y, Z)$. We regard the independence as an intrinsic objective for domain adaptation since it implies an alignment of the joint distributions over (Y, Z) across domains, as opposed to only the marginal distributions over Z in existing works.

$$I(D; Y, Z) = I(D; Z) + I(D; Y \mid Z).$$

5.2. Algorithm Design

To learn invariant representations, that is achieving marginal independence of $Y \perp Z$ and minimization on $\min I(Y; Z)$, we adopt the adversarial training method as in [2]. The invariant representation objective focuses on learning the feature transformation $g(\cdot)$ to obtain the invariant representations from input X, which can fool the domain classifier C. This part of the objective function can be described as in Eq. 3.

$$L_{\text{rep}}(g, C) = E_{X \sim D_S(X)}[\log(C(G(X)))] + E_{X \sim D_T(X)}[\log(1 - C(G(X)))]$$

To learn invariant risks, that is achieving conditional independence of $D \perp Y \mid Z$, we resort to the conditional mutual information minimization on $I(D; Y \mid Z)$, and further convert $\min I(D; Y \mid Z)$ objective to the minimization of the difference between the following conditional entropies:

$$I(D; Y \mid Z) = H(Y \mid Z) - H(Y \mid D, Z).$$

The following proposition gives a variational form of the conditional entropy as infimum over a family of cross-entropies, where L denotes the cross-entropy loss.

Proposition 5.1 ([45]). $H(Y \mid Z) = \inf_f E[L(Y; f(Z))]$.

Using the above variational form, the minimization of the conditional entropies could be transformed to a minimization of the cross-entropy losses of domain-invariant predictor f_i and domain-dependent predictor f_d. The learning objective of the two predictors can be shown as in Eq. 5 and Eq. 6, respectively. Notice that the domain-dependent loss L_d should be no greater than the domain-invariant loss L_i, because of the additional domain information.

$$\min_{g, f_i} L_i = E_{(x, y) \sim D_S, D_T} [L(y, f_i(g(x)))]$$

$$\min_{g, f_d} L_d = E_{d \sim D} E_{(x, y) \sim D} [L(y, f_d(g(x), d))]$$

Hence, the overall learning objective of Eq. 4 can be rewritten with the following loss functions.

$$\min_{g, f_i} \max_{f_d} L_{\text{risk}} = L_i + \lambda_{\text{risk}}(L_i - L_d).$$
The first term of Eq. 7 regards to the supervised training on source and target labeled data; the second term regards to approaching the minimization objective of \(H(Y \mid Z) - H(Y \mid D, Z) \), as well as achieving the predictions’ invariance between \(f_i \) and \(f_d \) over the same representation \(z \). If we take the example of binary classification of bear and dog as in Eq. 1, if \(f_i \) and \(f_d \) have their prediction of bear according to a proper representation of animal’s shape, then any domain information will not contribute to the prediction, thus the predictor captures the invariant part and achieves invariant risks.

In general, as the factorization in Eq. 2 suggests, in order to achieve improved adaptation performance by minimizing the accuracy discrepancy between domains, we need to enforce the joint independence of \((Y, Z) \perp D \) by learning feature transformation \(g \). To achieve it, we propose our learning objective of LIRR as in Eq. 8, where \(\lambda_{\text{risk}} \) and \(\lambda_{\text{rep}} \) are set to 1 by default.

\[
\min_{g, f_i} \max_{f_d} \mathcal{L}_{\text{LIRR}}(g, f_i, f_d, C) = \mathcal{L}_{\text{risk}}(g, f_i, f_d) + \lambda_{\text{rep}} \mathcal{L}_{\text{rep}}(g, C).
\]

At a high level, the first term \(\mathcal{L}_{\text{risk}}(g, f_i, f_d) \) in the above optimization formulation stems from the minimization of \(I(Y; D \mid Z) \), and the second term \(\mathcal{L}_{\text{rep}}(g, C) \) is designed to minimize \(I(D; Z) \).

6. Experiments

To empirically corroborate the effectiveness of LIRR, in this section we conduct experiments on both classification and regression tasks under the setting of Semi-DA and compare LIRR to existing methods. We first introduce the experimental settings, and then present analysis to the experimental results. We also provide ablation study for the experiments on both classification and regression tasks. More experimental settings, implementation details, and results are discussed in the Appendix.

6.1. Image Classification

Datasets To verify the effectiveness of LIRR on image classification problems, we conduct experiments on NICO [46], VisDA2017 [47], OfficeHome [48], and DomainNet [49] datasets. NICO is dedicatedly designed for O.O.D. (out-of-distribution) image classification. It has two superclasses animal and vehicle, and each superclass contains different environments\(^1\), e.g. bear on grass or snow. VisDA2017 contains Train (T) domain and Validation (V) domain with 12 classes in each domain. Office-Home includes four domains: RealWorld (RW), Clipart (C), Art (A), and Product (P), with 65 classes in each domain. DomainNet is the largest domain adaptation dataset for image classification with over 600k images from 6 domains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R), and Sketch (S), with 345 classes in each domain. For each dataset, we randomly pick source-target pairs for evaluation. To meet the setting of Semi-DA, we randomly select a small ratio (1\% or 5\%) of the target data as labeled target samples for training. More information about datasets will be detailed in appendix.

Baselines We compare our approach with the following representative domain adaptation methods: DANN [2], CDAN [4], IRM [13], ADR [50], and MME [12]; S+T, a model trained with the labeled source and the few labeled target samples without using unlabeled target samples; and Full T, a model trained with the fully labeled target. All these methods are implemented and evaluated under the Semi-DA setting.

6.2. Traffic Counting Regression

Datasets To verify the effectiveness of LIRR on regression problems, we conduct experiments on WebCamT dataset [51] for the Traffic Counting Regression task. WebCamT has 60,000 traffic video frames annotated with vehicle bounding boxes and counts, collected from 16 surveillance cameras with different locations and recording time. We pick three source-target pairs with different visual similarities: 253→398, 170→398, 511→398 (digit denotes camera ID).

Baselines The baseline models for this task are generally aligned with our classification experiments except the methods that can not be applied to the regression task (e.g. MME, ADR, and CDAN). Thus, for the traffic counting regression task, we compare with the baseline methods: ADDA [3], DANN, IRM, S+T, and FullT.

6.3. Experimental Results Analysis

Classification Tasks The classification results are shown in Table 1 with 1\% and 5\% labeled target data. LIRR outperforms the baselines on all the five adaptation datasets, which consistently indicates its effectiveness. As our learning objective suggests, LIRR can be viewed as achieving \(D \perp (Y, Z) \), which combines the benefits of achieving \(D \perp Y \) and \(D \perp Y \mid Z \). In contrast, DANN, CDAN, and ADDA can be viewed as only achieving \(D \perp Z \) or its variant form; and IRM can be viewed as an approximation to achieve \(D \perp Y \mid Z \) using gradient penalty. LIRR outperforms all these methods on different datasets with 1\% or 5\% labeled target data, demonstrating simultaneously learning invariant representations and risks achieves better generalization for domain adaptation than only learning one of

\(^1\)For animal, we sample 8 classes from environments grass and snow as two domains. For vehicle, we sample 7 classes from environments sunset and beach as two domains.
Table 1: Accuracy (%) comparison (higher means better) on NICO, OfficeHome, DomainNet, and VisDA2017 with 1% (above) and 5% (below) labeled target data (mean ± std). Highest accuracies are highlighted in bold.

<table>
<thead>
<tr>
<th>1% labeled target</th>
<th>NICO Animal</th>
<th>NICO Traffic</th>
<th>OfficeHome</th>
<th>DomainNet</th>
<th>VisDA2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>NICO Animal</td>
<td>NICO Traffic</td>
<td>OfficeHome</td>
<td>DomainNet</td>
<td>VisDA2017</td>
</tr>
<tr>
<td>Grass to Snow</td>
<td>50.06±0.22</td>
<td>80.08±0.12</td>
<td>10.12±1.44</td>
<td>78.07±0.3</td>
<td>84.11±0.05</td>
</tr>
<tr>
<td>Snow to Grass</td>
<td>71.37±1.54</td>
<td>72.30±1.08</td>
<td>71.25±0.15</td>
<td>74.58±0.13</td>
<td>78.17±1.52</td>
</tr>
<tr>
<td>Sunset to Sunset</td>
<td>85.36±0.34</td>
<td>85.28±0.55</td>
<td>75.33±0.55</td>
<td>74.31±0.47</td>
<td>79.86±0.21</td>
</tr>
<tr>
<td>Reach to Sunset</td>
<td>89.28±0.23</td>
<td>78.13±0.26</td>
<td>52.47±0.21</td>
<td>51.53±0.19</td>
<td>60.33±0.15</td>
</tr>
<tr>
<td>Method</td>
<td>NICO Animal</td>
<td>NICO Traffic</td>
<td>OfficeHome</td>
<td>DomainNet</td>
<td>VisDA2017</td>
</tr>
<tr>
<td>Grass to Snow</td>
<td>88.22±0.98</td>
<td>84.29±0.74</td>
<td>89.73±0.95</td>
<td>57.44±0.08</td>
<td>67.81±0.04</td>
</tr>
<tr>
<td>Snow to Grass</td>
<td>84.29±0.74</td>
<td>84.29±0.74</td>
<td>84.29±0.74</td>
<td>84.29±0.74</td>
<td>84.29±0.74</td>
</tr>
<tr>
<td>Sunset to Sunset</td>
<td>89.73±0.95</td>
<td>89.73±0.95</td>
<td>89.73±0.95</td>
<td>89.73±0.95</td>
<td>89.73±0.95</td>
</tr>
<tr>
<td>Reach to Sunset</td>
<td>57.44±0.08</td>
<td>57.44±0.08</td>
<td>57.44±0.08</td>
<td>57.44±0.08</td>
<td>57.44±0.08</td>
</tr>
</tbody>
</table>

5% labeled target

<table>
<thead>
<tr>
<th>5% labeled target</th>
<th>NICO Animal</th>
<th>NICO Traffic</th>
<th>OfficeHome</th>
<th>DomainNet</th>
<th>VisDA2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>NICO Animal</td>
<td>NICO Traffic</td>
<td>OfficeHome</td>
<td>DomainNet</td>
<td>VisDA2017</td>
</tr>
<tr>
<td>Grass to Snow</td>
<td>75.83±1.89</td>
<td>83.38±1.23</td>
<td>86.45±1.08</td>
<td>86.13±0.87</td>
<td>82.67±0.12</td>
</tr>
<tr>
<td>Snow to Grass</td>
<td>84.13±1.20</td>
<td>84.13±1.20</td>
<td>84.13±1.20</td>
<td>84.13±1.20</td>
<td>84.13±1.20</td>
</tr>
<tr>
<td>Sunset to Sunset</td>
<td>85.78±0.77</td>
<td>85.78±0.77</td>
<td>85.78±0.77</td>
<td>85.78±0.77</td>
<td>85.78±0.77</td>
</tr>
<tr>
<td>Reach to Sunset</td>
<td>88.95±0.45</td>
<td>88.95±0.45</td>
<td>88.95±0.45</td>
<td>88.95±0.45</td>
<td>88.95±0.45</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th>Method</th>
<th>253 to 398</th>
<th>170 to 398</th>
<th>511 to 398</th>
</tr>
</thead>
<tbody>
<tr>
<td>S+T</td>
<td>3.20±0.03</td>
<td>2.42±0.02</td>
<td>3.12±0.02</td>
</tr>
<tr>
<td>ADDA</td>
<td>3.13±0.01</td>
<td>2.34±0.03</td>
<td>3.05±0.03</td>
</tr>
<tr>
<td>DANN</td>
<td>3.08±0.02</td>
<td>2.38±0.02</td>
<td>3.01±0.04</td>
</tr>
<tr>
<td>IRM</td>
<td>3.11±0.02</td>
<td>2.27±0.03</td>
<td>2.91±0.02</td>
</tr>
<tr>
<td>LIRR</td>
<td>2.96±0.02</td>
<td>2.13±0.01</td>
<td>2.84±0.01</td>
</tr>
<tr>
<td>Full T</td>
<td>1.68±0.01</td>
<td>1.68±0.01</td>
<td>1.68±0.01</td>
</tr>
</tbody>
</table>

6.4. Ablation Study

Comparisons with Optimizing Single Invariant Objective

As pointed out in Sec. 6.3, LIRR is simultaneously learning invariant representations and risks, while DANN, CDAN, ADDA can be viewed as only achieving invariant representations or its variant forms, and IRM is an approximation to solely achieve invariant risks. From the results on both classification and regression tasks, we can further acknowledge the importance of simultaneously optimizing these two invariant items together. As shown in Table 1 and 2, all the methods that only minimize one single invariant objective perform worse than LIRR, indicating our method is effective and consistent to the theoretical results.

Increasing Proportions of Labeled Target Data

Revisiting Theorem 4.1 and Theorem 4.2, we know that as the proportion of the labeled target data rises, the upper bound of \(\epsilon_f(h) \) gets tighter. Accordingly, the margin between LIRR and other methods becomes larger, as shown in Fig. 2. Another riveting observation from Fig. 2 is, LIRR and its variant LIRR+CosC achieve better performance than the or-

Regression Tasks: The traffic counting regression results are shown in Table 2 with 1% and 5% labeled target data. The superiority of LIRR over baseline methods is supported by its lowest MAE on all the settings. DANN and ADDA are the representative methods of learning invariant representations, while IRM is the representative method of learning invariant risks. Both DANN, ADDA, and IRM achieve lower error than S+T, which means learning invariant representations or invariant risks can benefit Semi-DA to some extent on the regression task. Similar with the observations from the classification experiments, LIRR outperforms both DANN, ADDA, and IRM, demonstrating simultaneously learning invariant representations and risks achieves better adaptation than only aligning one of them.
Figure 2: Performance comparison with increasing number of labeled target data, from Domain Art to RealWorld on Officehome dataset. X axis: the ratio of labeled target data; Y axis: accuracy.

Stunning but plausible, with source and a few labeled target data, LIRR can learn more robust representations and achieve better performance on the target, comparing with the model trained by the fully labeled target data.

Cosine Classifier As introduced in [12], cosine classifier is proved to be helpful for improving the model’s performance on Semi-DA. As shown in Table. 1, the same phenomenon can be found when comparing the performance of LIRR and LIRR+CosC. For almost all the cases, LIRR plus cosine classifier module achieves higher accuracy than LIRR alone.

6.5. Visualization Results

Fig. 3 visualizes the counting results of different algorithms on Camera 511 to 398 scenario, WebCamT. The red line represents the LIRR method we proposed while the black line represents the gt count. It’s rather clear to see that LIRR have a better ability of cross domain regression fitting than other methods, especially the area within the green bounding box with dot lines. In order to vividly showcase the learned feature representation which supports the invariant risks across domains. We employ Grad-CAM [52] to visualize the most influential part in prediction in Fig 4.

7. Conclusion

In this paper, we argue that, compared with UDA, the setting of Semi-DA is more realistic and enjoys broader practical applications with potentially better utility. To this end, in this paper we propose the first finite-sample generalization bounds for both classification and regression problems under Semi-DA. Our results shed new light on Semi-DA by suggesting a principled way of simultaneously learn-
References

