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Abstract

LiDAR-based 3D detection in point cloud is essential in

the perception system of autonomous driving. In this pa-

per, we present LiDAR R-CNN, a second stage detector that

can generally improve any existing 3D detector. To fulfil-

l the real-time and high precision requirement in practice,

we resort to point-based approach other than the popular

voxel-based approach. However, we find an overlooked is-

sue in previous work: Naively applying point-based meth-

ods like PointNet could make the learned features ignore

the size of proposals. To this end, we analyze this problem

in detail and propose several methods to remedy it, which

bring significant performance improvement. Comprehen-

sive experimental results on real-world datasets like Way-

mo Open Dataset (WOD) and KITTI dataset with various

popular detectors demonstrate the universality and supe-

riority of our LiDAR R-CNN. In particular, based on one

variant of PointPillars, our method could achieve new state-

of-the-art results with minor cost. Codes will be released at

https://github.com/tusimple/LiDAR_RCNN .

1. Introduction

For autonomous vehicles and robots, estimating the

7 Degrees-of-Freedom (location, dimension, and orienta-

tion) state of the surrounding objects in complicated real-

world environments is a vital task. Recently, LiDAR-based

3D object detection has been received increasing atten-

tion [29, 25, 23] due to its ability of direct 3D measuremen-

t. However, compared with the well developed 2D image

detection, LiDAR-based 3D detection still suffers from the

intrinsic difficulties of point sparsity and large search space

in 3D space.

Given that point clouds from LiDAR are irregular, most

3D detection methods transform such data into regular 3D

voxel grids [33, 52, 44, 12] or collections of projected 2D

view [11, 3, 46, 17, 45, 16, 18]. While these methods can

*The first two authors contribute equally to this work.

easily take advantage of the ordered data representation by

using regular 2D or 3D convolution for feature extraction

conveniently, the quantization error in the construction of

voxel or multi-view features limits their performance. On

the contrary, point-based methods [28, 30, 41, 26, 48] can

learn features from the raw point cloud, but usually, they

need complicated and inefficient operations [28] to aggre-

gate local information. Consequently, these point-based

methods are mostly fused with other representations other

than individually used for 3D object detection.

In this paper, we are more interested in another setting

like R-CNN [9]: We already have a set of proposals in

3D space and seek to refine them. Therefore, we name

our method LiDAR R-CNN. When confronting this usage,

PointNet becomes our first choice since the network only

needs to process the points from a single object in a small

region. Compared with the DNN features with rich seman-

tic information, the original point cloud contains the most

accurate location information. Intuitively, applying Point-

Net [27] on the raw point cloud for detection is straight-

forward. However, we find that the results of such a naive

implementation are unsatisfactory. Through careful analy-

sis, we find an intriguing size ambiguity problem: Different

from voxel-based methods that equally divide the space into

fixed size, PointNet only aggregates the features from points

while ignoring the spacing in 3D space. Nevertheless, the

spacing encodes essential information, such as the scale of

the object. To remedy this issue, we propose a series of

solutions and prove their effectiveness through detailed ex-

periments. Comprehensive evaluation results on the Waymo

Open Dataset(WOD) [34] prove that our proposed LiDAR

R-CNN can improve the performance of various off-the-

shelf detectors significantly and consistently. With a well-

tuned PointPillars model, we even outperform the state-of-

the-art models.

To summarize, our contributions are as follows:

• We propose an R-CNN style second-stage detector for

3D object detection based on PointNet. Our method is

plug-and-play to any existing 3D detector, and needs

no re-training to the base detectors.
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• We reveal the size ambiguity problem when using a

point-based R-CNN detector. Through careful analy-

sis, we propose several different ways to make the de-

tector aware of the size of proposal box. Despite the

simple design, it achieves significant performance im-

provements.

• We test our proposed method on WOD [34] and KIT-

TI [8] datasets with various base detectors. Our

method could consistently improve the base detectors

while running at 200fps for 128 proposals on 2080Ti

GPU.

2. Related Work

This section will briefly review some closely related

work in LiDAR 3D detection according to different data

representations.

2.1. Voxel based Methods

Researchers have long struggled with the irregular orga-

nization of point clouds. This nature makes it infeasible

to apply traditional convolution, which is defined on regu-

lar grid. Voxelization [36, 53] is one of the most common

treatments for it. [37, 5] perform real-time 3D detection by

converting point cloud data into voxels with hand-crafted

features. Nevertheless, the generalization of hand-crafted

features limits their performance in complicated real-world

environments. Subsequent work improves them in various

ways: [13] introduces a 3D fully convolutional network

which uses binary 3D voxel representation. VoxelNet [52]

applies mini PointNet for discriminative voxel features ex-

traction. SECOND [44] further overcomes the computa-

tional barrier of dense 3D convolution by applying sparse

convolution. [35] proposes 3D neural architecture search

(3D-NAS) to search for efficient 3D models structures. Al-

beit these voxel-based methods are widely used, their per-

formance upper bounds are still limited by the quantization

error when dividing the voxels. Thus voxel-based method-

s are usually fused with other representations that will be

introduced later.

2.2. View based methods

CNN-based networks, such as VGGNet [32],

ResNet [10], etc., have demonstrated excellent feature

extraction ability on 2D computer vision tasks. An intuitive

idea is to transform the point cloud data into certain kind of

2D view, which could be efficiently processed by 2D CNN.

Among them, bird-eye-view (BEV) [1, 11, 7, 49, 54] is

one of the most common representations. PointPillars [12]

collapses the points in vertical columns (pillars). MV3D [3]

combines features from BEV and frontal view. While BEV

could encode the scene to 2D space while maintaining

scale invariance, range view [20, 15, 14, 42, 21, 43, 50] is

another compact representation based on the intrinsic 2.5D

LiDAR scan. The range view avoids the challenge of the

sparsity of point cloud yet introduces the scale variation

for objects at different range. Recently, RCD [2, 6] tries

to provide a uniform feature in 3D space with a range

conditioned dilated convolution. And Soft Range Gating

is used to avoid the influence of significant change in

disparity. Benefited from the mature 2D CNN, view-based

methods are usually faster, but as mentioned, they usually

introduce information loss when projecting 3D space into

2D.

2.3. Point based methods

PointNet and its variants [27, 28, 40, 19, 38] could di-

rectly take the raw points as input and use symmetric opera-

tors to address the main issue in points cloud – unorderness.

Based on these powerful tools, PointRCNN [30] proposes a

bottom-up 3D Region proposal network. They first gen-

erate proposals via segmented foreground objects and then

learn a more accurate bounding box regression branch to

predict the box coordinates. Part A2 [31] extends PointR-

CNN by introducing an intra-object part supervision. PV-

RCNN [29] aggregates points feature into a voxel-based

framework, which improves the performance remarkably.

From another perspective, VoteNet [25, 24] proposes a new

proposal generation mechanism with deep Hough voting

based on the observation that the LiDAR points are all dis-

tributed on the surface of objects. StarNet [22] uses sam-

pling centers with anchors as proposals to achieve a more

computationally efficient framework, yet the low quality of

the proposals limits its performance.

For a widely used Velodyne LiDAR HDL-64E, it collect-

s more than 100K points in one scan. This is a considerable

challenge for PointNet. So almost all the point-based meth-

ods need to downsample when dealing with large scenes.

For PointRCNN, 16,384 points are kept. Besides, to effec-

tively extract features from these individual points, usually

hierarchical grouping methods as in [28] are essential in

these methods; however, they are usually costly compared

with pure PointNet. To summarize, these two main issues

limit the performance and efficiency of point based method

in general 3D detection task.

3. Methods

In this section, we will firstly introduce our framework of

point-based R-CNN model. Then we will describe the size

ambiguity problem, which is the core issue that limits the

performance. Next, we propose several simple yet effective

solutions to solve it.

3.1. Pointbased RCNN

Assume that we already have a 3D LiDAR object detec-

tor (no matter deep learning based or not) that could gener-
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Figure 1. Illustration of input features. We convert the points into

the proposals coordinate system. In this way, no matter where the

object is, it is similar to the network, which improves the general-

ization ability. The proposal boxes are enlarged to contain some

contextual points (usually ground points).

ate lots of 3D bounding box proposals, our goal is to refine

the 7DoF bounding box parameters (including size, position

and heading) and scores of the proposals simultaneously,

i.e. in an R-CNN manner. To make our model plug-and-

play and avoid further quantization error or interpolation,

our input data are the original point cloud without any high-

level DNN features.

Input Features. For each 3D proposal bi =
(xi, yi, zi, wi, li, hi, θi), we enlarge its width and length to

contain more contextual points around it. Then all the points

in the enlarged boxes are taken out as the input data for our

R-CNN model.

To improve the generalization of our R-CNN model, the

points are then normalized according to the 3D bounding

box coordinate system. The origin point is set as the cen-

ter of the box. The heading direction is set as the x-axis.

Its horizontally orthogonal direction is the y-axis and the

vertical up direction is the z-axis (Fig. 1).

Backbone. The normalized points’ coordinates

(xp, yp, zp) and other meta-data will be mentioned later

are fed into a point-based network. For fast inference, we

choose PointNet[27] as our backbone network. It consists

of a Multi-Layer Perception (MLP) module with three ful-

ly connected layers and a max-pooling operator for fea-

ture aggregation. Then the aggregated feature is fed in-

to two branches: one for classification and another for re-

gression. The whole network structure is illustrated in Fig

2. This backbone network is extremely light-weighted and

fast, which is very suitable for real-time applications.

Loss Function. Similar to 2D RCNN, the loss function

for classification branch is a softmax cross entropy loss with

C + 1 categories,

Lcls =
1

B

B
∑

i=1

− log p
(i)
y(i), (1)

where C is the class number, B is the batch size, y(i) is

the assigned label for i-th sample and py(i) is the softmax

probability on y(i). The IoU threshold for positive and neg-

ative samples depends on the specific category, e.g. 0.7 for
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Figure 2. The PointNet[27] structure for our R-CNN model. de-

pending on different solutions, the input data has 3 or more chan-

nels for each points. c in the classification branch denotes the class

number and c+ 1 includes an additional background class.

vehicle and 0.5 for pedestrian on WOD.

The regression loss aims at refining the box parameter-

s, thus it is only applied to the positive samples. Since the

boxes are already transformed to the bounding box coordi-

nate system, the proposal bi = (xi, yi, zi, wi, li, hi, θi) in

global reference frame is transformed to

b̃i = (0, 0, 0, wi, li, hi, 0). (2)

Meanwhile, the 3D ground-truth bounding box b
gt
i =

(xgt
i , y

gt
i , z

gt
i , w

gt
i , l

gt
i , h

gt
i , θ

gt
i ) should also be transformed

to

b̃
gt
i = (xgt

i − xi, y
gt
i − yi, z

gt
i − zi, w

gt
i , l

gt
i , h

gt
i , θ

gt
i − θi).

(3)

Also similar to 2D RCNN, the regression targets for cen-

ter and size are defined as

t
c
i = (

x
gt
i − xi

wi

,
y
gt
i − yi

li
,
z
gt
i − zi

hi

), (4)

t
s
i = (log

w
gt
i

wi

, log
l
gt
i

li
, log

h
gt
i

hi

). (5)

For the orientation regression which is specific for 3D de-

tection, we cannot directly make the target as θ
gt
i − θ. Due

to the sparsity of point clouds and the appearance ambi-

guity of some objects, their predicted orientation may be

flipped with 180◦. If we simply use θ
gt
i − θ as the target,

the gradient of flipped samples will be too large to over-

whelm the normal samples. To avoid the training contami-

nated by these outlier samples, we set the orientation target

to be the minimum residual calculated by original orienta-

tion and flipped orientation:

∆θi = (θgti − θi) mod π, (6)

t
o
i =

{

∆θi, ∆θi ≤
π
2 ,

∆θi − π, ∆θi >
π
2 .

(7)

Having all the targets ti = (tci , t
s
i , t

o
i ), our regression

loss is defined as,

Lreg =
1

B+

B+
∑

i=1

SmoothL1(oi − ti), (8)
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(a) Size ambiguity (b) Size normalization (c) Anchor

(d) Voxelization (e) Boundary offset (f) Virtual point

Figure 3. (a) Through point pooling operator, the two dashed bounding boxes extract the same points. However, the two dashed bounding

boxes have different IoUs with the ground-truth (red box), which would confuse the R-CNN module. (b) Size normalization changes the

shape of the point cloud. The rectangle ground-truth box becomes a parallelogram. (c) An anchor (purple box) for each category cannot

provide the position information of the proposal. (d) Through voxelization, the model may know the box is enlarged because the border

voxels have no points in them. However, it still doesn’t know where the proposal’s border is. (e) The boudnary offset information is directly

concatenated with the point features. (f) By adding virtual grid points, the R-CNN model will be able to know the proposal is too large

because the border virtual points have no real points in their neary neighbors. The virtual points also provide clear boundary information

of the proposal.

where oi is the output of the model’s regression branch and

B+ is the number of positive samples. Finally, the overall

loss is formulated as

L = Lcls + λLreg, (9)

Where λ is a balance factor, which is 20 in practice.

3.2. Size Ambiguity Problem

The point-based R-CNN is quite straight-forward. Sim-

ilar models have already been exploited in previous works

[30, 4, 47]. However, when we directly apply such an al-

gorithm, a clear performance drop is observed. The drop is

most significant when the class is of mixed size or multi-

ple classes are trained together. After careful analysis, we

find an intriguing size ambiguity problem in the point-based

R-CNN models.

The problem is related to the property of point cloud.

Unlike 2D images, in which each position is filled with

RGB values, the point cloud is sparse and irregular. Nev-

ertheless, if we directly use a point-based method, in which

we only consider existing points in network, we would ig-

nore the scale information indicated by the spacing. Taking

Fig. 3(a) as an example, the dashes blue and green bounding

boxes will have the same feature representation if we only

consider the red points in it, however their classification and

regression targets may differ a lot. Different from 2D RC-

NN, we should equip our LiDAR-RCNN with the ability to

perceive the spacing and the size of proposals. In Sec. 4.2,

we show some statistics from real data. As a result, we

propose the following size aware methods to enhance the

features.

3.3. Size Aware Point Features

In this section, we elaborate several methods to fix the

issue mentioned above. These methods will be discussed

and compared in detail in the experiments.

Normalization. The simplest solution to the ambiguity

problem is to normalize the point coordinates by the pro-

posal size. Then the proposal’s boundaries are aligned to

{− 1
2 ,

1
2}. If the proposal is enlarged, the point coordinates

will be smaller and the size target will be higher. Conse-

quently, the model could be aware of the size of the pro-

posal. However, size normalization makes the proposal to

be a unit cube and the object shape will be distorted (Fig.

3(b)). When the R-CNN model is applied on multiple cat-

egories, it totally ignores the scale difference off different

categories. The size normalization makes it more difficult

for the model to distinguish different categories.

Anchor. One solution proposed in some previous works[47,

26] is to set an anchor for each category. Then the regres-

sion targets will be based on a fixed anchor, which elimi-

nates the ambiguity of the size target. However, our goal is

to judge the quality (whether the proposal’s IoU w.r.t. the

ground-truth is larger than a threshold) and refine the pro-

posal, not the anchor. Since the network is still not aware of

the boundary of the proposal, this method does not solve the
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3D AP (IoU=0.7) 3D APH (IoU=0.7) BEV AP (IoU=0.7) BEV APH (IoU=0.7)
Difficulty Method

Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LEVEL 1 StarNet [22] 53.7 - - - - - - - - - - - - - - -

PointPillar [12] 56.6 81.0 51.8 27.9 - - - - 75.6 92.1 74.1 55.5 - - - -

MVF [51] 62.9 86.3 60.0 36.0 - - - - 80.4 93.6 79.2 63.1 - - - -

Pillar-od [39] 69.8 88.5 66.5 42.9 - - - - 87.1 95.8 84.7 72.1 - - - -

PV-RCNN [29] 70.3 91.9 69.2 42.2 69.7 91.3 68.5 41.3 83.0 97.4 83.0 65.0 82.1 96.7 82.0 63.2

RCD [2] 66.4 86.6 65.6 40.0 66.1 86.3 65.3 39.9 82.1 93.3 80.9 67.2 81.4 92.8 80.2 66.2

RV first stage 53.4 73.0 49.0 28.1 52.8 72.3 48.4 27.8 70.5 86.2 68.5 51.9 69.5 85.2 67.6 51.0

LiDAR R-CNN (rv) 68.7 84.8 67.6 47.3 68.2 84.3 67.1 46.6 81.1 90.5 80.5 68.9 80.4 89.9 79.8 67.8

PointPillars* 72.1 88.3 69.9 48.0 71.5 87.8 69.3 47.3 87.9 96.6 87.1 78.1 87.1 96.0 86.2 76.5

LiDAR R-CNN (pp) 75.6 92.1 74.3 53.3 75.1 91.6 73.8 52.6 88.2 97.1 87.6 78.3 87.5 96.6 86.9 76.8

LiDAR R-CNN (2x) 75.6 91.9 74.2 53.5 75.1 91.5 73.6 52.7 90.0 97.0 89.4 78.5 89.2 96.6 88.6 77.0

LiDAR R-CNN (2xc) 76.0 92.1 74.6 54.5 75.5 91.6 74.1 53.4 90.1 97.0 89.5 78.9 89.3 96.5 88.6 77.4

LEVEL 2 PV-RCNN [29] 65.4 91.6 65.1 36.5 64.8 91.0 64.5 35.7 77.5 94.6 80.4 55.4 76.6 94.0 79.4 53.8

RV first stage 46.0 70.6 44.1 21.0 45.5 69.8 43.6 20.7 63.5 85.5 62.7 41.1 62.7 84.5 61.9 40.3

LiDAR R-CNN (rv) 60.1 84.1 61.8 35.7 59.7 83.6 61.3 35.2 74.2 89.8 74.7 54.8 73.5 89.2 74.0 53.9

PointPillars* 63.6 87.4 62.9 37.2 63.1 86.9 62.3 36.7 81.3 94.0 81.7 65.5 80.4 93.5 80.8 64.1

LiDAR R-CNN (pp) 66.5 89.1 68.3 40.8 66.1 88.7 67.7 40.3 81.2 94.2 81.8 63.6 80.5 93.7 81.0 62.3

LiDAR R-CNN (2x) 68.0 91.1 68.1 41.1 67.6 90.7 67.6 40.5 81.6 94.3 82.2 65.6 80.9 93.9 81.4 64.2

LiDAR R-CNN (2xc) 68.3 91.3 68.5 42.4 67.9 90.9 68.0 41.8 81.7 94.3 82.3 65.8 81.0 93.9 81.5 64.5

Table 1. Vehicle detection results on Waymo Open Dataset validation sequences. Here PointPillars [12] is reproduced by [51] and

PointPillar* is implemented in mmdetection3d. Our LiDAR R-CNN (pp) results are based on PointPillars*’ proposals. LiDAR R-CNN

(2x) means we double the channels in points encoding network and LiDAR R-CNN (2xc) means we cascade another stage on the LiDAR

R-CNN (2x)’s outputs. The RV first stage is reproduced by ourselves following [2], but without the Range Conditioned Covolution operator

because it is not open-sourced.

classification ambiguity. Furthermore, when there are few

point in the boxes, objects from different categories will al-

so have similar features. In this case, there will be a regres-

sion ambiguity because different categories have different

anchors, which corresponds to different regression targets.

Voxelization. Several second stage detectors voxelize the

points in proposal boxes[31, 2]. The empty voxels or point

distribution in the voxels may indicate the size and spacing

in the proposal as shown in Fig. 3(d). However, in this so-

lution, the voxel actually acts as a “sub-anchor”. The points

in it are still not aware of the voxel boundary. The mod-

el only have coarse information about the proposal size at

voxel level, but not the point level. As a result, this solution

alleviates, but not fully solves the ambiguity problem.

Revisiting the previous solutions, we can conclude that

the key is to provide the size information to network, while

preserving the shape of the object. To achieve this, we pro-

pose two candidate solutions that can solve the problem.

Boundary offset. To provide the proposal boundary infor-

mation, a simple way is to append the boundary offset to

the point features. From the offset, the network will be able

to know how far the points is from the proposal’s boundary,

which should solve the ambiguity problem.

Virtual points. Since the R-CNN model ignores the spac-

ing, another natural idea is to augment the spacing with

“virtual points” to indicate the existence of them. Here we

generate the grid points which are evenly distributed in the

proposal. The number of virtual points for all proposals

are equal and the coordinates of virtual points has the same

normalization with the real points. We append one binary

feature to all the points to indicate whether the points are

real or virtual. Through the virtual points, the RCNN mod-

ule will have the ability to perceive the size of the proposal,

since the spacing is no longer under represented.

Actually there may be other alternative solutions. We be-

lieve they will also work as long as providing the proposal

size information to the R-CNN model. The main contribu-

tion of this paper is to clarify the size ambiguity problem.

The solution is not limited within the proposed ones.

4. Experiments

In this section, we first briefly introduce the datasets we

use in Sec. 4.1, then in Sec. 4.2 we show some statistics to

support our points in Sec. 3.2.The implementation details of

our LiDAR R-CNN is provided in Sec. 4.3. Sec. 4.4 shows

that LiDAR R-CNN can generally improve the performance

of all baseline models, and surpasses the previous state-of-

the-art methods. In Sec. 4.5, we conduct extensive ablation

studies to show that the proposed methods can effectively

solve the problem described in Sec. 3.2.

4.1. Datasets

Waymo Open Dataset(WOD) [34] is a recently re-

leased public dataset for autonomous driving research. It

contains RGB images from five high-resolution cameras

and 3D point clouds from five LiDAR sensors. The whole

dataset consists of 1000 scenes(20s fragment) for training

and validation and 150 scenes for testing. For the 3D de-

tection task, the dataset has 12M labeled 3D LiDAR ob-

jects which are annotated in full 360-degree field, includ-

ing 4.81M vehicles and 2.22M pedestrians for training and

1.25M vehicles and 539K pedestrians for validation. It is

one of the largest and most diverse autonomous driving
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vehicle (IoU=0.7) pedestrian (IoU=0.5) cyclist (IoU=0.5)
Difficulty Method

3D AP 3D APH 3D AP 3D APH 3D AP 3D APH

LEVEL 1 SECOND [44] 58.5 57.9 63.9 54.9 48.6 47.6

LiDAR R-CNN (sec) 62.6 62.1 68.2 59.5 52.8 51.6

PointPillars [12] 71.6 71.0 70.6 56.7 64.4 62.3

LiDAR R-CNN (pp) 73.4 72.9 70.6 57.8 66.8 64.8

LiDAR R-CNN (2x) 73.5 73.0 71.2 58.7 68.6 66.9

LEVEL 2 SECOND [44] 51.6 51.1 56.0 48.0 46.8 45.8

LiDAR R-CNN (sec) 54.5 54.0 59.3 51.7 50.9 49.7

PointPillars [12] 63.1 62.5 62.9 50.2 61.9 59.9

LiDAR R-CNN (pp) 64.6 64.1 62.5 50.9 64.3 62.4

LiDAR R-CNN (2x) 64.7 64.2 63.1 51.7 66.1 64.4

Table 2. Multi-class 3D detection results on Waymo Open Dataset validation sequences. Both PointPillars [12] and SECOND [44] baselines

are implemented in mmdetection3d. 2x means we double the channels in points encoding network.

datasets. For evaluation, Average precision (AP) and APH

are used as the metric. Specifically, [34] proposes APH

to incorporate heading information into detection metrics.

The IoU threshold for vehicle detection is 0.7 while 0.5 for

pedestrian and cyclist.

KITTI dataset [8] is one of the most widely used dataset

in 3D detection task. It is equipped with sensors like G-

PS/IMU with RTK, stereo cameras, Velodyne HDL-64E.

There are 7481 training samples which are commonly di-

vided into 3712 samples for training and 3769 samples for

validation, and 7518 samples for tesing.

4.2. Emperical Study of Scale Ambiguity Problem

As explained in Sec. 3.2, the Size Ambiguity Problem

means when the proposals are enlarged, the point clouds

(also the features from PointNet) falling in them may not

change. We verify our hypothesis on the WOD with a typi-

cal 3D detector, PointPillars [12]. The total number of out-

put bounding boxes from PointPillars in the WOD testing

set is 4, 387, 747. When we enlarge every box’s width and

length by 1 meter, 21.3% boxes keep the same number of

the points, and 42.5% boxes only get new points less than

10, and most of them are ground points.

The output features of these bounding boxes and their

enlarged ones will be very similar, while their classification

and regression targets significantly differ. These numbers

reflect how ubiqutous the Scale Ambiguity Problem is.

4.3. Implementation Details

For all experiments except voxelization, we use the net-

work architecture shown in Fig. 2. We shrink the number of

embedding channels to [64, 64, 512] in PointNet to achieve

fast inference speed while maintaining accuracy. 512 points

are sampled for each proposal. If the points number in one

bounding box is fewer than 512, we randomly repeat the

points to keep the input dimension.

For the voxelization experiments, we use two fully con-

nected layer to extract features in each voxel. Then the fea-

tures are max-pooled in voxels to form a 14 × 14 × 14 3D

voxel map. Finally, five 3D convolution layers and three

fully-connected layers are utilized to extract the R-CNN

features.

To ensure the reproducibility of our algorithm, we use

the code base of mmdetection3d2 to extract proposals from

Waymo Open Dataset. We directly save the outputs from

PointPillars [12] and SECOND [44] with default testing set-

tings in mmdetection3d as our inputs. There are about 4M

vehicle proposals, 1.8M pedestrian proposals and 72K cy-

clist proposals for each model. Following PointRCNN [30],

we randomly jitter the vehicle proposals during training as

augmentation.

Besides the models from MMDetection3D, we also ap-

ply our proposed algorithm on the recently proposed RCD

model [2]. It is a two-stage detector with a range view based

first stage and a voxel-based second stage. Since it is not

open-sourced, we only re-implemented its baseline model

without the Range Conditioned Convolution operator and

the Soft Range Gating. The results of both stages match

with the original paper.

In our experiments, all models are trained using SGD

with momentum of 0.9 for 60 epochs. The training schedule

is a poly learning rate update strategy, starting from 0.02

with 10−5 weight decay. Training the model on WOD takes

7 hours on 4 Nvidia Geforce GTX2080Ti GPU with 256

batch size per GPU.

4.4. 3D Detection on Open Datasets

Waymo Open Dataset. We apply the proposed LiDAR

R-CNN to three different kinds of baseline models: Point-

Pillars [12], SECOND [44], and RV [2] which are birds-

eye-view based, 3D voxel based, and range view based, re-

spectively. All these methods are evaluated with 3D AP in

two difficulty levels defined in the official evaluation, where

the LEVEL 1 objects should contain at least 5 points in each

2https://github.com/open-mmlab/mmdetection3d
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Methods Easy Moderate Hard

PointPillars(T) 82.17 72.81 67.57

PointPillars(TV) 83.12 74.11 69.14

Ours(TV) 85.97 74.21 69.18

Table 3. Vehicle 3D AP results on KITTI testing set. T mean-

s trained with training set. TV means trained with train-

ing+validation set.

groud-truth bounding box while the LEVEL 2 objects only

need one single point.

Tab. 1 reports the results of vehicle detection with 3D

and BEV AP on validation sequences. Note that after

hyperparameters finetuning, the performance of PointPil-

lars [12] implemented by MMDetection3D already surpass-

es the previous state-of-the-art model PV-RCNN [29]. As

shown in Tab. 1, our method improves all the baseline

models with a significant margin. Benchmark on various

distance ranges shows that LiDAR R-CNN generally im-

proves the baseline consistently on all distances. Further-

more, with the strong PointPillars baseline, LiDAR R-CNN

outperforms the PV-RCNN by 5.31% AP on the 3D ve-

hicle detection task. We also experiment with a 2x mod-

el with double channels, which enhances performance on

the more challenging case, 1.5% improvement in the LEV-

EL 2. Based on this, we cascade another stage to show the

ability of our models, which increase the 3D AP to 76% on

vehicle detetion. For the range view model, without bells

and whistles, we outperform the RCD [2].

Additionally, we show multi-class detection results with

VEHICLE, PEDESTRIAN, and CYCLIST in Tab. 2. Be-

cause we only obtain the multi-class results of PointPil-

lars [12] and SECOND [44] from publicly available codes,

we test our method with these two baselines only. We use

a multi-class classification loss and a class-agnostic regres-

sion loss for the three classes detection, without any other

tuning. Tab. 2 demonstrates that our model also performs

well in detecting small objects besides vehicles.

KITTI Dataset. We also show the effectiveness of the

proposed method on KITTI dataset [8]. LiDAR R-CNN

works by fitting the residuals upon first-stage models. How-

ever, models can easily achieve > 98% AP (easy set) on

the small training set of KITTI with only 3, 712 frames.

As a result, the limited training data reduces the effective-

ness of our LiDAR R-CNN. As shown in Tab. 3, we use

PointPillars(T) as the first-stage and train LiDAR R-CNN

with trainval data to get more effective data. We also show

PointPillars(TV) to make a fair comparison. Though the

improvement is less than those on WOD, we still highlight

2.8 AP improvement on easy set.

4.5. Ablation Studies

In this section, we first conduct an ablation study to sup-

port the claims on Sec. 3.2. And then, we show the gener-

Methods 3D AP@70 BEV AP@70

PointPillars [12] 71.6 87.1

PointNet refinement 74.1 87.9

voxel 72.9 87.2

anchor 75.2 88.2

size normalization 75.4 88.1

virtual point 75.4 88.1

boundary offset 75.6 88.3

Table 4. Ablation studies for different scale-aware methods pro-

posed in Sec. 3.2 on Waymo Open Dataset vehicle detection. The

baseline uses a basic PointNet with [x,y,z] inputs as second-stage

on PointPillars.

Methods vehicle pedestrian cyclist

PointPillars [12] 71.6 70.6 64.4

PointNet refinement 72.1 69.2 62.2

voxel 72.1 69.8 64.5

anchor 72.5 70.2 63.5

size normalization 72.7 69.9 64.4

virtual point 73.3 70.4 66.2

boundary offset 73.4 70.6 66.8

Table 5. 3D AP results on WOD with three classes trained in one

model.

alization and inference time of proposed method. We show

both single-class and multi-class results in Waymo Open

Dataset in this section.

The size ambiguity problem. Tab. 4 shows the com-

parison with different methods proposed in Sec. 3.2. From

the table, we can conclude that all the point-based R-CNN

models outperforms the baseline PointPillars. The Point-

Net models performs even better than voxel based models.

All other solutions achieve similar improvements compared

with baseline on the one-class setting.

Nevertheless, when it comes to the multi-class problem,

the size normalization and anchor solution suffer from d-

ifficulty in distinguishing different categories as shown in

Tab. 5. Normalization using proposals’ size will make

proposals from different classes have similar scale, which

would confuse the R-CNN model. When the network is not

sure about the class of the input objects, it will also be con-

fused about which anchor should be based on. The virtual

point and offset methods, which fundamentally solve the

ambiguity problem, reach the best results on the multi-class

setting.

In Tab. 6, we show the performance improvement of our

LiDAR R-CNN based on a range-view-based model RV.

The RV model is the baseline model in RCD [2]. It is built

with a voxel-based second stage, whose features are not on-

ly from the raw points, but also from the high level CNN

feature maps. Similar with the voxel experiments in Tab. 4,
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Methods 3D AP@70 BEV AP@70

RV baseline 53.4 70.5

RV + voxel 64.1 76.7

RV+ LiDAR R-CNN 68.7 81.1

Table 6. Comparison between voxel-based second-stage and pro-

posed LiDAR R-CNN on a range-view-based detector (RV). The

RV baseline is re-implemented from the baseline of RCD [2]. The

RV+LiDAR R-CNN replaces the second-stage with our method.
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Figure 4. Adaptive inference time with different sampled points.

Evaluate the LiDAR R-CNN sampling 64 to 1024 points per object

on Waymo Open Dataset Validation set.

Methods vehicle pedestrian cyclist

SECOND [44] 58.5 63.9 48.6

LiDAR R-CNN (sec) 62.6 68.2 52.8

LiDAR R-CNN (pp) 62.1 67.2 52.9

Table 7. We show generalization of our LiDAR R-CNN in this

Table. LiDAR R-CNN (sec) use the outputs from SECOND for

training and testing. LiDAR R-CNN (pp) trains with PointPillars’

outputs while inferencing on SECOND without finetuning.

the voxelization method is inferior to our purely point-based

R-CNN model.

Network volume. A trade-off between speed and accu-

racy can be achieved by modifying the channels in points

encoding. To quantify the effect of channel numbers, we

show a LiDAR R-CNN (2x) in Tab. 2 which obtains further

0.6% improvement in pedestrian and 1.8% in cyclist with

two times channels. In addition, we also show the adaptive

inference time by changing the number of sampled points

per objects in Fig. 4.

Cross-model generalization Tab. 7 demonstrates that

our approach is able to generalize across models. With-

out finetuning, LiDAR R-CNN trained on PointPillars [12]

works well on SECOND [44] model.

Sub-task ablation An R-CNN model contains two

tasks, namely classification task and regression task. The

regression task can be further splitted into three sub-tasks,

Method score center size heading AP@L1 AP@L2

PointPillars [12] 72.1 63.6

PointNet X 72.9 64.2

refinement X 72.9 64.3

X 72.2 63.7

X 72.1 63.6

X X X X 74.1 65.3

LiDAR R-CNN X 73.3 64.5

boudary offset X 73.7 65.0

X 72.6 64.1

X 72.2 63.6

X X X X 75.6 66.5

Table 8. Sub-task ablation study.

Methods 3D AP time Params

voxel 72.9 19ms 3.5M

ours 75.6 4.5ms 0.5M

Table 9. Inference time comparison between voxel-based and our

proposed method. The inference time is evaluated with 128 pro-

posals(batchsize=128).

center regression, size regression and orientation regression.

In Tab. 8, we successively add these sub-task refinement on

the baseline model to see the effect of each sub-task. From

the table, we can infer that the vanilla PointNet refinement

cannot improve the performance of the size sub-task based

on the PointPillars[12] model. With the boundary offset,

our LiDAR R-CNN has no ambiguity problem and is able

to refine the size.

Finally, we show our inference time and model size in

Tab. 9. Memory and computational demands of LiDAR R-

CNN are marginal.

5. Conclusions and Future Work

This paper presents LiDAR R-CNN, a fast and accurate

second-stage 3D detector. Through a detailed analysis of

scale ambiguity problem and deliberate experiments, we

come up with practical solutions. Comprehensive exper-

iments on Waymo Open Dataset demonstrate our method

can improve steadily on all baseline models and state-of-

the-art performance.

A multi-sensor fusion perception system is necessary for

robotics and autonomous driving. Besides the encouraging

performance on single-frame LiDAR detection, our LiDAR

R-CNN is easy to generalize to other kinds of inputs such as

multi-frame LiDAR and RGB+LiDAR. As a second-stage

framework, our method is more comfortable with various

aggregated inputs. We will investigate how to develop our

method into a multimodal fusion framework.
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