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Abstract

Kinship verification aims to find out whether there is a

kin relation for a given pair of facial images. Kinship ver-

ification databases are born with unbalanced data. For a

database with N positive kinship pairs, we naturally obtain

N(N − 1) negative pairs. How to fully utilize the limit-

ed positive pairs and mine discriminative information from

sufficient negative samples for kinship verification remain-

s an open issue. To address this problem, we propose a

Discriminative Sample Meta-Mining (DSMM) approach in

this paper. Unlike existing methods that usually construct

a balanced dataset with fixed negative pairs, we propose to

utilize all possible pairs and automatically learn discrim-

inative information from data. Specifically, we sample an

unbalanced train batch and a balanced meta-train batch

for each iteration. Then we learn a meta-miner with the

meta-gradient on the balanced meta-train batch. In the end,

the samples in the unbalanced train batch are re-weighted

by the learned meta-miner to optimize the kinship mod-

els. Experimental results on the widely used KinFaceW-

I, KinFaceW-II, TSKinFace, and Cornell Kinship datasets

demonstrate the effectiveness of the proposed approach.

1. Introduction

Facial appearance conveys valuable information, such as

identity [7, 23], age [19, 46], gender [17, 33], emotion-

s [16, 44], social relation [18, 54], and so on. Recently,

a variety of efforts [15, 21, 25, 32, 45] have been devoted to

kinship verification, which predicts the existence of kinship

for a given pair of facial images. As an emerging task, it

has many potential applications including missing children

search [25], intelligent family album organization [15, 29],

and social media analysis [49, 58].

Existing kinship databases organize data in terms of pos-

∗ Corresponding author

… …

Construct a Balanced Dataset Kinship Model

Learning

(a) Existing Method

Unbalanced Dataset

Sampling

Unbalanced Train 

Batch

Balanced Meta-Train 

Batch

… …

Kinship Model

Meta-Miner

Virtual Train

Meta Train

Actual Train

(b) Our Method

Figure 1. The key idea of our method. (a) The existing method

constructs a fixed database by sampling the equal size of nega-

tive samples. Then a kinship model is learned with the balanced

database. (b) Our method utilizes all possible pairs and does not

discard any negative samples. Specifically, we sample an unbal-

anced train batch and a balanced meta-train batch for each itera-

tion. A meta-miner is introduced to mine the samples in the train-

ing batch. Our method alternately optimizes the kinship model

and the proposed meta-miner via a meta-learning framework .

itive samples. For example, KinFaceW-I and KinFaceW-

II [25] datasets collect parent-child image pairs from the

Internet search. Assuming that a kinship database contains

N positive kinship pairs, the negative samples are generated

by combining all unrelated parent-child image pairs. There-

fore, we obtain N(N − 1) negative samples, which is far

more than the number of positive pairs. Existing methods

usually randomly sample fixed N negative samples to con-

struct a balanced database. However, this strategy simply
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ignores the remaining N(N − 2) negative samples leading

to overfitting. Besides, the real decision boundary cannot be

well learned with randomly selected N negative samples.

One simple strategy to address this issue is to sample a bal-

anced batch from positive samples and all possible negative

pairs separately. Nevertheless, most negative pairs are easy

samples and they contribute little to the network training.

In this work, we investigate how to mine discriminative

information from limited positive pairs and sufficient neg-

ative samples and propose a Discriminative Sample Meta-

Mining (DSMM) strategy via a meta-learning framework.

Specifically We first randomly sample an unbalanced train

batch from all possible pairs with a positive to negative ratio

of 1 : C, where C > 1. Then we aim to mine the discrim-

inative samples by re-weighting these samples in the train-

ing batch. Instead of manually selecting fixed weighting

functions, we consider automatically learning the weight-

ing functions from data. Encouraged by the recent success

of meta-learning [9, 41, 43], we introduce a meta-miner net-

work, which predicts the weight for each sample and is op-

timized with the meta-gradient. Concretely, another bal-

anced meta-train batch is sampled from all possible pairs.

Then we optimize the kinship model and meta-miner net-

work alternately with these two batches. After one-step-

forward optimization for the kinship model on the unbal-

anced train batch, we train the meta-miner network on the

balanced meta-train batch with one-step-forward parame-

ters of the kinship model. In the end, we perform the real

optimization for the kinship model with the sample weight-

s generated by the updated meta-miner network. Figure 1

shows the key idea of our method. The contributions of this

paper are summarized as follows:

• To the best of our knowledge, the proposed discrimina-

tive sample meta-mining approach is the first attempt

to fully utilize the unbalanced data of kinship databas-

es via a meta-learning framework.

• Our method proposes to simultaneously sample an un-

balanced train batch and a balanced meta-train batch,

and then perform sample mining on the training batch

with the guidance of a balanced meta-train batch.

• Extensive experiments on four widely used kinship

databases illustrate that the proposed method achieves

state-of-the-art results.

2. Related Work

Kinship Verification: Over the past decade, a variety of

approaches [8, 21, 26, 48] have been proposed for facial kin-

ship verification. We can categorize them into three group-

s [20]: hand-crafted methods, metric-learning based meth-

ods, and deep learning-based methods. In traditional explo-

ration, hand-crafted methods have been widely used, such

as histogram of the gradient [8, 40, 57], Gabor gradient ori-

entation pyramid [58], self-similarity [14], and so on. How-

ever, hand-crafted methods usually suffer from the limited

performance. Distance metric based approach has become

the most popular and successful method due to the superior

performance in kinship verification [24, 26]. For example,

Liang et al. [21] presented a weighted graph embedding-

based metric learning method, which jointly learned multi-

ple metrics by constructing an intrinsic graph. Recent years

have witnessed the remarkable success of deep learning in

computer vision, such as object detection [3, 28], and face

recognition [2, 13]. Some researchers [20, 52] applied deep

learning technologies into kinship verification. For exam-

ple, Zhang et al. [52] extracted facial key-points features

with CNNs. However, all these methods only use a fixed

database, where only a small proportion of the negative

samples are used. By contrast, we aim to mine the discrim-

inative samples from all possible pairs.

Class Imbalance: Most efforts to address the class im-

balance issue can be grouped into two categories [56]: re-

sampling and re-weighting. The re-sampling strategy usu-

ally constructs a balanced batch by adding samples from

minor classes [37] or under-sampling the dominant class-

es [11]. The re-weighting strategy assigns different weights

for samples from different classes in the loss function [42].

Many advanced class imbalance learning methods [5, 22]

have been proposed in recent years. Lin et al. [22] pro-

posed focal loss to deal with the extreme imbalance between

foreground and background classes. The effective number

of samples was introduced in [5] and a class-balanced loss

was further proposed with a re-weighting scheme. Zhou

et al. [56] proposed a Bilateral-Branch Network for long-

tailed visual recognition, which considers representation

learning and classifier learning simultaneously.

Meta-Learning: Meta-learning aims to develop a ma-

chine learning system that is used to assist in the opti-

mization of other machine learning models [9, 31, 38, 43].

Some researchers have proposed optimization based meta-

learning approaches [1, 4, 9, 30]. Andrychowicz et al. [1]

developed an algorithm with LSTMs to replace the hand-

designed optimization algorithms. A variety of metric-

based methods [39, 43] have been proposed, especially for

the area of one/few shot learning. Sung et al. [41] utilized a

relation network to learn an embedding and a deep distance

metric for comparing two samples. There are also stud-

ies [27, 34] focusing on memory-based approaches. Santoro

et al. [34] proposed a memory-augmented neural network to

rapidly encode new data and make accurate predictions with

the assimilated data. Encouraged by the success of meta-

learning, we design a meta-miner and utilize it to guide the

training process of our kinship model by fully exploiting all

possible samples in the database. Although meta-learning

has been successfully applied to face recognition [10], our
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Algorithm 1: Discriminative Sample Meta-Mining.

Input: Iteration number T .

Output: Model parameters θT and φT .

1: Initialize model parameters θ0 and φ0.

2: for t = 0, 1, ..., T − 1 do

3: Sample an unbalanced train batch (Strn,p,Strn,n).
4: Sample a balanced batch (Smeta,p,Smeta,n).
5: Perform the virtual training by (4) - (5)

6: Update φt+1 on the meta-train batch via (6) - (7).

7: Normalize sample weights with (8).

8: Update θt+1 by (9) - (11).

9: end for

10: return θT , φT .

method is still significantly different from it in terms of mo-

tivation, framework, optimization strategy, etc.

3. Proposed Approach

In this section, we first introduce the unbalanced data

issue for kinship verification. Then, we detail how the pro-

posed discriminative sample meta-mining approach exploit-

s limited positive samples and sufficient negative samples.

The meta-learning framework is further presented. Last-

ly, we introduce the network design of our kinship relation

model and the proposed meta-miner.

3.1. Unbalanced Kinship Data

Kinship verification organizes each sample as a facial

image pair (x,y), where x denotes the parent image and

y is the child image. Existing kinship verification databases

are usually constructed by collecting positive kinship pairs

since the negative pairs can be generated by shuffling the

positive pairs. Assuming that there are a total of N positive

pairs in a dataset, then we naturally obtain N(N − 1) nega-

tive samples. Therefore, the size of the negative samples is

much larger than that of positive samples.

How to learn a kinship model with the unbalanced da-

ta remains an open issue. Most existing methods randomly

select N negative samples to form a balanced dataset and

discard the remaining N(N − 2) negative samples. For-

mally, we denote the constructed positive data and negative

data by Dtrn,p and Dtrn,n, respectively. Let f(x,y; θ) de-

note the kinship model which is parameterized by θ. Then

the model is trained with binary cross entropy loss on the

balanced dataset:

L =−
1

2N

∑

(x,y)∈Dtrn,p

log(f(x,y; θ))

−
1

2N

∑

(x,y)∈Dtrn,n

log(1− f(x,y; θ)).

(1)

However, these methods cannot fully utilize the negative

data leading to inaccurate decision boundaries. One strate-

gy to address this issue is to sample a balanced mini-batch

for each iteration from all possible pairs. Formally, a pos-

itive batch Btrn,p with m examples and a negative batch

Btrn,n with m pairs are sampled. Then we train the kinship

model as follows:

L =−
1

2m

∑

(x,y)∈Btrn,p

log(f(x,y; θ))

−
1

2m

∑

(x,y)∈Btrn,n

log(1− f(x,y; θ)).

(2)

This strategy can use all possible pairs with a balanced

batch. Nevertheless, most negative pairs are easy examples,

which contribute little to the network training. In this pa-

per, we aim to mine the discriminative information from the

limited positive samples and sufficient negative facial image

pairs simultaneously.

3.2. Discriminative Sample Meta­Mining

To address the above issue, we propose a discrimina-

tive sample meta-mining approach with a meta-learning

framework. To fully exploit the potential of kinship da-

ta, we perform sampling from all possible pairs to con-

struct a batch. While the kinship data is unbalanced and

most negative samples are easy ones, we manually con-

struct an unbalanced train batch with a positive to nega-

tive ratio of 1 : C(C > 1). We then mine the discrim-

inative samples from the unbalanced batch. We employ

a sample re-weighting strategy to mining the discrimina-

tive information, which re-weights the loss value for each

sample. One can assign a constant value or choose a hand-

designed weighting function to re-weight the samples in the

unbalanced train batch. Instead, we aim to learn a weight-

ing function directly from data with a meta-learning frame-

work. Specifically, we introduce a meta-miner to generate

the weights. We implement the meta-miner with a neural

network which is denoted as g(φ) parameterized by φ. The

positive set and negative set of the sampled train batch are

denoted as Strn,p and Strn,n, respectively. Then the train-

ing objective for a given fixed meta-miner network g(φ) is

defined as:

L =
−1

m(1 + C)
(

∑

s∈Strn,p

g(s;φ) log(f(s; θ))

+
∑

s∈Strn,n

g(s;φ) log(1− f(s; θ))),
(3)

where m is the size of positive samples in the training batch

and s represents a pair of positive images.

We then optimize the parameters θ and φ with an online

strategy. The framework is depicted in Figure 1(b).

Virtual Training the Kinship Model: Assuming that

we have obtained the parameters θt and φt at t-th time step,
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Figure 2. The overall framework of our kinship relation model. For paired facial images, we use a CNN to extract deep features for them.

Then we explicitly model the relations of these two features with a relation module.

now we perform a virtual update for θt to obtain θ̂t+1. The

unbalanced train batch is used for updating. Therefore, the

loss function for this virtual training step is expressed as:

Lv trn(φ
t) =

−1

m(1 + C)
(

∑

s∈Strn,p

g(s;φt) log(f(s; θt))

+
∑

s∈Strn,n

g(s;φt) log(1− f(s; θt))).

(4)

Since different φt leads to different virtual train loss val-

ues, the loss in (4) is essentially a function of φt. With the

defined loss, we can update the kinship model with SGD:

θ̂t+1(φt) = θt − α∇θtLv trn(φ
t), (5)

where α is the step size. It is worth noting that the virtual

training step does not actually update the parameter θt of the

kinship model, which is used to calculate the second-order

gradients in the next step.

Training the Meta-Miner Network: Having obtained

the θ̂t, we then train the meta-miner network to obtain φt+1.

Specifically, we optimize the parameter of the meta-miner

network using the meta-learning idea [1, 9]. Another bal-

anced meta train batch is sampled, which is used to guide

the training process of the meta-miner network. The moti-

vation of this step is that we expect that the obtained param-

eter θ̂t+1 in the last step can achieve better performance on

the balanced meta-train batch. Formally, we define the posi-

tive set and the negative set of the balanced meta-train batch

as Smeta,p and Smeta,n, respectively. Then the meta-loss is

given by:

Lmeta(φ
t) =−

1

2m

∑

s∈Smeta,p

log(f(s; θ̂t+1(φt)))

−
1

2m

∑

s∈Smeta,n

log(1− f(s; θ̂t+1(φt)))),

(6)

where we use m positive samples and m negative samples

to form a balanced batch. Then we update the parameter φt

via gradient descent method with a learning rate of β:

φt+1 = φt
− β∇φtLmeta(φ

t). (7)

With the updated the parameter φt+1, we can generate

the real weights for the samples in the unbalanced train

batch. For each sample s ∈ Strn, we obtain the weight

g(s, φt+1). Before they are used in the next step, we first

normalize them within the train batch:

w̃s =
g(s;φt+1)∑

q∈Strn,p g(q;φt+1) +
∑

q∈Strn,n g(q;φt+1)
.

(8)

Actual Training the Kinship Model: With the obtained

weights in the second step, we can define the weighed loss

function as follows:

Ltrn(θ
t) =

−1

m(1 + C)
(

∑

s∈Strn,p

w̃s log(f(s; θ
t))

+
∑

s∈Strn,n

w̃s log(1− f(s; θt))).
(9)

Then we perform the actual network optimization for

kinship model with gradient descent:

θt+1 = θt − γ∇θtLtrn(θ
t), (10)

where γ is the learning rate.

In this way, the parameters θ and φ are alternately opti-

mized via meta-learning. We show the above framework in

Algorithm 1.

3.3. Implementation Details

The proposed DSMM method involves two networks:

kinship model f(θ) and meta-miner network g(φ). Here

we detail the design of these two models.

For the kinship model, we first use a ResNet-18 to ex-

tract image features for each facial image. Formally, for

a paired sample (x,y), we obtain the deep embeddings
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KinFaceW-I KinFaceW-II TSKinFace Cornell

Figure 3. Some examples of four widely used databases. Each row shows a paired sample, where the first image represents the parent and

the second image belongs to the child.

(ex, ey) ∈ (RD,RD), where D represents the feature di-

mension. Inspired by the recent success of relation network-

s [35], we consider modeling the relations of these two fea-

tures to infer their kinship. We explicitly model the per-

dimension relations of two extracted features and formulate

the kinship relation model as follows:

f(θ) = r(
D∣∣∣∣
i=1

h(ei
x
, ei

y
)), (11)

where
∣∣∣∣ represents concatenation, ei

x
and e

i
y

denote the i-
th element in the embeddings ex and ey respectively. Both

r(·) and h(·) are implemented with MLPs. We depict the

kinship relation model in Figure 2.

For the meta-miner network g(φ), we implement it with

a three-layer MLP. Instead of taking the whole samples as

the input, we only use the loss information to generate the

sample weights. Specifically, the meta-miner network takes

sample labels, predictions of our kinship model, and corre-

sponding train losses as inputs. Therefore, the input dimen-

sion of g(φ) is 3. Besides, we set the neural number of the

hidden layer as 512, which achieves the best performance.

4. Experiments

To evaluate the effectiveness of the proposed discrimina-

tive sample meta-mining approach, we conducted extensive

experiments on four widely used kinship datasets

4.1. Datasets

KinFaceW-I Dataset [26]: This dataset contains 533

pairs of facial images of persons with a kin relation. Four

different kin relations are considered in the dataset: father

and daughter (F-D) with 134 pairs, father and son (F-S) with

156 pairs, mother and daughter (M-D) with 127 pairs, moth-

er and son (M-S) with 116 pairs. Each sample is composed

of one parent face image and one child face image. The im-

ages are marked with the positions of eyes and are aligned

to a size of 64 × 64 based on the landmarks. We follow

Table 1. Mean accuracy (%) of different fusion methods. EF mean-

s early fusion, LF represents late fusion.

Dataset CNNP EF LF Relation DSMM

KinFaceW-I 77.5 75.7 72.3 78.1 82.4

KinFaceW-II 88.4 87.9 81.8 90.4 93.0

the standard protocol [26] in this database which adopts the

five-fold cross-validation.

KinFaceW-II Dataset [26]: This dataset consists of

1000 pairs of facial images of individuals with a kin re-

lation. This database also considers four common kin re-

lations: father and daughter (F-D), father and son (F-S),

mother and daughter (M-D), mother and son (M-S). Differ-

ent from the KinFaceW-I database, the positive pairs in this

dataset are taken from the same photo. Following the stan-

dard protocol [26], we perform five-fold cross-validation.

TSKinFace Dataset [47]: TSKinFace dataset has 2589

face images in total. Unlike the traditional kinship database

which investigates bi-subject relations, it is constructed to

model tri-subject relations. Two kin relations are con-

sidered in this database: Father-Mother-Son (FM-S) with

285 groups and Father-Mother-Daughter (FM-D) with 274

groups. Following [24], we re-organize the data into the

four kinds of bi-subject relations as other datasets. Then we

obtain 502 pairs of father and daughter (F-D) relations, 513

pairs of father and son (F-S) relations, 502 pairs of mother

and daughter (M-D) relations, 513 pairs of mother and son

(M-S) relations. Five-fold cross-validation is adopted.

Cornell KinFace Dataset [8]: Cornell KinFace

database is a small kinship dataset with only 150 pairs of

face images. All images are collected from the internet in-

cluding four family relations. There are 22% father and

daughter (F-D) relations, 40% father and son (F-S) rela-

tions, 25% mother and daughter (M-D) relations, and 13%

mother and son (M-S) relations in this dataset. We follow

the standard protocol [8] with five-fold cross-validation.

Some examples of these datasets are shown in Figure 3.
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Figure 4. The ratio curves of positive sample weights on the unbalanced train batch changing with epochs on the KinFaceW-I database and

KinFaceW-II database.

4.2. Experimental Settings

For all datasets, we performed data augmentation to al-

leviate the overfitting issue. First, we resized the image size

to 73×73, and then randomly cropped it to a size of 64×64.

Finally, we performed a random horizontal flipping with a

probability of 50%. The positive sample batch size on the

KinFaceW-II and TSKinFace datasets was set 16. The pos-

itive sample batch size on the KinFaceW-I and Cornell K-

inFace datasets was set to 8 since they have smaller data

sizes. For the kinship relation model, we used a ResNet-18

network to extract image features, which was trained with

binary cross-entropy loss. We optimized our network with

Adam optimizer. We set the learning rates α = 0.001,

β = 0.0001, and γ = 0.001. We decayed the learning

rate γ by 0.1 at 100 and 150 epochs. We trained our model

for 200 epochs. The meta-miner network was implement-

ed with an MLP. The output dimension of g(φ) was set to

1, which corresponds to the generated sample weight. A

sigmoid function was employed to normalize the output.

4.3. Results and Analysis

In this subsection, we present the experimental results on

four kinship databases and give a detailed analysis.

Kinship Relation Model: Note that the proposed kin-

ship relation model as defined in (11) is novel to kinship

verification. Since kinship verification deals with two fa-

cial images, one key design is how to fuse these two im-

ages. The closest method is CNNP [52], which uses a self-

designed backbone and early fusion. We consider several

different strategies and show the results in Table 1. Com-

pared with CNNP, the EF (early fusion) solution only re-

places the feature extractor model with ResNet-18, which

Table 2. Ablation study on the KinFaceW-I dataset.

Method FD FS MD MS Mean

Balance Batch 76.2 79.5 87.9 79.8 80.9

Unbalance Batch 75.8 80.1 88.2 79.3 80.9

Balance + Focal 69.8 72.1 83.5 72.8 74.6

Unbalance + Focal 71.3 73.7 83.0 75.4 75.8

DSMM 76.7 81.7 89.0 82.3 82.4

Table 3. Ablation study on the KinFaceW-II dataset.

Method FD FS MD MS Mean

Balance Batch 89.2 92.0 94.2 92.0 91.8

Unbalance Batch 89.2 92.0 94.8 94.0 92.5

Balance + Focal 78.6 79.0 83.0 81.4 80.5

Unbalance + Focal 79.4 81.6 86.4 84.4 83.0

DSMM 89.8 92.6 95.8 93.6 93.0

achieves slightly worse performance due to a simper net-

work. For simplicity, the ResNet-18 is adopted as the back-

bone for all other strategies. The LF (late fusion) solution

fuses two images in the last convolution layer instead of the

input layer, leading to terrible results. As a late fusion strat-

egy, our proposed relation module greatly improves perfor-

mance, which shows the effectiveness of our kinship rela-

tion model. With the proposed kinship relation model, our

DSMM further improves the accuracy by a large margin.

Ablation Study: To validate the effectiveness of our

method, we consider several different strategies to handle

the unbalanced data issue. The first strategy is named Bal-

ance Batch, which is a re-sampling strategy. It randomly

selects a balanced batch from all possible pairs and uses the
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Table 4. Results with different C on the KinFaceW-I dataset.

C FD FS MD MS Mean

1 76.6 80.1 88.6 81.9 81.8

2 75.3 81.1 86.9 78.9 80.6

4 76.7 81.7 89.0 82.3 82.4

8 75.5 77.9 87.8 78.0 79.8

Table 5. Results with different C on the KinFaceW-II dataset.

C FD FS MD MS Mean

1 89.0 91.8 96.0 93.4 92.5

2 89.8 92.6 95.8 93.6 93.0

3 87.6 91.4 94.0 92.0 91.3

4 87.0 91.0 92.8 91.2 90.5

sampled balance batch to train our kinship relation mod-

el. The second method sample the same unbalanced train

batch as our method does. To address the unbalanced issue,

we directly set the sample weight for all negative samples

as 1/C, which is a re-weighting strategy. We also consider

applying focal loss [22] for the sampled balanced batches

or unbalanced batches to mine discriminative samples.

We conducted experiments with these different strategies

on the KinFaceW-I and KinFaceW-II datasets. The results

are shown in Table 2 and Table 3, respectively. We observe

that Unbalance Batch usually gives better performance. The

reason is that an unbalanced batch contains more negative

samples so that they can be mined later. Since negative sam-

ples usually are the easy ones, sampling more negative sam-

ples are more useful. Both Balance Batch and Unbalance

Batch can improve performance compared with the kinship

relation model baseline as shown in Table 1. However, the

Focal loss significantly hurts performance. Due to the limit-

ed data size, we observed significant over-fitting (the accu-

racy on the training set is close to 100%). The use of Focus

Loss makes only a few hard samples dominate the gradient,

resulting in a highly biased model with poor generalization.

By contrast, our method introduces the balanced meta-train

batch to guarantee the generalization ability of our mod-

el. Besides, our method can dynamically fit a wide range

of weighting functions rather than just a certain family of

functions. In the end, we see that our method achieves the

best performance on both datasets, which demonstrates the

effectiveness of our proposed approach.

To better understand the learning process of our meta-

miner, we show the ratio of positive sample weights on the

unbalanced train batch, which is defined as the total of pos-

itive weights divided by the total of all sample weights per

batch. The curves are depicted in Figure 4. We observe that

the ratio of positive sample weights increases with the num-

ber of epochs, which shows that the contribution of positive

samples for training is increasing during training. Such ob-

servation verifies the necessity of sampling an unbalanced

Table 6. Comparison of verification accuracy of DSMM with state-

of-the-art on the KinFaceW-I dataset.

Method FD FS MD MS Mean

IML [50] 67.5 70.5 72.0 65.5 68.9

MNRML [26] 66.5 72.5 72.0 66.2 69.3

MPDFL [51] 73.5 67.5 66.1 73.1 70.1

DMML [50] 69.5 74.5 75.5 69.5 72.3

GA [6] 76.4 72.5 71.9 77.3 74.5

WGEML [21] 78.5 73.9 80.6 81.9 78.7

WLDA [36] 76.6 71.2 77.7 76.4 75.5

MMFA [36] 77.9 72.0 77.2 75.2 75.6

CNNP [52] 71.8 76.1 84.1 78.0 77.5

DSMM 76.7 81.7 89.0 82.3 82.4

Table 7. Comparison of verification accuracy of DSMM with state-

of-the-art on the KinFaceW-II dataset.

Method FD FS MD MS Mean

IML [50] 74.0 74.5 78.5 76.5 75.9

MNRML [26] 74.3 76.9 77.6 77.4 76.6

MPDFL [51] 77.3 74.7 77.8 78.0 77.0

DMML [50] 76.5 78.5 79.5 78.5 78.3

LM3L [12] 82.4 74.2 79.6 78.7 78.7

GA( [6]) 83.9 76.7 83.4 84.8 82.2

WGEML [21] 88.6 77.4 83.4 81.6 82.8

WLDA [36] 86.6 74.4 81.0 78.8 80.2

MMFA [36] 85.6 73.2 80.4 77.2 79.1

CNNP [52] 81.9 89.4 92.4 89.9 88.4

DSMM 89.8 92.6 95.8 93.6 93.0

train batch and the effectiveness of our meta-miner.

Parameters Analysis: We conducted experiments on

the KinFaceW-I and KinFaceW-II datasets to choose the

best value for parameter C. The results are shown in Ta-

ble 4 and Table 5, respectively. On the KinFaceW-I data

set, we set the values of C as 1, 2, 4, and 8, respectively.

The experimental results show that our method achieves the

best performance when C = 4. On the KinFaceW-II data

set, we set the values of C as 1, 2, 3, and 4, respectively. The

experimental results show that our method achieves the best

performance when C = 2. The above setting is used for our

following experiments on the corresponding datasets.

Comparisons with State-of-the-Art: We compared the

proposed DSMM with existing kinship verification methods

on the KinFaceW-I database, the KinFaceW-II database, the

TSKinFace database, and the Cornell Kinship datasets.

Table 6 and Table 7 show the experimental results on

the KinFaceW-I and KinFaceW-II databases respective-

ly. Bolded numbers represent the best results. On the

KinFaceW-I data set, the average verification rate of our

proposed method is 82.4%, which outperforms the previ-

ous best method WGEML [21] by 3.7%. The proposed
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Figure 5. The comparisons of ROC curves with other methods on the KinFaceW-I dataset and the KinFaceW-II dataset.

Table 8. Comparison of verification accuracy of DSMM with state-

of-the-art on the TSKinFace dataset.

Method FD FS MD MS Mean

BSIF [47] 81.4 81.5 79.9 82.0 81.2

DDMML [24] 86.6 82.5 83.2 84.3 84.2

GMP [53] 88.5 87.0 87.9 87.8 87.8

MKSM [55] 82.0 81.4 82.3 81.9 81.9

DSMM 91.4 92.4 93.9 93.2 92.7

Table 9. Comparison of verification accuracy of DSMM with state-

of-the-art on the Cornell dataset.

Method FD FS MD MS Mean

PSM [8] 72.9 54.6 73.8 61.3 70.7

MNRML [25] 74.5 68.8 77.2 65.8 71.6

MPDFL [51] 74.8 69.1 77.5 66.1 71.9

DMML [50] 76.0 70.5 77.5 71.0 73.5

MKSM [55] 80.5 80.6 79.5 86.2 81.7

DSMM 88.0 87.0 94.0 93.0 90.5

method achieves an average verification rate of 93.0% on

the KinFaceW-II data set, which outperforms the previous

best approach CNNP [52] by 4.6%.

We also present the comparisons of our DSMM method

and other methods on the KinFaceW-I and KinFaceW-II

datasets in terms of ROC curves. As can be seen in Fig-

ure 5, the curve of the DSMM method is higher than oth-

er methods, which demonstrates the superiority of the pro-

posed discriminative sample meta-mining approach. Note

that the KVRL [15] achieves higher scores due to the multi-

patches input and outside data training. For a fair compari-

son, we do not include it in Table 6 and Table 7.

Table 8 shows the experimental results on the TSKin-

Face database while Table 9 lists the experimental results on

the Cornell KinFace database. We observe that our method

attains an average verification rate of 92.7% on the TSKin-

Face dataset, outperforming the GMP [53] method by 4.9%.

The proposed discriminative sample meta-mining method

obtains an average verification rate of 90.5% on the Cornel-

l dataset, which outperforms the previous best-performing

MKSM [55] method by 8.8%.

5. Conclusion

In this paper, we have presented the discriminative sam-

ple meta-mining approach for kinship verification. Un-

like the existing methods that usually construct a balanced

database with fixed negative samples, our method utilizes

all possible pairs and aims to exploit the discriminative in-

formation from the limited positive samples and sufficient

negative pairs. For each iteration, an unbalanced train batch

and a balanced meta-train batch are sampled. The balanced

meta-train batch is used to guide the training process of our

meta-miner via a meta-learning framework. Then our kin-

ship model is trained with the discriminative samples on

the training batch, which are weighted by the meta-miner.

Extensive experiment results on four widely used kinship

databases demonstrate that our method significantly outper-

forms the state-of-the-art methods.
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