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Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic

scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a

visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.

Abstract

We present a method to perform novel view and time syn-

thesis of dynamic scenes, requiring only a monocular video

with known camera poses as input. To do this, we introduce

Neural Scene Flow Fields, a new representation that models

the dynamic scene as a time-variant continuous function

of appearance, geometry, and 3D scene motion. Our repre-

sentation is optimized through a neural network to fit the

observed input views. We show that our representation can

be used for varieties of in-the-wild scenes, including thin

structures, view-dependent effects, and complex degrees of

motion. We conduct a number of experiments that demon-

strate our approach significantly outperforms recent monoc-

ular view synthesis methods, and show qualitative results of

space-time view synthesis on a variety of real-world videos.

1. Introduction

The topic of novel view synthesis has recently seen im-

pressive progress due to the use of neural networks to learn

representations that are well suited for view synthesis tasks.

Most prior approaches in this domain make the assumption

that the scene is static, or that it is observed from multiple

synchronized input views. However, these restrictions are

violated by most videos shared on the Internet today, which

frequently feature scenes with diverse dynamic content (e.g.,

humans, animals, vehicles), recorded by a single camera.

We present a new approach for novel view and time syn-

thesis of dynamic scenes from monocular video input with

known (or derivable) camera poses. This problem is highly

ill-posed since there can be multiple scene configurations

that lead to the same observed image sequences. In addition,

using multi-view constraints for moving objects is challeng-

ing, as doing so requires knowing the dense 3D motion of

all scene points (i.e., the “scene flow”).

In this work, we propose to represent a dynamic scene as a

continuous function of both space and time, where its output

consists of not only reflectance and density, but also 3D scene

motion. Similar to prior work, we parameterize this func-

tion with a deep neural network (a multi-layer perceptron,

MLP), and perform rendering using volume tracing [46]. We

optimize the weights of this MLP using a scene flow fields

warping loss that enforces that our scene representation is

temporally consistent with the input views. Crucially, as

we model dense scene flow fields in 3D, our function can

represent the sharp motion discontinuities that arise when

projecting the scene into image space, even with simple low-

level 3D smoothness priors. Further, dense scene flow fields

also enable us to interpolate along changes in both space and

time. To the best our knowledge, our approach is the first to

achieve novel view and time synthesis of dynamic scenes

captured from a monocular camera.

As the problem is very challenging, we introduce different

components that improve rendering quality over a baseline

solution. Specifically, we analyze scene flow ambiguity at

motion disocclusions and propose a solution to it. We also

show how to use data-driven priors to avoid local minima
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during optimization, and describe how to effectively combine

a static scene representation with a dynamic one which lets

us render views with higher quality by leveraging multi-view

constraints in static regions.

In summary, our key contributions include: (1) a neural

representation for space-time view synthesis of dynamic

scenes that we call Neural Scene Flow Fields, that has the

capacity to model 3D scene dynamics, and (2) a method for

optimizing Neural Scene Flow Fields on monocular video by

leveraging multiview constraints in both rigid and non-rigid

regions, allowing us to synthesize and interpolate both view

and time simultaneously.

2. Related Work

Our approach is motivated by a large body of work in the

areas of novel view synthesis, dynamic scene reconstruction,

and video understanding.

Novel view synthesis. Many methods propose first build-

ing an explicit 3D scene geometry such as point clouds or

meshes, and rendering this geometry from novel views [11,

13, 17, 24, 33, 68]. Light field rendering methods on the other

hand, synthesize novel views by using implicit soft geometry

estimates derived from densely sampled images [12, 22, 35].

Numerous other works improve the rendering quality of light

fields by exploiting their special structure [16, 57, 63, 75].

Yet another promising 3D representation is multiplane im-

ages (MPIs), that have been shown to model complex scene

appearance [9, 10, 15, 20, 45, 69].

Recently, deep learning methods have shown promis-

ing results by learning a representation that is suited for

novel view synthesis. Such methods have learned addi-

tional deep features that exist on top of reconstructed

meshes [25, 60, 73] or dense depth maps [21, 79]. Alter-

nately, pure voxel-based implicit scene representations have

become popular due to their simplicity and CNN-friendly

structure [14, 19, 38, 66, 67, 73]. Our method is based on

a recent variation of these approaches to represent a scene

as neural radiance field (NeRF) [46], which model the ap-

pearance and geometry of a scene implicitly by a continuous

function, represented with an MLP. While the above meth-

ods have shown impressive view synthesis results, they all

assume a static scene with fixed appearance over time, and

hence cannot model temporal changes or dynamic scenes.

Another class of methods synthesize novel views from a

single RGB image. These methods typically work by predict-

ing depth maps [36, 54], sometimes with additional learned

features [78], or a layered scene representation [64, 74] to

fill in the content in disocclusions. While such methods, if

trained on appropriate data, can be used on dynamic scenes,

this is only possible on a per-frame (instantaneous) basis, and

they cannot leverage repeated observations across multiple

views, or be used to synthesize novel times.

Novel time synthesis. Most approaches for interpolating

between video frames work in 2D image space, by directly

predicting kernels that blend two images [51, 52, 53], or by

modeling optical flow and warping frames/features [2, 31,

49, 50]. More recently, Lu et al. [39] show re-timing effect of

people by using a layered representation. These approaches

generate high-quality frame interpolation results, but operate

in 2D and cannot be used to synthesize novel views in space.

Space-time view synthesis. There are two main reasons

that scenes change appearance across time. The first is due

to illumination changes; prior approaches have proposed to

render novel views of single object with plausible relight-

ing [4, 5, 6], or model time-varying appearance from internet

photo collections [37, 42, 44]. However, these methods op-

erate on static scenes and treat moving objects as outliers.

Second, appearance change can happen due to 3D scene

motion. Most prior work in this domain [1, 3, 70, 85] re-

quire multi-view, time synchronized videos as input, and has

limited ability to model complicated scene geometry. Most

closely related ours, Yoon et al. [81] propose to combine

single-view depth and depth from multi-view stereo to render

novel views by performing explicit depth based 3D warping.

However, this method has several drawbacks: it relies on

human annotated foreground masks, requires cumbersome

preprocessing and pretraining and tends to produce artifacts

in disocclusions. Instead, we show that our model can be

trained end-to-end and produces much more realistic results,

and is able to represent complicated scene structure and view

dependent effects along with natural degrees of motion.

Dynamic scene reconstruction. Most successful non-

rigid reconstruction systems either require RGBD data as

input [7, 18, 29, 48, 80, 86], or can only reconstruct sparse

geometry [56, 65, 77, 83]. A few prior monocular methods

proposed using strong hand-crafted priors to decompose dy-

namic scenes into piece-wise rigid parts [34, 59, 61]. Recent

work of Luo et al. [40] estimates temporally consistent depth

maps of scenes with small object motion by optimizing the

weights of a single image depth prediction network, but we

show that this approach fails to model large and complex

3D motions. Additional work has aimed to predict per-pixel

scene flows of dynamic scenes from either monocular or

RGBD sequences [8, 26, 30, 41, 47, 71].

3. Approach

We build upon prior work for static scenes [46], to which

we add the notion of time, and estimate 3D motion by

explicitly modeling forward and backward scene flow as

dense 3D vector fields. In this section, we first describe this

time-variant (dynamic) scene representation (Sec. 3.1) and

the method for effectively optimizing this representation

(Sec. 3.2) on the input views. We then discuss how to im-

prove the rendering quality by adding an additional explicit
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time-invariant (static) scene representation, optimized jointly

with the dynamic one by combining both during rendering

(Sec. 3.3). Finally, we describe how to achieve space-time

interpolation of dynamic scenes through our trained repre-

sentation (Sec. 3.4).

Background: static scene rendering. Neural Radiance

Fields (NeRFs) [46] represent a static scene as a radiance

field defined over a bounded 3D volume. This radiance field,

denoted FΘ, is defined by a set of parameters Θ that are

optimized to reconstruct the input views. In NeRF, FΘ is a

multi-layer perceptron (MLP) that takes as input a position

(x) and viewing direction (d), and produces as output a

volumetric density (σ) and RGB color (c):

(c, σ) = FΘ(x,d) (1)

To render the color of an image pixel, NeRF approximates a

volume rendering integral. Let r be the camera ray emitted

from the center of projection through a pixel on the image

plane. The expected color Ĉ of that pixel is then given by:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t)) c(r(t),d) dt

where T (t) = exp

(

−

∫ t

tn

σ(r(s)) ds

)

. (2)

Intuitively, T (t) corresponds to the accumulated trans-

parency along that ray. The loss is then the difference be-

tween the reconstructed color Ĉ, and the ground truth color

C corresponding to the pixel that ray originated from r:

Lstatic =
∑

r

||Ĉ(r)−C(r)||22. (3)

3.1. Neural scene flow fields for dynamic scenes

To capture scene dynamics, we extend the static scenario

described in Eq. 1 by including time in the domain and

explicitly modeling 3D motion as dense scene flow fields.

For a given 3D point x and time i, the model predicts not just

reflectance and opacity, but also forward and backward 3D

scene flow Fi = (fi→i+1, fi→i−1), which denote 3D offset

vectors that point to the position of x at times i+1 and i− 1
respectively. Note that we make the simplifying assumption

that movement that occurs between observed time instances

is linear. To handle motion disocclusions in 3D space, we

also predict disocclusion weights Wi = (wi→i+1, wi→i−1)
(described in Sec. 3.2). Our dynamic model is thus defined

as:

(ci, σi,Fi,Wi) = F
dy
Θ (x,d, i). (4)

Note that for convenience, we use the subscript i to indicate

a value at a specific time i.

Figure 2: Scene flow fields warping. To render a frame

at time i, we perform volume rendering along ray ri with

RGBσ at time i, giving us the pixel color Ĉi(ri) (left). To

warp the scene from time j to i, we offset each step along ri
using scene flow fi→j and volume render with the associated

color and opacity (cj , σj) (right).

3.2. Optimization

Temporal photometric consistency. The key new loss we

introduce enforces that the scene at time i should be con-

sistent with the scene at neighboring times j ∈ N (i), when

accounting for motion that occurs due to 3D scene flow. To

do this, we volume render the scene at time i from 1) the per-

spective of the camera at time i and 2) with the scene warped

from j to i, so as to undo any motion that occurred from i

to j. As shown in Fig. 2 (right), during volume rendering,

we achieve this by warping each 3D sampled point location

xi along a ray ri using the predicted scene flows fields Fi

to look up the RGB color cj and opacity σj at neighboring

time j. This yields a rendered image, denoted Ĉj→i, of the

scene at time j with both camera and scene motion warped

to time i:

Ĉj→i(ri) =

∫ tf

tn

Tj(t)σj(ri→j(t)) cj(ri→j(t),di)dt

where ri→j(t) = ri(t) + fi→j(ri(t)). (5)

We minimize the mean squared error (MSE) between each

warped rendered view and the ground truth view:

Lpho =
∑

ri

∑

j∈N (i)

||Ĉj→i(ri)−Ci(ri)||
2
2 (6)

An important caveat is that this loss is ambiguous at

3D disocculusion regions caused by motion. Analogous to

2D dense optical flow [43], scene flow is ambiguous when

a 3D location becomes occluded or disoccluded between

frames. These regions are especially important as they oc-

cur at the boundaries of moving objects (see Fig. 3 for an

illustration). To mitigate errors due to this ambiguity, we

predict extra continuous disocclusion weight fields wi→i+1

and wi→i−1 ∈ [0, 1], corresponding to fi→i+1 and fi→i−1
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Figure 3: Scene flow disocclusion ambiguity. In this 2D

orthographic example, a single blue object translates to the

right by one unit from frame i to frame j. Here, the cor-

rect scene flow at the point labeled a, e.g., fi→j (a), points

one unit to the right, however, for the scene flow fi→j (c)
(and similarly fj→i (a)), there can be multiple answers. If

fi→j (c) = 0, then the scene flow would incorrectly point to

the foreground in the next frame, and if fi→j (c) = 1, the

scene flow would point to the free-space location d at j.

respectively. These weights serve as an unsupervised confi-

dence of where and how much strength the temporal photo-

consistency loss should be applied. We apply these weights

by volume rendering the weight along the ray ri with opacity

from time j, and multiplying the accumulated weight at each

2D pixel:

Ŵj→i(ri) =

∫ tf

tn

Tj(t)σj(ri→j(t))wi→j(ri(t)) dt (7)

We avoid the trivial solution where all predicted weights

are zero by adding ℓ1 regularization to encourage predicted

weights to be close to one, giving us a new weighted loss:

Lpho =
∑

ri

∑

j∈N (i)

Ŵj→i(ri)||Ĉj→i(ri)−Ci(ri)||
2
2

+ βw

∑

xi

||wi→j(xi)− 1‖|1, (8)

where βw is a regularization weight which we set to 0.1 in

all our experiments. We use N (i) = {i, i ± 1, i ± 2}, and

chain scene flow and disocclusion weights for the i±2 cases.

Note that when j = i, there is no scene flow warping or

disocculusion weights involved (fi→j = 0, Ŵj→i(ri) = 1),

meaning that Ĉi→i(ri) = Ĉi(ri), as in Fig. 2(left). Com-

paring Fig. 4(e) and Fig. 4(d), we can see that adding this

disocclusion weight improves rendering quality near motion

boundaries.

Scene flow priors. To regularize the predicted scene flow

fields, we add a 3D scene flow cycle consistency term to

encourage that at all sampled 3D points xi, the predicted

forward scene flow fi→j is consistent with the backward

scene flow fj→i at the corresponding location at time j (i.e. at

position xi→j = xi+ fi→j). Note that this cycle consistency

can also be ambiguous near motion disocclusion regions in

(a) Our rendered views (b) w/o Ldata (c) w/o Lcyc (d) w/o Wi (e) Full

Figure 4: Qualitative ablations. Results of our full method

with different loss components removed. The odd rows show

zoom-in rendered color and the even rows show correspond-

ing pseudo depth. Each component reduces the overall qual-

ity in different ways.

3D, so we use the same predicted disocclusion weights to

modulate this term, giving us:

Lcyc =
∑

xi

∑

j∈i±1

wi→j ||fi→j(xi) + fj→i(xi→j)||1 (9)

We additionally add low-level regularizations Lreg on the

predicted scene flow fields. First, following prior work [48,

77], we enforce scene flow spatial-temporal smoothness by

applying ℓ1 regularization to nearby sampled 3D points along

the ray and encouraging 3D point trajectories to be piece-

wise linear. Second, we encourage scene flow to be small

in most places [76] by applying an ℓ1 regularization term.

Please see the supplementary material for complete descrip-

tions.

Data-driven priors. Since monocular reconstruction of

complex dynamic scenes is highly ill-posed, the above losses

can on occasion converge to sub-optimal local minima when

randomly initialized. Therefore, we introduce two data-

driven losses, a geometric consistency term [29, 28] and

a single-view depth term: Ldata = Lgeo + βzLz . We set

βz = 2 in all our experiments.

The geometric consistency helps model build accurate

correspondence association between adjacent frames. In par-

ticular, it minimizes the reprojection error of scene flow

displaced 3D points w.r.t. the derived 2D optical flow which

we compute using pretrained networks [27, 72].

Suppose pi is a 2D pixel position at time i. The corre-

sponding 2D pixel location in the neighboring frame at time j

displaced through 2D optical flow ui→j can be computed as

pi→j = pi + ui→j . To estimate the expected 2D point loca-

tion p̂i→j at time j displaced by predicted scene flow fields,

we first compute the expected scene flow F̂i→j(ri) and the

expected 3D point location X̂i(ri) of the ray ri through

volume rendering. p̂i→j is then computed by performing

perspective projection of the expected 3D point location dis-

placed by the scene flow (i.e. X̂i(ri) + F̂i→j(ri)) into the
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Combined render Static only Dynamic only

Figure 5: Dynamic and static components. Our method

learns static and dynamic components in the combined repre-

sentation. Note person is almost still in the bottom example.

viewpoint corresponding to the frame at time j. The geo-

metric consistency is computed as the ℓ1 difference between

p̂i→j and pi→j ,

Lgeo =
∑

ri

∑

j∈{i±1}

||p̂i→j(ri)− pi→j(ri))||1. (10)

We also add a single view depth prior that encourages the

expected termination depth Ẑi computed along each ray to

be close to the depth Zi predicted from a pre-trained single-

view network [58]. As single-view depth predictions are

defined up to an unknown scale and shift, we utilize a robust

scale-shift invariant loss [58]:

Lz =
∑

ri

||Ẑ∗
i (ri)− Z∗

i (ri)||1 (11)

where ∗ is a whitening operation that normalizes the depth

to have zero mean and unit scale.

From Fig 4(b), we see that adding data-driven priors help

the model learn correct scene geometry especially for dy-

namic regions. However, as both of these data-driven priors

are noisy (rely on inaccurate or incorrect predictions), we use

these for initialization only, and linearly decay the weight of

Ldata to zero during training.

3.3. Integrating a static scene representation

The method described so far already outperforms the

state of the art, as shown in Tab. 1. However, unlike NeRF,

our warping-based temporal loss can only be used in a lo-

cal temporal neighborhood N (i), as dynamic components

typically undergo too much deformation to reliably infer

correspondence over larger temporal gaps. Static regions,

however, should be consistent and should leverage observa-

tions from all frames. Therefore, we propose to combine our

dynamic (time-dependent) scene representation with a static

(time-independent) one, and require that when combined,

the resulting volume-rendered images match the input. We

model each representation with its own MLP, where the dy-

namic scene component is represented with Eq. 4, and the

static one is represented as a variant of Eq. 1:

(c, σ, v) = F st
Θ(x,d) (12)

(a) Our rendered views w/ static (b) w/o static (c) w/ static

Figure 6: Static scene representation ablation. Adding a

static scene representation yields higher fidelity renderings,

especially in static regions (a,c) when compared to the pure

dynamic model (b).

where v is an unsupervised 3D blending weight field, that

linearly blends the RGBσ from static and dynamic scene rep-

resentations along the ray. Intuitively, v should assign a low

weight to the dynamic representation at static regions with

sufficient observations, as these can be rendered in higher

fidelity by the static representation, while assigning a lower

weight to the static representation in regions that are moving,

as these can be better modeled by the dynamic representa-

tion. We found adding the extra v leads to less artifacts and

more stable training than the configuration without v. The

combined rendering equation is then written as:

Ĉcb
i (ri) =

∫ tf

tn

T cb
i (t)σcb

i (t) ccb
i (t)dt, (13)

where σcb
i (t) ccb

i (t) is a linear combination of static and dy-

namic scene components, weighted by v(t):

σcb
i (t) ccb

i (t) = v(t) c(t)σ(t) + (1-v(t)) ci(t)σi(t) (14)

For clarity, we omit ri in each prediction. We then train the

combined scene representation by minimizing MSE between

Ĉcb
i with the corresponding input view:

Lcb =
∑

ri

||Ĉcb
i (ri)−Ci(ri)||

2
2. (15)

This loss is added to the previously defined losses on the

dynamic representation, giving us the final combined loss:

L = Lcb + Lpho + βcycLcyc + βdataLdata + βregLreg (16)

where the β coefficients weight each term. Fig. 5 shows

separately rendered static and dynamic scene components,

and Fig. 6 visually compares renderings with and without

integrating a static scene representation.

3.4. Spacetime view synthesis

To render novel views at a given time, we simply vol-

ume render each pixel using Eq. 5 (dynamic) or Eq. 13
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Figure 7: Novel time synthesis. Rendering images by in-

terpolating the time index (top) yields blending artifacts

compared to our scene flow based rendering (bottom).

(static+dynamic). However, we observe that while this ap-

proach produces good results at times corresponding to in-

put views, the representation does not allow us to interpolate

time-variant geometry at in-between times, leading instead to

rendered results that look like linearly blended combinations

of existing frames (Fig. 7).

Instead, we render intermediate times by warping the

scene based on the predicted scene flow. For efficient ren-

dering, we propose a splatting-based plane-sweep volume

rendering approach. To render an image at intermediate time

i+ δi, δi ∈ (0, 1) at a specified target viewpoint, we sweep

over every step emitted from the novel viewpoint from front

to back. At each sampled step t along the ray, we query point

information through our models at both times i and i + 1,

and displace the 3D points at time i by the scaled scene flow

xi+δifi→i+1(xi), and similarity for time i+1. We then splat

the 3D displaced points onto a (c, α) accumulation buffer at

the novel viewpoint, and blend splats from time i and i+ 1
with linear weights 1 − δi, δi. The final rendered view is

obtained by volume rendering the accumulation buffer (see

supplementary material for a diagram).

4. Experiments

Implementation details. We use COLMAP [62] to esti-

mate camera intrinsics and extrinsics, and consider these

fixed during optimization. As COLMAP assumes a static

scene, we mask out features from regions associated with

common classes of dynamic objects using off-the-shelf in-

stance segmentation [23]. During training and testing, we

sample 128 points along each ray and normalize the time

indices i ∈ [0, 1]. As with NeRF [46], we use positional

encoding to transform the inputs, and parameterize scenes

using normalized device coordinates. A separate model is

trained for a each scene using the Adam optimizer [32] with

a learning rate of 0.0005. While integrating the static scene

representation, we optimize two networks simultaneously.

Training a full model takes around two days per scene using

two NVIDIA V100 GPUs and rendering takes roughly 6

seconds for each 512× 288 frame. We refer readers to the

supplemental material for our network architectures, hyper-

Methods MV
Dynamic Only Full

SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓)

SinSyn [78] No 0.371 14.61 0.341 0.488 16.21 0.295

MPIs [74] No 0.494 16.44 0.383 0.629 19.46 0.367

3D Ken Burn [54] No 0.462 16.33 0.224 0.630 19.25 0.185

3D Photo [64] No 0.486 16.73 0.217 0.614 19.29 0.215

NeRF [46] Yes 0.532 16.98 0.314 0.893 24.90 0.098

Luo et al. [40] Yes 0.530 16.97 0.207 0.746 21.37 0.141

Yoon et al. [81] Yes 0.547 17.34 0.199 0.761 21.78 0.127

Ours (wo/ static) Yes 0.760 21.88 0.108 0.906 26.95 0.071

Ours (w/ static) Yes 0.758 21.91 0.097 0.928 28.19 0.045

Table 1: Quantitative evaluation of novel view synthesis

on the Dynamic Scenes dataset. MV indicates whether the

approach makes use multi-view information or not.

Methods Dynamic Only Full

SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓)

NeRF [46] 0.522 16.74 0.328 0.862 24.29 0.113

[64] + [52] 0.490 16.97 0.216 0.616 19.43 0.217

[81] + [52] 0.498 16.85 0.201 0.748 21.55 0.134

Ours (w/o static) 0.720 21.51 0.149 0.875 26.35 0.090

Ours (w/ static) 0.724 21.58 0.143 0.892 27.38 0.066

Table 2: Quantitative evaluation of novel view and time

synthesis. See Sec. 4.2 for a description of the baselines.

parameter settings, and other implementation details.

4.1. Baselines and error metrics

We compare our approach to state-of-the-art single-view

and multi-view novel view synthesis algorithms. For single-

view methods, we compare to MPIs [74] and SinSyn [78],

trained on indoor real estate videos [84]; 3D Photos [64] and

3D Ken Burns [54] were trained mainly on images in the

wild. Since these methods can only compute depth up to an

unknown scale and shift, we align the predicted depths with

the SfM sparse point clouds before rendering. For multi-view,

we compare to a recent dynamic view synthesis method [81].

Since the authors do not provide source code, we reimple-

mented their approach based on the paper description. We

also compare to a video depth prediction method [40] and

perform novel view synthesis by rendering the point cloud

into novel views while filling in disoccluded regions. Finally,

we train a standard NeRF [46], with and without the added

time domain, on each dynamic scene.

We report the rendering quality of each approach with

three standard error metrics: structural similarity index mea-

sure (SSIM), peak signal-to-noise ratio (PSNR), and percep-

tual similarity through LPIPS [82], on both the entire scene

(Full) and in dynamic regions only (Dynamic Only).

4.2. Quantitative evaluation

We evaluate on the Nvidia Dynamic Scenes Dataset [81],

which consists of 8 scenes with human and non-human mo-

tion recorded by 12 synchronized cameras. As in the orig-

inal work [81], we simulate a moving monocular camera

by extracting images sampled from each camera viewpoint

at different time instances, and evaluate the result of view
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3D Photo [64] NeRF [46] Yoon et al. [81] Ours GT

Figure 8: Qualitative comparisons on the Dynamic Scenes dataset. Compared with prior methods, our rendered images

more closely match the ground truth, and include fewer artifacts, as shown in the highlighted regions.

synthesis with respect to known held-out viewpoints and

frames. For each scene, we extract 24 frames from the orig-

inal videos for training and use the remaining 11 held-out

images per time instance for evaluation.

Novel view synthesis. We first evaluate our approach and

other baselines on the task of novel view synthesis (at the

same time instances as the training sequences). The quantita-

tive results are shown in Table 1. Our approach without the

static scene representation (Ours w/o static) already signifi-

cantly outperforms other single-view and multi-view base-

lines in both dynamic regions and on the entire scene. NeRF

has the second best performance on the entire scene, but can-

not model scene dynamics. Moreover, adding the static scene

representation improves overall rendering quality by more

than 30%, demonstrating the benefits of leveraging global

multi-view information from rigid regions where possible.

Novel view and time synthesis. We also evaluate the task

of novel view and time synthesis by extracting every other

frame from the original Dynamic Scenes dataset videos

for training, and evaluating on the held-out intermediate

time instances at held-out camera viewpoints. Since we are

not aware of prior monocular space-time view interpolation

methods, we use two state-of-the-art view synthesis base-

lines [64, 81] to synthesize images at the testing camera

viewpoints followed by 2D frame interpolation [52] to ren-

der intermediate times, as well as NeRF evaluated directly at

the novel space-time views. Table 2 shows that our method

significantly outperforms all baselines in both dynamic re-

gions and the entire scene.

Methods Dynamic Only Full

SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓)

NeRF (w/ time) 0.630 18.89 0.159 0.875 24.33 0.081

w/o Lz 0.710 19.66 0.132 0.882 25.16 0.078

w/o Lgeo 0.713 19.74 0.139 0.885 25.19 0.079

w/o Lcyc 0.731 20.52 0.115 0.890 26.15 0.072

w/o Lreg 0.751 21.22 0.110 0.895 26.67 0.074

w/o Wi 0.754 21.31 0.112 0.894 26.23 0.074

w/o static 0.760 21.88 0.108 0.906 26.95 0.071

Full (w/ static) 0.758 21.91 0.097 0.928 28.19 0.045

Table 3: Ablation study on the Dynamic Scenes dataset.

See Sec. 4.2 for detailed descriptions of each of the ablations.

Ablation study. We analyze the effect of each proposed

system component in the task of novel view synthesis by

removing (1) all added losses, which gives us NeRF extended

to the temporal domain (NeRF (w/ time)); (2) the single

view depth prior (w/o Lz); (3) the geometry consistency

prior (w/o Lgeo); (4) the scene flow cycle consistency term

(w/o Lcyc); (5) the scene flow regularization term (w/o Lreg);

(6) the disocculusion weight fields (w/o Wi); (7) the static

representation (w/o static). The results, shown in Table 3,

demonstrate the relative importance of each component, with

the full system performing the best.

4.3. Qualitative evaluation

We provide qualitative comparisons on the Dynamic

Scenes dataset (Fig. 8) and on monocular video clips col-

lected in-the-wild from the internet featuring complex object

motions such as jumping, running, or dancing with various

occlusions (Fig. 9). NeRF [46] correctly reconstructs most

static regions, but produces ghosting in dynamic regions
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Our rendered views 3D Photo [64] NeRF [46] Yoon et al. [81] Luo et al. [40] Ours

Figure 9: Qualitative comparisons on monocular video clips. When compared to baselines, our approach more correctly

synthesizes hidden content in disocclusions (shown in the last three rows), and locations with complex scene structure such as

the fence in the first row.

since it treats all the moving objects as view-dependent ef-

fects, leading to incorrect interpolation results. The state-of-

the-art single-view method [64] tends to synthesize incorrect

content at disocclusions, such as the bins and speaker in

the last three rows of Fig. 9. In contrast, methods based on

reconstructing explicit depth maps [40, 81] have difficulty

modeling complex scene appearance and geometry such as

the thin structures in the third row of Fig. 8 and the first row

of Fig. 9.

5. Discussion

Limitations. Monocular space-time view synthesis of dy-

namic scenes is challenging, and we have only scratched the

surface with our proposed method. In particular, there are

several limitations to our approach. Similar to NeRF, train-

ing and rendering times are high, even at limited resolutions.

Additionally, each scene has to be reconstructed from scratch

and our representation is unable to extrapolate content un-

seen in the training views (See Fig. 10(a)). Furthermore, we

found that rendering quality degrades when either the length

of the sequence is increased given default number of model

parameters (most of our sequences were trained for 1∼2

seconds), or when the amount of motion is extreme (See

(a) Non-seen disocclusion (b) GT for (c) (c) Missing details

Figure 10: Limitations. Our method is unable to extrapolate

content unseen in the training views (a), and has difficulty

recovering high frequency details if a video involves extreme

object motions (b,c).

Fig. 10(b-c), where we train a model on a low frame rate

video). Our method can end up in the incorrect local minima

if object and camera motions are close to a degenerate case,

e.g., colinear, as described in Park et al. [55].

Conclusion. We presented an approach for monocular

novel view and time synthesis of complex dynamic scenes

by Neural Scene Flow Fields, a new representation that im-

plicitly models scene time-variant reflectance, geometry and

3D motion. We have shown that our method can generate

compelling space-time view synthesis results for scenes with

natural in-the-wild scene motion. In the future, we hope that

such methods can enable high-resolution views of dynamic

scenes with larger scale and larger viewpoint changes.
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