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Abstract

The moments (a.k.a., mean and standard deviation) of

latent features are often removed as noise when training

image recognition models, to increase stability and reduce

training time. However, in the field of image generation,

the moments play a much more central role. Studies have

shown that the moments extracted from instance normal-

ization and positional normalization can roughly capture

style and shape information of an image. Instead of being

discarded, these moments are instrumental to the genera-

tion process. In this paper we propose Moment Exchange,

an implicit data augmentation method that encourages the

model to utilize the moment information also for recogni-

tion models. Specifically, we replace the moments of the

learned features of one training image by those of another,

and also interpolate the target labels—forcing the model to

extract training signal from the moments in addition to the

normalized features. As our approach is fast, operates en-

tirely in feature space, and mixes different signals than prior

methods, one can effectively combine it with existing aug-

mentation approaches. We demonstrate its efficacy across

several recognition benchmark data sets where it improves

the generalization capability of highly competitive baseline

networks with remarkable consistency.

1. Introduction

Image recognition and image generation are two cor-

ner stones of computer vision. While both are burgeon-

ing fields, specialized techniques from both sub-areas can

sometimes form a dichotomy. Examples are mixup [69]

and squeeze-and-excitation [19] from the former, and adap-

tive instance normalization [22] from the latter, although

exceptions exist. Historically, the field of deep learning

was widely popularized in discriminative image classifi-

cation with AlexNet [32], and image generation through

GANs [12] and VAEs [30].

One particular aspect of this dichotomy is that in image
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Figure 1. PONO mean and std captures structural information.

recognition, popularized by batch normalization [24], the

first and second moments (a.k.a., mean and standard devia-

tion) in image recognition are computed across instances in

a mini-batch and typically removed as noise [24, 60]. Stud-

ies have shown that this smoothes the optimization land-

scape [46] and enables larger learning rates [2], which leads

to faster convergence in practice. In contrast, for tech-

niques like instance normalization [55] and positional nor-

malization [34], moments play a central role in the im-

age generation process. For example, exchanging mo-

ments of latent features across samples has become a pop-

ular way to control for the style or shape of generated im-

ages [22, 23, 27, 34, 41]. Here, moments are viewed as fea-

tures, not noise, with research showing that they encode the

style of an image [22, 27], as well as the underlying struc-

ture [34]. To substantiate this point, we depict the first and

second moments of the features extracted in the first layer

of a ResNet [16] in Fig. 1 , using the technique described in

[34]. The class label can still be inferred visually from both

moments, which is a testament to the signal that remains in

these statistics. To further substantiate our observation, we

also show in Fig. 2 that simply using moments (from the

first ResNet layer) for image classification already yields

non-trivial performance (red bar) as compared to random

guessing (gray bar). Similarly, removing the moments from

positional normalization has a detrimental effect (blue bar

vs. green bar).

As there is evidently important signal in the moments

and in the normalized features, we would like to introduce a

Example images are from Shutterstock.
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way to regulate how much attention the deep net should pay

to each source. One approach to direct neural networks to

a particular signal source is to introduce dedicated feature

augmentation. For example, it has been shown that Con-

vNets trained on ImageNet [6] are biased towards textures

instead of shapes [10]. To overcome this, Geirhos et al. [10]

introduce a style transfer model to create a set of images

with unreal textures. For example, they generate cats with

elephant skins and bears with Coca-Cola bottle texture. An

image classifier is trained to recognize the shape (cats or

bears) instead of the textures (elephants or bottles).

In this paper we propose a novel data augmentation

scheme that, to our knowledge, is the first method to sys-

tematically regulate how much attention a network pays to

the signal in the feature moments. Concretely, we extract

the mean and variance (across channels) after the first layer,

but instead of simply removing them, we swap them be-

tween images. See Fig. 3 for a schematic illustration, where

we extract and remove the feature moments of a cat image,

and inject the moments of a plane. Knowing that the result-

ing features now contain information about both images, we

make the network predict an interpolation of the two labels.

In the process, we force the network to pay attention to two

aspects of the data: the normalized feature (from the cat)

and the moments (from the plane). By basing its prediction

on two different signals we increase the robustness of the

classification, as during testing both would point towards

the same label. We call our method Moment Exchange or

MoEx for short.

Through exchanging the moments, we swap the shape

(or style) information of two images, which can be viewed

as an implicit version of the aforementioned method pro-

posed by Geirhos et al. [10]. However, MoEx does not re-

quire a pre-trained style transfer model to create a dataset

explicitly. In fact, MoEx is very effective for training with

mini-batches and can be implemented in a few lines of code:

During training we compute the feature mean and variance

for each instance at a given layer (acros channels), permute

them across the mini-batch, and re-inject them into the fea-

ture representation of other instances (while interpolating

the labels).

MoEx operates purely in feature space and can therefore

easily be applied jointly with existing data augmentation

methods that operate in the input space, such as cropping,

flipping, rotating, but even label-perturbing approaches like

Mixup [69] or Cutmix [67]. Importantly, because MoEx

only alters the first and second moments of the pixel dis-

tributions, it has an orthogonal effect to existing data aug-

mentation methods and its improvements can be “stacked”

on top of their established gains in generalization. We

conduct extensive experiments on eleven different tasks/-

datasets using more than ten varieties of models. The re-

sults show that MoEx consistently leads to significant im-
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Figure 2. Error rates of ResNet-110 using different features on

CIFAR-100. The numbers are averaged over three random runs.

We compute the moments after the first convolutional layer, and

either adds a PONO layer right after the first Conv-BN-ReLU

block or computes the first two moments and concatenate them

as a two-channel feature map. A ResNet which can only see the

moments can still make nontrivial predictions (Red is much bet-

ter than gray). Additionally, using only the normalized feature

(i.e., removing the PONO moments) hurts the performance (Blue

is worse than green), which also shows that these moments con-

tains important information. Finally, MoEx improves the perfor-

mance by encouraging the model to use both sources of signal

during training.

provements across models and tasks, and it is particularly

well suited to be combined with existing augmentation ap-

proaches. Further, our experiments show that MoEx is not

limited to computer vision, but is also readily applicable and

highly effective in applications within speech recognition

and natural language processing—suggesting that MoEx re-

veals a fundamental insight about deep nets that crosses

areas and data types. Our implementation is available at

https://github.com/Boyiliee/MoEx.

2. Background and Related Work

Feature normalization has always been a prominent part

of neural network training [33, 35]. Initially, when net-

works had predominately one or two hidden layers, the

practice of z-scoring the features was limited to the input

itself. As networks became deeper, Ioffe and Szegedy [24]

extended the practice to the intermediate layers with the cel-

ebrated BatchNorm algorithm. As long as the mean and

variance are computed across the entire input, or a ran-

domly picked mini-batch (as it is the case for BatchNorm),

the extracted moments reveal biases in the data set with no

predictive information — removing them causes no harm

but can substantially improve optimization and generaliza-

tion [2, 33, 45].

In contrast, recently proposed normalization methods [1,

34, 55, 60] treat the features of each training instance as a

distribution and normalize them for each sample individu-

ally. We refer to the extracted mean and variance as intra-
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Figure 3. MoEx with PONO normalization. The features hA of the cat image are normalized and then infused with moments µ
B
,σB from

the plane image. See Appendix for more examples.

instance moments. We argue that intra-instance moments

are attributes of a data instance that describe the distribu-

tion of its features and should not be discarded. Recent

works [22, 34] have shown that such attributes can be use-

ful in several generative models. Realizing that these mo-

ments capture interesting information about data instances,

we propose to use them for data augmentation.

Data augmentation has a similarly long and rich history

in machine learning. Initial approaches discovered the con-

cept of label-preserving transformations [47, 49] to mimic

larger training data sets to suppress overfitting effects and

improve generalization. For instance, Simard et al. [50]

randomly translate or rotate images assuming that the la-

bels of the images would not change under such small per-

turbations. Many subsequent papers proposed alternative

flavors of this augmentation approach based on similar in-

sights [4, 5, 7, 27, 28, 36, 51, 63, 70]. Beyond vision tasks,

back-translation [3, 8, 48, 66] and word dropout [25] are

commonly used to augment text data. Besides augmenting

inputs, Ghiasi et al. [11], van der Maaten et al. [56], Wang

et al. [58] adjust either the features or loss function as im-

plicit data augmentation methods. In addition to label-

preserving transformations, there is an increasing trend to

use label-perturbing data augmentation methods. Zhang

et al. [69] arguably pioneered the field with Mixup, which

interpolates two training inputs in feature and label space si-

multaneously. Cutmix [67], instead, is designed especially

for image inputs. It randomly crops a rectangular region of

an image and pastes it into another image, mixing the labels

proportional to the number of pixels contributed by each in-

put image to the final composition.

3. Moment Exchange

In this section we introduce Moment Exchange (MoEx),

which blends feature normalization with data augmenta-

tion. Similar to Mixup and Cutmix, it fuses features and la-

bels across two training samples, however it is unique in its

asymmetry, as it mixes two very different components: The

normalized features of one instance are combined with the

feature moments of another. This asymmetric composition

in feature space allows us to capture and smooth out differ-

ent directions of the decision boundary, not previously cov-

ered by existing augmentation approaches. We also show

that MoEx can be implemented very efficiently in a few

lines of code, and should be regarded as an effective default

companion to existing data augmentation methods.

Setup. Deep neural networks are composed of layers of

transformations including convolution, pooling, transform-

ers [57], fully connected layers, and non-linear activation

layers. Consider a batch of input instances x, these trans-

formations are applied sequentially to generate a series of

hidden features h
1, ...,hL before passing the final feature

h
L to a linear classifier. For each instance, any feature pre-

sentation h
ℓ is a 3D tensor indexed by channel (C), height

(H), and width (W).

Normalization. We assume the network is using an in-

vertible intra-instance normalization. We denote this func-

tion by F , which takes the features hℓ
i of the i-th input xi at

layer ℓ and produces three outputs: the normalized features

ĥi, the first moment µi, and the second moment σi:

(ĥℓ
i ,µ

ℓ
i ,σ

ℓ
i) = F (hℓ

i), h
ℓ
i = F−1(ĥℓ

i ,µ
ℓ
i ,σ

ℓ
i).

The inverse function F−1 reverses the normalization pro-

cess. As an example, PONO [34] computes the first and

second moments across channels from the feature represen-

tation at a given layer

µ
ℓ
b,h,w =

1

C

∑

c

h
ℓ
b,c,h,w,

σ
ℓ
b,h,w =

√

1

C

∑

c

(

hℓ
b,c,h,w − µ

ℓ
b,h,w

)2

+ ǫ.

The normalized features have zero-mean and standard de-

viation 1 along the channel dimension. Note that after us-

ing MoEx with an intra-instance normalization to exchange
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features, we can still apply an inter-instance normalization

(like BatchNorm) on these exchanged or mixed features,

with their well-known beneficial impact on convergence.

As the norms compute statistics across different dimensions

their interference is insignificant.

Moment Exchange. The procedure described in the fol-

lowing functions identically for each layer it is applied to

and we therefore drop the ℓ superscript for notational sim-

plicity. Further, for now, we only consider two randomly

chosen samples xA and xB (see Fig. 3 for a schematic illus-

tration). The intra-instance normalization decomposes the

features of input xA at layer ℓ into three parts, ĥA,µA,σA.

Traditionally, batch-normalization [24] discards the two

moments and only proceeds with the normalized features

ĥA. If the moments are computed across instances (e.g.

over the mini-batch) this makes sense, as they capture bi-

ases that are independent of the label. However, in our case

we focus on intra-instance normalization (See Fig. 1), and

therefore both moments are computed only from xA and are

thus likely to contain label-relevant signal. This is clearly

visible in the cat and plane examples in Fig. 3. All four mo-

ments (µA,σA,µB ,σB), capture the underlying structure of

the samples, revealing their respective class labels.

We consider the normalized features and the moments as

distinct views of the same instance. It generally helps ro-

bustness if a machine learning algorithm leverages multiple

sources of signal, as it becomes more resilient in case one of

them is under-expressed in a test example. For instance, the

first moment conveys primarily structural information and

only little color information, which, in the case of cat im-

ages can help overcome overfitting towards fur color biases

in the training data set.

In order to encourage the network to utilize the moments,

we use the two images and combine them by injecting the

moments of image xB into the feature representation of im-

age xA: h
(B)
A = F−1(ĥA,µB ,σB). In the case of PONO,

the transformation becomes h
(B)
A = σB

hA−µ
A

σA
+ µB . We

now proceed with these features h
(B)
A , which contain the

moments of image B (plane) hidden inside the features of

image A (cat). In order to encourage the neural network to

pay attention to the injected features of B we modify the

loss function to predict the class label yA and also yB , up

to some mixing constant λ ∈ [0, 1]. The loss becomes a

straight-forward combination

λ · ℓ(h
(B)
A , yA) + (1− λ) · ℓ(h

(B)
A , yB).

Implementation. In practice one needs to apply MoEx

only on a single layer in the neural network, as the fused

signal is propagated until the end. With PONO as the nor-

malization method, we observe that the first layer (ℓ = 1)

usually leads to the best result. In contrast, we find that

MoEx is more suited for later layers when using IN [55],

Model #param. CIFAR10 CIFAR100

ResNet-110 (3-stage) 1.7M 6.82±0.23 26.28±0.10

+MoEx 1.7M 6.03±0.24 25.47±0.09

DenseNet-BC-100 (k=12) 0.8M 4.67±0.10 22.61±0.17

+MoEx 0.8M 4.58±0.03 21.38±0.18

ResNeXt-29 (8×64d) 34.4M 4.00±0.04 18.54±0.27

+MoEx 34.4M 3.64±0.07 17.08±0.12

WRN-28-10 36.5M 3.85±0.06 18.67±0.07

+MoEx 36.5M 3.31±0.03 17.69±0.10

DenseNet-BC-190 (k=40) 25.6M 3.31±0.04 17.10±0.02

+MoEx 25.6M 2.87±0.03 16.09±0.14

PyramidNet-200 (α̃ = 240) 26.8M 3.65±0.10 16.51±0.05

+MoEx 26.8M 3.44±0.03 15.50±0.27

Table 1. Classification results (Err (%)) on CIFAR-10, CIFAR-

100 in comparison with various competitive baseline models. See

text for details.

GN [60], or LN [1] for moment extraction. Please see

Sec. 5 for a detailed ablation study. The inherent random-

ness of mini-batches allows us to implement MoEx very

efficiently. For each input instance in the mini-batch xi we

compute the normalized features and moments ĥi,µi,σi.

Subsequently we sample a random permutation π and apply

MoEx with a random pair within the mini-batch h
(π(i))
i ←

F−1(ĥi,µπ(i),σπ(i)). See Algorithm 1 in the Appendix for

an example implementation in PyTorch [42]. Note that all

computations are extremely fast and only introduce negligi-

ble overhead during training.

Hyper-parameters. To control the intensity of our data

augmentation, we perform MoEx during training with some

probability p. In this way, the model can still see the orig-

inal features with probability 1 − p. In practice we found

that p = 0.5 works well on most datasets except that we set

p = 1 for ImageNet where we need stronger data augmenta-

tion. The interpolation weight λ is another hyper-parameter

to be tuned. Empirically, we find that 0.9 works well across

data sets. The reason can be that the moments contain less

information than the normalized features. Please see Ap-

pendix for a detailed ablation study.

Properties. MoEx is performed entirely at the feature

level inside the neural network and can be readily combined

with other augmentation methods that operate on the raw in-

put (pixels or words). For instance, Cutmix [67] typically

works best when applied on the input pixels directly. We

find that the improvements of MoEx are complimentary to

such prior work and recommend to use MoEx in combina-

tion with established data augmentation methods.

4. Experiments

We evaluate the efficacy of MoEx thoroughly across sev-

eral tasks and data modalities.

4.1. Image Classification on CIFAR

CIFAR-10 and CIFAR-100 [31] are benchmark datasets

containing 50K training and 10K test colored images at
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PyramidNet-200 (α̃ = 240) Top-1 / Top-5

(# params: 26.8 M) Error (%)

Baseline 16.45 / 3.69

Manifold Mixup [69] 16.14 / 4.07

StochDepth [21] 15.86 / 3.33

DropBlock [11] 15.73 / 3.26

Mixup [69] 15.63 / 3.99

ShakeDrop [65] 15.08 / 2.72

MoEx 15.02 / 2.96

Cutout [7] 16.53 / 3.65

Cutout + MoEx 15.11 / 3.23

CutMix [67] 14.47 / 2.97

CutMix + MoEx 13.95 / 2.95

CutMix + ShakeDrop [65] 13.81 / 2.29

CutMix + ShakeDrop + MoEx 13.47 / 2.15

Table 2. Combining MoEx with other regularization methods on

CIFAR-100 following the setting of [67]. The best numbers in

each group are bold.

32x32 resolution. We evaluate our method using various

model architectures [15, 16, 20, 64, 68] on CIFAR-10 and

CIFAR-100. We follow the conventional setting with ran-

dom translation as the default data augmentation and ap-

ply MoEx to the features after the first layer. Furthermore,

to justify the compatibility of MoEx with other regular-

ization methods, we follow the official setup of [67] and

apply MoEx jointly with several regularization methods to

PyramidNet-200 [15] on CIFAR-100.

Table 1 displays the classification results on CIFAR-10

and CIFAR-100 with and without MoEx. We report mean

and standard error over three runs [14]. MoEx consistently

enhances the performance of all the baseline models. Ta-

ble 2 demonstrates the CIFAR-100 classification results on

the basis of PyramidNet-200. Compared to other augmen-

tation methods, PyramidNet trained with MoEx obtains the

lowest error rates in all-but one settings. However, signifi-

cant additional improvements are achieved when MoEx is

combined with existing methods — setting a new state-

of-the-art for this particular benchmark task when com-

bined with the two best performing alternatives, CutMix

and ShakeDrop.

4.2. Image Classification on ImageNet

We evaluate on ImageNet [6] (ILSVRC 2012 version),

which consists of 1.3M training images and 50K valida-

tion images of various resolutions. For faster convergence,

we use NVIDIA’s mixed-precision training code base with

batch size 1024, default learning rate 0.1× batch size/256,

cosine annealing learning rate scheduler [40] with linear

https://github.com/bearpaw/pytorch-classification

https://github.com/clovaai/CutMix-PyTorch

https://github.com/NVIDIA/apex/tree/master/examples/imagenet

# of Test Error (%)

Model epochs Baseline +MoEx

ResNet-50 90 23.6 23.1

ResNeXt-50 (32×4d) 90 22.2 21.4

DenseNet-265 90 21.9 21.6

ResNet-50 300 23.1 21.9

ResNeXt-50 (32×4d) 300 22.5 22.0

DenseNet-265 300 21.5 20.9

Table 3. Classification results (Test Err (%)) on ImageNet in com-

parison with various models. Note: The ResNeXt-50 (32×4d)

models trained for 300 epochs overfit. They have higher training

accuracy but lower test accuracy than the 90-epoch ones.

ResNet50 # of Top-1 / Top-5

(# params: 25.6M) epochs Error (%)

ISDA [58] 90 23.3 / 6.8

Shape-ResNet [10] 105 23.3 / 6.7

Mixup [69] 200 22.1 / 6.1

AutoAugment [4] 270 22.4 / 6.2

Fast AutoAugment [37] 270 22.4 / 6.3

DropBlock [11] 270 21.9 / 6.0

Cutout [7] 300 22.9 / 6.7

Manifold Mixup [69] 300 22.5 / 6.2

Stochastic Depth [21] 300 22.5 / 6.3

CutMix [67] 300 21.4 / 5.9

Baseline 300 23.1 / 6.6

MoEx 300 21.9 / 6.1

CutMix 300 21.3 / 5.7

CutMix + MoEx 300 20.9 / 5.7

Table 4. Comparison of regularization and augmentation methods

on ImageNet. Stochastic Depth and Cutout results are from [67].

warmup [13] for the first 5 epochs. As the model might

require more training updates to converge with data aug-

mentation, we apply MoEx to ResNet-50, ResNeXt-50

(32×4d), DenseNet-265 and train them for 90 and 300

epochs. For a fair comparison, we also report Cutmix [67]

under the same setting. Since the test server of ImageNet

is no longer available to the public, we follow the common

practice [11, 20, 64, 67, 69] reporting the validation scores

of the baselines as well as our method.

Table 3 shows the test error rates on the ImageNet data

set. MoEx is able to improve the classification perfor-

mance throughout, regardless of model architecture. Sim-

ilar to the previous CIFAR experiments, we observe in Ta-

ble 4 that MoEx is highly competitive when compared to

existing regularization methods and truly shines when it

is combined with them. When applied jointly with Cut-

Mix (the strongest alternative), we obtain our lowest Top-1

and Top-5 error of 20.9/5.7 respectively. Beyond, we apply

MoEx to EfficientNet-B0 [54] and follow the official train-
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ing scheme, we find MoEx is able to help reduce the error

rate of baseline from 22.9 to 22.3.

4.3. Fintuneing Imagenet pretrained models on Pas
cal VOC for Object Detection

To demonstrate that MoEx encourages models to learn

better image representations, we apply models pre-trained

on ImageNet with MoEx to downstream tasks including ob-

ject detection on Pascal VOC 2007 dataset. We use the

Faster R-CNN [44] with C4 or FPN [38] backbones im-

plemented in Detectron2 [61] and following their default

training configurations. We consider three ImageNet pre-

trained models: the ResNet-50 provided by He et al. [16],

our ResNet-50 baseline trained for 300 epochs, our ResNet-

50 trained with CutMix [67], and our ResNet-50 trained

with MoEx. A Faster R-CNN is initialized with these pre-

trained weights and finetuned on Pascal VOC 2007 + 2012

training data, tested on Pascal VOC 2007 test set, and evalu-

ated with the PASCAL VOC style metric: average precision

at IoU 50% which we call APVOC (or AP50 in detectron2).

We also report MS COCO [39] style average precision met-

ric APCOCO which is recently considered as a better choice.

Notably, MoEx is not applied during finetuning.

Table 5 shows the average precision of different initial-

izations. We discover that MoEx provides a better initializa-

tion than the baseline ResNet-50 and is competitive against

CutMix[67] for the downstream cases and leads slightly

better performance regardless of backbone architectures.

Backbone Initialization APVOC APCOCO

C4

ResNet-50 (default) 80.3 51.8

ResNet-50 (300 epochs) 81.2 53.5

ResNet-50 + CutMix 82.1 54.3

ResNet-50 + MoEx 81.6 54.6

FPN

ResNet-50 (default) 81.8 53.8

ResNet-50 (300 epochs) 82.0 54.2

ResNet-50 + CutMix 82.1 54.3

ResNet-50 + MoEx 82.3 54.3

Table 5. Object detection on PASCAL VOC 2007 test set using

Faster R-CNN whose backbone is initialized with different pre-

trained weights. We use either the original C4 or feature pyramid

network [38] backbone.

4.4. 3D model classification on ModelNet

We conduct experiments on Princeton ModelNet10 and

ModelNet40 datasets [62] for 3D model classification. This

task aims to classify 3D models encoded as 3D point clouds

into 10 or 40 categories. As a proof of concept, we use

PointNet++ (SSG) [43] implemented efficiently in PyTorch

Geometric [9] as the baseline. It does not use surface nor-

mal as additional inputs. We apply MoEx to the features

https://github.com/rusty1s/pytorch geometric

after the first set abstraction layer in PointNet++. Fol-

lowing their default setting, all models are trained with

ADAM [29] at batch size 32 for 200 epochs. The learning

rate is set to 0.001. We tune the hyper-parameters of MoEx

on ModelNet-10 and apply the same hyper-parameters to

ModelNet-40. We choose p = 0.5, λ = 0.9, and Instan-

ceNorm for this task, which leads to slightly better results.

Table 6 summarizes the results out of three runs, showing

mean error rates with standard errors. MoEx reduces the

classification errors from 6.0% to 5.3% and 9.2% to 8.8%

on ModelNet10 and ModelNet40, respectively.

Model ModelNet10 ModelNet40

PointNet++ 6.02±0.10 9.16±0.16

+ MoEx 5.25±0.18 8.78±0.28

Table 6. Classification errors (%) on ModelNet10 and Model-

Net40. The mean and standard error out of 3 runs are reported.

5. Ablation Study

5.1. MoEx Design Choices

In the previous section we have established that MoEx

yields significant improvements across many tasks and

model architectures. In this section we shed light onto

which design choices crucially contribute to these improve-

ments. Table 7 shows results on CIFAR-100 with a ResNet-

110 architecture, averaged over 3 runs. The column titled

MoEx indicates if we performed moment exchange or not.

Label smoothing. First, we investigate if the positive ef-

fect of MoEx can be attributed to label smoothing [53]. In

label smoothing, one changes the loss of a sample x with

label y to λℓ(x, y) + 1
C−1

∑

y′ 6=y(1− λ)ℓ(x, y′), where C
denotes the total number of classes. Essentially the neural

network is not trained to predict one class with 100% cer-

tainty, but instead only up to a confidence λ.

Further, we evaluate Label Interpolation only. Here,

we evaluate MoEx with label interpolation - but without

any feature augmentation, essentially investigating the ef-

fect of label interpolation alone. Both variations yield some

improvements over the baseline, but are significantly worse

than MoEx.

Interpolated targets. The last three rows of Table 7

demonstrate the necessity of utilizing the moments for pre-

diction. We investigate two variants: λ = 1, which corre-

sponds to no label interpolation; MoEx with label smooth-

ing (essentially assigning a small loss to all labels except

yA). The last row corresponds to our proposed method,

MoEx (λ = 0.9).

Two general observations can be made: 1) interpolat-

ing the labels is crucial for MoEx to be beneficial — the

We do hyper-parameter search from p ∈ {0.5, 1}, λ ∈ {0.5, 0.9}
and whether to use PONO or InstanceNorm.
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name MoEx Test Error

Baseline ✗ 26.3±0.10

Label smoothing [53] ✗ 26.0±0.06

Label Interpolation only ✗ 26.0±0.12

MoEx (λ = 1, not interpolating the labels) ✓ 26.3±0.02

MoEx with label smoothing ✓ 25.8±0.09

MoEx (λ = 0.9, label interpolation, proposed) ✓ 25.5±0.09

Table 7. Ablation study on different design choices.

approach leads to absolutely no improvement when we set

λ = 1. 2) it is also important to perform moment exchange,

without it MoEx reduces to a version of label smoothing,

which yields significantly smaller benefits.

Choices of normalization methods. We study how

MoEx performs when using moments from LayerNorm

(LN) [1], InstanceNorm (IN) [55], PONO [34], GroupNorm

(GN) [60], and local response normalization (LRN) [32]

perform. For LRN, we use a recent variant [26] which uses

the unnormalized 2nd moment at each position. We con-

duct experiments on CIFAR-100 with ResNet110. For each

normalization, we do a hyper-parameter sweep to find the

best setup. Table 8 shows classification results of MoEx

with various feature normalization methods on CIFAR-100

averaged over 3 runs (with corresponding standard errors).

We observe that MoEx generally works with all normaliza-

tion approaches, however PONO has a slight but significant

edge, which we attribute to the fact that it catches the struc-

tural information of the feature most effectively. Table 9

shows that different normalization methods work the best

at different layers. With PONO or GN, we apply MoEx

in the first layer (right before the first stage), whereas the

LN moments work best when exchanged before the third

stage of a 3-stage ResNet-110; IN is better to be applied

right before the second stage. We hypothesize the reason is

that PONO moments captures local information while LN

and IN compute global features which are better encoded

at later stages of a ResNet. For image classification, us-

ing PONO seems generally best. While MoEx with other

normalization methods in different stages could also obtain

competitive results such as LN before Stage 3 in Table 8.

We assume it is because in the early layers it is important

to exchange the whole mode (and PONO has a significant

advantage), whereas for the last stage the scale already con-

tains a lot of information (LN performs best here), which

is worth being studied in other architecture such as Trans-

former [57], etc. Beyond, for some other tasks we observe

that using moments from IN can be more favorable (See

Subsec. 4.4).

We select the best result from experiments with λ ∈
{0.6, 0.7, 0.8, 0.9} and p ∈ {0.25, 0.5, 0.75, 1.0}. We choose the

best layer among the 1st layer, 1st stage, 2nd stage, and 3rd stage. For

each setting, we obtain the mean and standard error out of 3 runs with

different random seeds.

Moments to exchange Test Error

No MoEx 26.3±0.10

All features in a layer, i.e. LN 25.6±0.02

Feature in each channel, i.e. IN 25.7±0.13

Features in Group of channels, i.e. GN (g=4) 25.7±0.09

Features at each position, i.e. PONO 25.5±0.09

1st moment at each position 25.9±0.06

2nd moment at each position 26.0±0.13

Unnormalized 2nd moment at each position, i.e. LRN 26.3±0.05

Table 8. MoEx with different normalization methods on CIFAR-

100.

Model Before Stage 1 Before Stage 2 Before Stage 3

LN 25.9 ± 0.08 25.9 ± 0.07 25.6 ± 0.02

IN 26.0 ± 0.13 25.7 ± 0.13 26.2 ± 0.13

GN 25.7 ± 0.09 26.1 ± 0.09 25.8 ± 0.13

PONO 25.5 ± 0.09 26.1 ± 0.03 26.0 ± 0.09

Table 9. MoEx with different normalization methods applied to

different layers in a 3-stage ResNet-110 on CIFAR-100. We bold

the best layer of each normalization method.

5.2. MoEx Hyperparameters

In MoEx, λ and 1 − λ serve as the target interpolation

weights of labels yA, yB , respectively. To explore the re-

lationship between λ and model performance, we train a

ResNet-50 on ImageNet with λ ∈ {0.3, 0.5, 0.7, 0.9} with

on PONO. The results are summarized in Table 10. We ob-

serve that generally higher λ leads to lower error, probably

because more information is captured in the normalized fea-

tures than in the moments. After all, moments only capture

general statistics, whereas the features have many channels

and can capture texture information in great detail. We also

investigate various values of the exchange probability p (for

fixed λ = 0.9), but on the ImageNet data p = 1 (i.e. apply

MoEx on every image) tends to perform best.

Model λ p Top-1 / Top-5 Error(%)

ResNet-50

1 0 23.1 / 6.6

0.9 0.25 22.6 / 6.6

0.9 0.5 22.4 / 6.4

0.9 0.75 22.3 / 6.3

0.3 1 22.9 / 6.9

0.5 1 22.2 / 6.4

0.7 1 21.9 / 6.2

0.9 1 21.9 / 6.1

0.95 1 22.5 / 6.3

0.99 1 22.6 / 6.5

Table 10. Ablation study on ImageNet with different λ and p (ex-

change probability) trained for 300 epochs.

5.3. Model Analysis

To estimate the robustness of the models trained with

MoEx, we follow the procedure proposed by [18] and

evaluate our model on their ImageNet-A data set, which

contains 7500 natural images (not originally part of Ima-
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geNet) that are misclassified by a publicly released ResNet-

50 in torchvision. We compare our models with various

publicly released pretrained models including Cutout [69],

Mixup [69], CutMix [67], Shape-ResNet [10], and recently

proposed AugMix [17]. We report all 5 metrics imple-

mented in the official evaluation code: model accuracy

(Acc), root mean square calibration rrror (RMS), mean

absolute distance calibration error (MAD), the area un-

der the response rate accuracy curve (AURRA) and soft

F1 [18, 52]. Table 11 summarizes all results. In general

MoEx performs fairly well across the board. The combina-

tion of MoEx and Cutmix leads to the best performance on

most of the metrics.

Name Acc↑ RMS↓ MAD↓ AURRA↑ Soft F1↑

ResNet-50 (torchvision) 0 62.6 55.8 0 60.0

Shape-ResNet 2.3 57.8 50.7 1.8 62.1

AugMix 3.8 51.1 43.7 3.3 66.8

Fast AutoAugment 4.7 54.7 47.8 4.5 62.3

Cutout 4.4 55.7 48.7 3.8 61.7

Mixup 6.6 51.8 44.4 7.0 63.7

Cutmix 7.3 45.0 36.5 7.2 69.3

ResNet-50 (300 epochs) 4.2 54.0 46.8 3.9 63.7

MoEx 5.5 43.2 34.2 5.7 72.9

Cutmix + MoEx 7.9 42.6 34.3 8.5 70.5

Table 11. The performance of ResNet-50 variants on ImageNet-A.

The up-arrow represents the higher the better, and vice versa.

5.4. Beyond Computer Vision

We also found that MoEx can be beneficial in other ar-

eas such as natural language processing and speech recogni-

tion. We use the Speech Command dataset [59] which con-

tains 65000 utterances (one second long) from thousands

of people. The goal is to classify them in to 30 command

words such as ”Go”, ”Stop”, etc. There are 56196, 7477,

and 6835 examples for training, validation, and test. We

use an open source implementation to encode each audio

into a mel-spectrogram of size 1x32x32 and feeds it to 2D

ConvNets as an one-channel input. We follow the default

setup in the codebase training models with initial learning

rate 0.01 with ADAM [29] for 70 epochs. The learning rate

is reduce on plateau. We use the validation set for hyper-

parameter selection and tune MoEx p ∈ {0.25, 0.5, 0.75, 1}
and λ ∈ {0.5, 0.9}. We test the proposed MoEx on three

baselines models: DenseNet-BC-100, VGG-11-BN, and

WRN-28-10.

Table 12 displays the validation and test errors. We ob-

serve that training models with MoEx improve over the

baselines significantly in all but one case. The only excep-

tion is DenseNet-BC-100, which has only 2% of the param-

https://download.pytorch.org/models/resnet50-19c8e357.pth

https://github.com/hendrycks/natural-adv-examples

We attribute the Speech Command dataset to the Tensorflow team

and AIY project: https://ai.googleblog.com/2017/08/launching-speech-

commands-dataset.html

https://github.com/tugstugi/pytorch-speech-commands

eters of the wide ResNet, confirming the findings of Zhang

et al. [69] that on this data set data augmentation has little

effect on tiny models.

Model # Param Val Err Test Err

DenseNet-BC-100 0.8M 3.16 3.23

+MoEx 0.8M 2.97 3.31

VGG-11-BN 28.2M 3.05 3.38

+MoEx 28.2M 2.76 3.00

WRN-28-10 36.5M 2.42 2.21

+MoEx 36.5M 2.22 1.98

Table 12. Speech classification on Speech Command. Similar to

the observation of [69], regularization methods work better for

models with large capacity on this dataset.

In addition, please see Appendix for additional natural

language processing results. In contrast to prior augmenta-

tion methods, which combine two images in pixel or fea-

ture space through linear or non-linear interpolation, MoEx

extracts and injects (higher order) statistics about the fea-

tures.Moments are a natural first choice, but other statistics

are possible (e.g. principal components).

6. Conclusion and Future Work

In this paper we propose MoEx, a novel data augmen-

tation algorithm for deep recognition models. Instead of

disregarding the moments extracted by the (intra-instance)

normalization layer, it forces the neural network to pay spe-

cial attention towards them. We show empirically that this

approach is consistently able to improve classification accu-

racy and robustness across many data sets, model architec-

tures, and prediction tasks. As an augmentation method in

feature space, MoEx is complementary to existing state-of-

the-art approaches and can be readily combined with them.

Because of its ease of use and extremely simple implemen-

tation we hope that MoEx will be useful to many practition-

ers in computer vision, and beyond — in fact, anybody who

trains discriminative deep networks with mini-batches.
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Sankhyā: The Indian Journal of Statistics, Series A, 1998. 2
[36] Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng

Tang, Wei Shen, Alan Yuille, and Cihang Xie. Shape-

texture debiased neural network training. arXiv preprint

arXiv:2010.05981, 2020. 3
[37] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and

Sungwoong Kim. Fast autoaugment. In NeurIPS, 2019. 5
[38] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

12391



Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 6
[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 6
[40] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016. 5
[41] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-

Yan Zhu. Semantic image synthesis with spatially-adaptive

normalization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2337–

2346, 2019. 1
[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 4
[43] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, 2017. 6
[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015. 6
[45] Stephane Ross, Paul Mineiro, and John Langford. Normal-

ized online learning. In UAI, 2013. 2
[46] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and

Aleksander Madry. How does batch normalization help op-

timization? In NeurIPS, 2018. 1
[47] Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. In-

corporating invariances in support vector learning machines.

In ICANN. Springer, 1996. 3
[48] Rico Sennrich, Barry Haddow, and Alexandra Birch. Im-

proving neural machine translation models with monolingual

data. arXiv preprint arXiv:1511.06709, 2015. 3
[49] Patrice Simard, Yann LeCun, and John S Denker. Efficient

pattern recognition using a new transformation distance. In

NeurIPS, 1993. 3
[50] Patrice Y Simard, Dave Steinkraus, and John C Platt. Best

practices for convolutional neural networks applied to visual

document analysis. In ICDAR, 2003. 3
[51] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:

Forcing a network to be meticulous for weakly-supervised

object and action localization. In ICCV, 2017. 3
[52] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz.

Beyond accuracy, f-score and roc: a family of discriminant

measures for performance evaluation. In Australasian joint

conference on artificial intelligence. Springer, 2006. 8
[53] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016. 6, 7
[54] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, pages

6105–6114, 2019. 5
[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016. 1, 2, 4, 7
[56] Laurens van der Maaten, Minmin Chen, Stephen Tyree, and

Kilian Weinberger. Learning with marginalized corrupted

features. In ICML, 2013. 3

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 3,

7
[58] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao

Huang, and Cheng Wu. Implicit semantic data augmenta-

tion for deep networks. In NeurIPS, 2019. 3, 5
[59] Pete Warden. Speech commands: A dataset for

limited-vocabulary speech recognition. arXiv preprint

arXiv:1804.03209, 2018. 8
[60] Yuxin Wu and Kaiming He. Group normalization. In ECCV,

2018. 1, 2, 4, 7
[61] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 6
[62] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

CVPR, 2015. 6
[63] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan

Yuille, and Quoc V Le. Adversarial examples improve image

recognition. arXiv preprint arXiv:1911.09665, 2019. 3
[64] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, pages 1492–1500, 2017. 5
[65] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and

Koichi Kise. Shakedrop regularization for deep residual

learning. arXiv preprint arXiv:1802.02375, 2018. 5
[66] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui

Zhao, Kai Chen, Mohammad Norouzi, and Quoc V

Le. Qanet: Combining local convolution with global

self-attention for reading comprehension. arXiv preprint

arXiv:1804.09541, 2018. 3
[67] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In ICCV, 2019. 2, 3, 4, 5, 6, 8
[68] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016. 5
[69] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 1, 2, 3, 5, 8
[70] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. In AAAI,

2020. 3

12392


