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Abstract

We propose POse-guided SElective Fusion (POSEFu-

sion), a single-view human volumetric capture method that

leverages tracking-based methods and tracking-free infer-

ence to achieve high-fidelity and dynamic 3D reconstruc-

tion. By contributing a novel reconstruction framework

which contains pose-guided keyframe selection and robust

implicit surface fusion, our method fully utilizes the advan-

tages of both tracking-based methods and tracking-free in-

ference methods, and finally enables the high-fidelity recon-

struction of dynamic surface details even in the invisible re-

gions. We formulate the keyframe selection as a dynamic

programming problem to guarantee the temporal continuity

of the reconstructed sequence. Moreover, the novel robust

implicit surface fusion involves an adaptive blending weight

to preserve high-fidelity surface details and an automatic

collision handling method to deal with the potential self-

collisions. Overall, our method enables high-fidelity and

dynamic capture in both visible and invisible regions from a

single RGBD camera, and the results and experiments show

that our method outperforms state-of-the-art methods.

1. Introduction

Human volumetric capture, due to their potential value in

holographic communication, online education, games and

the movie industry has been a popular topic in computer

vision and graphics for decades. Multi-view camera array

methods [4, 11, 28, 5, 29, 49, 32, 9, 37, 21] can achieve

high-fidelity human volumetric capture using multiple RGB

or depth sensors but suffer from sophisticated equipment or

run-time inefficiency, which limits their application deploy-

ment. In contrast, single-view human volumetric capture

[23, 59, 12, 34, 52, 14, 38, 39, 15, 25, 44] has attracted

more and more attention for its convenient setup.

Current methods for single-view human volumetric cap-

ture can be roughly classified into two categories: tracking-

based methods and tracking-free ones. Tracking-based

methods utilize a pre-scanned template [23, 12, 14, 15]

or continuously fused mesh [34, 52, 44] as the reference

model, and solve or infer the deformation of the reference

Figure 1. High-fidelity and dynamic results reconstructed using

our method.

model parameterized by embedded skeletons [50, 3, 47],

node graph [23, 34], parametric body models (e.g., SMPL

[30]) [57], or a combination of them [51, 52, 14, 15]. In

these tracking-based methods, previous observations are in-

tegrated into the current frame after calculating the defor-

mations across frames, thus plausible geometric details are

preserved in the invisible regions. In addition, the recon-

structed models are temporally continuous thanks to the

frame-by-frame tracking. However, none of their defor-

mation representations, neither skeletons nor node graph,

is able to describe topological changes or track extremely

large non-rigid deformations (Fig. 7(c)), which is an inher-

ent drawback of the tracking-based methods.

On the other end of the spectrum, tracking-free meth-

ods [46, 33, 10, 42, 58, 1, 56, 38] mainly focus on geomet-

ric and/or texture recovery from a single RGB(D) image.

By learning from a large amount of 3D human data, these

methods demonstrate promising human reconstruction with

high-fidelity details in visible regions and plausible shape in

invisible areas [38, 39]. As the reconstruction for the current

frame is independent from the previous frames, these meth-

ods can easily handle topological changes. However, their

results may deteriorate in the cases of challenging human

poses and/or severe self-occlusions. Besides, the recon-

structions in the invisible regions are usually oversmoothed

for the lack of observations (Fig. 7(d)). What’s worse,

tracking-free methods are incapable of generating tempo-

rally continuous results when applied on video inputs.

By reviewing the advantages and the drawbacks of these

two types of methods, it is easy to notice that tracking-based

methods and tracking-free inference are naturally comple-

mentary as shown in Tab. 1. A straightforward way is to
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combine both branches by integrating the inferred models

of all the other frames in the monocular RGBD sequence

into the current frame to recover the invisible regions. The

benefits of such a pipeline are: a) topological changes and

large deformations can be accurately reconstructed using

tracking-free inference directly, b) the invisible surfaces can

be faithfully recovered by integrating the other frames into

current frame, and finally c) temporal continuity is guar-

anteed by tracking the whole sequence frame-by-frame.

However, the afore-mentioned pipeline still has limitations.

Specifically, if we fuse all the other frames indiscriminately,

we can only generate static surfaces with all the dynamic

changing details averaged together. Moreover, it remains

difficult for such a pipeline to handle the artifacts caused

by self-collisions. To this end, we further propose POse-

guided SElective Fusion (POSEFusion), a novel pipeline

that contains pose-guided keyframe selection and adaptive

implicit surface fusion. In this pipeline, we only integrate

the keyframes selected by our proposed pose-guided met-

ric, which takes into account both visibility complementar-

ity and pose similarity.

Our key observations are: a) keyframes with similar

poses to the current frame enable the recovery of physically

plausible dynamic details, b) keyframes with complemen-

tary viewpoints to the current frame avoid to oversmooth the

visible regions, and c) the adaptive fusion considers depth

observations and visibility promotes to preserve the surface

details and resolves collision artifacts. Based on these ob-

servations, the limitations of the simple pipeline are suc-

cessfully overcome.

Specifically, we start with SMPL [30] tracking for all

the frames given a monocular RGBD sequence as input.

We then utilize the SMPL model as a robust and effective

proxy and propose a novel criterion to quantify pose similar-

ity and visibility complementarity. Based on this criterion,

we select appropriate keyframes for each frame. Note that

per-frame keyframe selection cannot guarantee the tempo-

ral continuity of invisible details; therefore, we further for-

mulate the selection as a dynamic programming of min-cost

path to reconstruct dynamic and temporally continuous in-

visible details. In implicit surface fusion, we propose an

adaptive blending weight which considers depth and visi-

bility information to avoid oversmooth fusion and preserve

the observed details. Finally, we propose an automatic col-

lision handling scheme to deal with possible self-collisions

while maintaining adjacent details.

In summary, this paper proposes the following technical

contributions:

• A new human volumetric capture pipeline that leverages

tracking-based methods and tracking-free inference, and

achieves high-fidelity and dynamic reconstruction in both

visible and invisible regions from a single RGBD camera

(Sec. 3.2).

• A new pose-guided keyframe selection scheme that con-

siders both pose similarity and visibility complementar-

ity and enables detailed and pose-guided reconstruction

in the invisible regions (Sec. 4.2).

• A robust implicit surface fusion scheme that involves an

adaptive blending weight conditioned by depth observa-

tions and visibility, and an automatic collision handling

method which considers an adjacent no-collision model

into the fusion procedure to maintain the adjacent details

while eliminating collision artifacts (Sec. 4.3).

Building on these novel techniques, POSEFusion is the first

single-view approach that is able to capture high-fidelity

and dynamic details in both visible and invisible regions.

Given a monocular RGBD sequence as input, our method

is able to produce compelling human reconstruction results

with complete, dynamic, temporally continuous, and high-

fidelity details. The experimental results prove that our

method outperforms state-of-the-art methods.

2. Related Work

2.1. Trackingbased Human Reconstruction

Some works in tracking-based methods utilize a pre-

scanned person-specific model as a template, and deform it

to fit with depth input of each frame. Especially, for human

reconstruction, Gall et al. [11] and Liu et al. [29] mod-

eled body motion by skeletons embedded in the template.

Besides skeletal motion, embedded deformation graph [45]

is an alternative parameterization method for non-rigid re-

construction. Li et al. [23] solved the warp field modeled

by [45] and reconstructed detailed 3D geometric sequences

from a single-view depth stream. Zollhöfer et al. [59] en-

abled real-time performance for general non-rigid tracking

based on the parallelism of GPU. Guo et al. [12] introduced

a L0-based regularizer to implicitly constrain articulated

motion. LiveCap [14] utilized a person-specific template

and achieved real-time monocular performance capture. On

another branch, volumetric fusion methods replaced the

pre-scanned template with a continuously fused model for

online incremental reconstruction. The pioneering work

KinecFusion [17] reconstructed a rigid scene incrementally

by using a commercial RGBD camera. The following work

[35, 8, 20] focused on memory cost, geometry, and texture

quality for rigid scene reconstruction, respectively. Dynam-

icFusion [34] extended [17] and introduced a dense non-

rigid warp field for real-time non-rigid reconstruction. The

following work [16, 40, 13, 51, 41, 22, 52, 54, 44] incorpo-

rated different cues for more robust and accurate reconstruc-

tion. SimulCap [53] combined cloth simulation into the

fusion pipeline but the quality of invisible details suffered

from a simple cloth simulator. LiveCap [14] and DeepCap

[15] respectively solved or regressed the skeleton and non-

rigid motion of a person-specific template from a monocular

RGB video. TexMesh [57] deformed SMPL [30] to gener-

ate a parametric coarse mesh and generate high-quality but

static texture from a single-view RGBD video. However,

because of the requirement of deforming a reference model,
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Methods
Topological

Change

Natural

Deformation

Details in

Invisible Regions

Temporal

Continuity
Texture

Tracking-based DoubleFusion [52] ✗ ✗ ✓(Static) ✓ None

RobustFusion [44] ✗ ✗ ✓(Static) ✓ ✓(Low-quality)

TexMesh [57] ✗ ✗ ✓(Low-quality) ✓ ✓(Static)

Tracking-free PIFu [38]/PIFuHD [39] ✓ ✓ ✗ ✗ ✓(Low-quality)

Ours ✓ ✓
✓

(Dynamic, High-quality)
✓

✓

(Dynamic, High-quality)

Table 1. Comparison of our method with other state-of-the-art works when applying a monocular RGBD video as input. Our method inherits

all the advantages of tracking-based and tracking-free methods while avoiding their drawbacks. Moreover, our method can reconstruct

dynamic pose-guided geometric details in both visible and invisible regions.

all these methods cannot handle topological change and re-

construct extremely non-rigid deformations.

2.2. Trackingfree Human Inference

Recently, more and more works focused on single

RGB(D) image reconstruction because of the rise of deep

learning. [36, 18, 19, 27, 48] regressed the pose and shape

parameters of a human parametric model (e.g., SMPL [30])

from a single image. Moreover, to address the challenge

of general clothed human reconstruction, recent work tack-

led this problem by multi-view silhouettes [33], depth maps

[10, 42], template deformation [58, 1], volumetric recon-

struction [46, 56] and implicit function [38]. DeepHuman

[56] conditioned single image reconstruction on the para-

metric SMPL model [30] to address the problem of chal-

lenging poses. PaMIR [55] combined implicit function [38]

with convoluted SMPL feature for more robust and accurate

inference. PIFuHD [39] extended PIFu [38] to a coarse-to-

fine framework and demonstrated detailed geometric results

learned from high-resolution single-view RGB images. Li

et al. [25] accelerated PIFu [38] to achieve monocular real-

time human performance capture. But all these methods

focus on single frame reconstruction, but ignore temporal

continuity and lack details in the invisible region.

3. Overview

3.1. Preliminaries

We firstly introduce the parametric body model [30] and

the occupancy inference network adopted in this paper.

Parametric Body Model The parametric body model

SMPL [30] is a function that maps the pose parameters

θ ∈ R
75 and shape parameters β ∈ R

10 to a human mesh

with N = 6890 vertices:

T (β, θ) = T̄+Bs(β) +Bp(θ),

M(β, θ) = W (T (β, θ), J(β), θ,W),
(1)

where W (·) is a skinning function that takes T-pose model

T (θ, β), pose parameters θ, joint positions J(β) and skin-

ning weights W as input, and returns the posed model

M(β, θ), and T (θ, β) is an individual model in T-pose with

shape and pose based offsets (Bs(β) and Bp(θ)).
Occupancy Inference Network The occupancy value ϕ(x)
of a 3D point x is an occupancy probability of the point in-

side the 3D object, and the mapping function ϕ : R3 → R is

an implicit function. Recently, Saito et al. [38] conditioned

the implicit function on an image-encoded feature and pro-

posed the pixel-aligned implicit function (PIFu):

ϕ(x; I) = f(GI(x2D),xz), (2)

where x2D = π(x) is the 2D projection of x, I is the condi-

tional image, GI is a feature map of I encoded by a deep im-

age encoder, GI(x2D) represents the sampled feature vec-

tor of x2D on GI , xz is the depth value of x, and f(·) is

a mapping function represented by multi-layer perceptrons

(MLP). Based on this pixel-level representation, PIFu can

reconstruct high-fidelity details in visible regions of the ob-

ject from the conditional image I . We improve on the origi-

nal PIFu network [38] by incorporating the feature encoded

from the depth input to remove the depth ambiguity.

3.2. Main Pipeline

Our goal is to reconstruct temporally continuous human

models with high-quality dynamic geometric details and

texture from a single-view RGBD video. At first, to con-

struct the body motion among frames, we track the SMPL

model [30] using the whole depth sequence. For the cur-

rent frame, we allocate a volume which contains the current

SMPL model. We suppose that the true body surface in the

current frame is near the current SMPL model, so we se-

lect valid voxels (points) around SMPL without processing

redundant invalid points. Our main idea is to warp these

valid points to each keyframe and fetch the corresponding

occupancy values, and finally fuse a complete model with

high-fidelity details. Then our system performs the follow-

ing 3 steps sequentially as shown in Fig. 2.

1. Pose-guided Keyframe Selection (Sec. 4.2): To enable

dynamic and high-fidelity reconstruction in the invisi-

ble region, we propose a pose-guided keyframe selection

scheme that considers both visibility complementarity

and pose similarity. We calculate the two metrics rela-

tive to the current frame using the tracked SMPL models,

then select keyframes which not only contain the invisi-

ble regions of the current frame but are also as similar as

the current SMPL pose. The pose-guided keyframe se-

lection is further formulated as a dynamic programming

to guarantee high-fidelity, dynamic and temporally con-

tinuous details in both visible and invisible regions.

2. Implicit Surface Fusion (Sec. 4.3): After the keyframe

selection, the selected valid points are warped to each
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Figure 2. Reconstruction pipeline. Firstly we perform the pose-guided keyframe selection scheme to select appropriate keyframes by

the visibility complementarity and pose similarity. Valid points around the current SMPL are then deformed to each keyframe by SMPL

motion, and fed into a neural network with the corresponding RGBD image. The neural network infers occupancy values of each keyframe,

and then we integrate all the inferred values to generate a complete model with high-fidelity and dynamic details. Finally, a high-resolution

texture map is generated by projecting the reconstructed model to each keyframe RGB image and inpainted by a neural network.

keyframe by SMPL motion, and then fed into a neural

network to infer occupancy values which indicate the

surface location contributed by this keyframe. However,

the inferred values may be inaccurate. We therefore de-

sign an adaptive blending weight as the confidence and

integrate occupancy values of each keyframe into the

current frame to preserve high-fidelity surface details in

both visible and invisible regions and guarantee smooth

transition on the fusion boundaries. Moreover, if the col-

lision occurs among different body parts, we perform

the collision handling to eliminate the collision artifacts

while maintaining the adjacent geometric details.

3. Texture Generation (Sec 4.4): Finally, a high-

resolution texture map is generated from all the

keyframes and inpainted by a neural network.

4. Method

4.1. Initialization

Given a single-view depth stream {D1, D2, ..., Dn},
firstly we solve the pose and shape parameters of SMPL

[30] to track each frame following the skeleton tracking of

DoubleFusion [52]. After that, we can obtain a SMPL se-

quence with pose parameters {θ1, θ2, ..., θn} corresponding

to the depth stream. For the current frame, we allocate a 3D

volume which contains the SMPL model. Then valid vox-

els (points) are selected by the distance of each voxel to the

current SMPL being less than a threshold (8cm in our exper-

iments). What we need to do next is to solve the occupancy

values of these valid points.

4.2. Poseguided Keyframe Selection

Consider the i-th frame as the current frame, the pro-

posed pose-guided keyframe selection chooses appropriate

frames by both pose similarity and visibility complementar-

ity from other frames F = {1, 2, ..., i− 1, i+1, ..., n}. The

parametric SMPL model [30] across the whole sequence

contributes to quantify visibility complementarity and pose

similarity. More importantly, the keyframe selection should

guarantee the temporal continuity of the selected keyframes

between adjacent frames. In the keyframe selection, our

goal is to select K (K = 4 in our experiments) keyframes

from F by our proposed pose and visibility metrics, and in

each iteration, we select one keyframe.

Pose Similarity Based on the parametric SMPL model, we

can formulate the pose similarity energy between the j-th

frame and the current frame conveniently as:

Epose(i, j) =
∑

k∈J

wk|θ
k
i − θkj |

2, (3)

where J is the joint index set except the global rotation and

translation, and wk is the influence weight of the k-th joint

to the keyframe selection. The pose similarity constrains

that the body pose in the selected keyframe is similar to that

in the current frame.

Visibility Complementarity With the topology-consistent

SMPL model across the whole sequence, we can set a visi-

ble flag for each vertex of SMPL in the j-th frame:

fk
j =

{

1, vk is visible in the j-th frame

0, vk is not visible in the j-th frame
, (4)

where vk is the k-th vertex of SMPL. So we can define a

visible vector fj = [f1
j , f

2
j , · · · , f

N
j ]⊤ which encodes the
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Figure 3. Illustration of the two solutions to the keyframe selection. (a)(b)(c)(d) We formulate the keyframe selection as a dynamic

programming (DP) problem to select temporally continuous keyframes, (e) the keyframe trail by the per-frame keyframe selection.

visible region of human body for each frame. The selected

keyframe set of the i-th frame in previous iterations is de-

noted as Ki, and the visibility FKi
over Ki is defined as:

FKi
= ∨k∈Ki

fk, (5)

where ∨ is the element-wise logical OR operation. Before

the first iteration, we initialize Ki = {i}. In each iteration,

the visibility complementarity energy is defined as:

Evisibility(Ki, j) =
‖¬FKi

∧ fj‖0
‖¬FKi

‖0
, (6)

where ¬ and ∧ are element-wise logical NOT and AND

operations respectively, and Eq. 6 represents the proportion

of “new” visible vertices that are visible in the j-th frame

but not in Ki to all the invisible vertices in Ki.

Joint Keyframe Selection In each iteration, we construct

an energy matrix E ∈ R
n×n (n is the frame number), and

the (i, j)-th element of E is defined as

Ei,j = Epose(i, j)− λvisibilityEvisibility(Ki, j), (7)

where λvisibility is a term weight. The energy matrix E en-

codes the visibility complementarity and pose similarity be-

tween the current frame and each keyframe candidate as

shown in Fig. 3(a). We consider the row and column in-

dices of E as the current frame index and keyframe candi-

dates, respectively. We define the selected keyframe trail T
in each iteration as T = {t1, t2, ..., tn}, where ti is the se-

lected keyframe of the i-th frame. A potential solution of

the keyframe selection is to select the minimal element of

each row, i.e., ti = argminj Ei,j . However, the drawback

of the per-frame selection is the temporal discontinuity of

selected keyframes between the adjacent frames (Fig. 3(e)).

To guarantee the temporal continuity of details in in-

visible regions, we jointly select keyframes for the whole

sequence, and formulate this procedure as a dynamic pro-

gramming (DP) problem as illustrated in Fig. 3(b, c, d).

To avoid the continuous keyframe trial to cross the diag-

onal of E, we firstly utilize visibility energy to divide sev-

eral blocks and select keyframes within each block inde-

pendently as shown in Fig. 3(b). For two adjacent blocks,

we maintain a FIFO keyframe queue for smooth transition.

Within each block, we constrain that the selected frames be-

tween two adjacent frames should be temporally continuous

with each other, i.e., |ti+1 − ti| ≤ τ , where τ is a half win-

dow size, and τ = 2 in Fig. 3(c). Then we connect Ei,j

with {Ei+1,j−τ , ..., Ei+1,j+τ} respectively to construct a

directed graph (Fig. 3(c)), and our goal is to find a trail

from the first row to the last row with the minimal energy

sum for a global optimal solution, which is naturally a dy-

namic programming problem of minimum cost path. Based

on this formulation, we can obtain a temporally continuous

keyframe trail as illustrated in Fig. 3(d).

After each iteration, we update the selected keyframe set

of each frame and the visibility over it:

Ki ← Ki ∪ {ti}, FKi
← FKi

∨ fti , i = 1, ..., n. (8)

In the next iteration, we construct the energy matrix E us-

ing the updated {Ki}
n
i=1 and {FKi

}ni=1 to search another

continuous keyframe trail to cover other invisible regions.

Based on the proposed pose-guided keyframe selection,

our method can reconstruct dynamic and high-fidelity de-

tails in the invisible regions as shown in Fig. 4.

4.3. Implicit Surface Fusion

Occupancy Inference After the keyframe selection, we

have a keyframe set Ki for the current i-th frame. For each

keyframe k ∈ Ki, we firstly deform the valid points from

the current frame to the k-th frame by the SMPL motion,

then feed them to the occupancy inference network with the

corresponding RGBD image, and finally obtain the occu-

pancy values contributed by this keyframe.

Adaptive Blending Weight The inferred occupancy values

may be inaccurate in invisible regions especially for self-

occluded input or challenging poses. So directly averaging

inferred occupancy values provided by all the keyframes

just like in DynamicFusion [34] is improper. Our obser-

vation is that thanks to the depth information, PIFu can pro-

vide quite precise inference near the depth point clouds and

in the visible region. We therefore design an adaptive blend-

ing weight according to visibility and the distance between

each valid point and the depth point clouds, and the weight

is formulated as:

w(x;Dk) =

{

1 , p(x;Dk) < τ

e−σ(p(x;Dk)−τ) , p(x;Dk) ≥ τ
,

p(x;Dk) = xz −Dk(π(x)),

(9)
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Figure 4. Comparison of reconstructed invisible details (a) and the ground truth (b) captured by multiple calibrated Kinects. These dynamic

invisible details are similar to the physical ones due to the pose guidance.

where p(x;Dk) is the projected signed distance function

(PSDF) [7] that takes a 3D point x as input and returns the

difference between the depth value of x and the sampled

depth value at the projected location π(x) on the depth im-

age Dk, σ is a factor to control the descending speed of

the blending weight along the projection direction, and τ is

a threshold to define high-confident regions. Then we in-

tegrate the inferred occupancy values from each keyframe

using Eq. 9, and finally extract a model with high-fidelity

geometric details using Marching Cubes [31].

Collision Handling Though the pipeline has been carefully

designed to achieve dynamic and high-fidelity reconstruc-

tion, it still suffers from the collision problem. The self-

collision in the live frame has been studied in [9, 13], how-

ever, the collision in the reference frame (i.e., the current

frame in our method) is urgent to be resolved. For exam-

ple, consider that the left arm of the performer collides with

the torso as shown in Fig. 5(a), it is confusing to decide

which body part to drive these collided points around this

region. Due to the tracking error and the difference between

SMPL and the real clothed human body, these points may

be warped to incorrect positions and fetch wrong occupancy

values, so that a crack occurs in the collided region as shown

in the red ellipse of Fig. 5(a). A potential solution is to fol-

low some tracking-based methods [52, 54, 44] in which they

maintain a no-collision model under A-pose or T-pose, and

deform the no-collision model to another frame. However,

the continuously maintained model is being oversmoothed

and loses the adjacent details due to the continuous fusion.

Our observation is that since the body motion is continu-

ous, a no-collision reconstructed model M′ exists near the

collided current frame. So we can deform this adjacent and

no-collision model to the current frame, and voxelize it into

an occupancy field O
′, and finally integrate O

′ into the im-

plicit surface fusion. As shown in Fig. 5(b)(c), our collision

handling scheme not only eliminates the collision artifacts

but also maintains the geometric details in other regions,

while fusing a continuous model loses the adjacent details.

4.4. Texture Generation

Given the geometric model Mi in the current frame, we

utilize a per-face tile [43] to represent the texture on each

face of Mi for high-resolution texture and fast UV unwrap-

Figure 5. Illustration of the collision handling. (a) Reconstructed

model without collision handling, (b) reconstructed model by fus-

ing an adjacent no-collision model, (c) reconstructed model by

fusing a continuously maintained template.

ping. Then we deform Mi to each keyframe and project it

to the RGB image to fetch RGB values and finally blend

them together. For the invisible faces, we utlize a neural

network [38] to infer their textures.

5. Results

In this section, we firstly compare our method with cur-

rent state-of-the-art works qualitatively and quantitatively.

Then we evaluate our main contributions. Some results cap-

tured by our system are demonstrated in Fig. 6. Please refer

to the supplemental material for the implementation details.

5.1. Comparison

Qualitative Comparison We compare the geometric re-

construction of our method with some representative and

state-of-the-art tracking-based [52] and tracking-free [38]

works as well as 3D human completion method [2] qualita-

tively using our captured data by a Kinect Azure in Fig. 7.

And our method outperforms these methods on topological

changes (top row of Fig. 7(c)), natural deformations (middle

and bottom rows of Fig. 7(c)), dynamic pose-guided details

(Fig. 7(c, d)) and invisible details (Fig. 7(d)). For a fair com-

parison, we retrain PIFu [38] with depth inputs and denote

it as RGBD-PIFu, and the input of IP-Net [2] is a roughly

complete depth point cloud merged from keyframes. How-

ever, due to the skeleton-level deformation error and depth

noise, IP-Net fails to recover a complete detailed human

model. We also compare our method with TexMesh [57]

using their data in Fig. 8, and our method can reconstruct

much more detailed geometry.

Quantitative Comparison We compare our method with
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Figure 6. Results with dynamic and high-fidelity details reconstructed by our method. The bottom row is the input view, and the top row is

another rendering view. Dynamic and high-fidelity details are reconstructed in both visible and invisible regions.

Figure 7. Qualitative comparison against other state-of-the-art methods. (a) RGBD images in the current frame, and results by our method

(b), DoubleFusion [52] (c), RGBD-PIFu [38] (d) and IP-Net [2] (e).

DoubleFusion [52] and RGBD-PIFu [38] on the multi-view

depth fitting error quantitatively. We utilize 4 calibrated

Kinects to capture multi-view point clouds as the target, and

evaluate the mean fitting error of each frame as shown in

Fig. 9. It shows that our method reconstructs much more ac-

curate results than DoubleFusion and RGBD-PIFu because

in our method the invisible regions are similar to the physi-

cal ones thanks to the pose guidance and the visible regions

are exactly same as the current observation.

5.2. Evaluation

Joint Keyframe Selection

– Comparison against Per-frame Keyframe Selection We

demonstrate invisible details of several adjacent frames re-

constructed with the joint keyframe selection and per-frame

keyframe selection in Fig. 10, respectively. It shows the

superiority of the joint keyframe selection on the temporal

coherence compared with the per-frame keyframe selection.

– Comparison against Greedy Algorithm We compare

the dynamic programming (DP) solution against the greedy

algorithm1 in Fig. 11. It shows that even though the greedy

algorithm can obtain a temporally continuous keyframe

trail, this algorithm may fall into a local minimum and some

frames select keyframes with high energies in which the hu-

man poses are not similar to the current ones, so that the

reconstructed invisible details are not physically plausible.

Ablation Study of Pose-guided Keyframe Selection We

1The greedy algorithm: considering the directed graph constructed in

Fig. 3(c), given the keyframe ti of the i-th frame, the keyframe ti+1 of the

next frame is selected using ti+1 = argminj∈{ti−τ,··· ,ti+τ} Ei,j .
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Figure 8. Comparison against TexMesh [57]. (a) RGBD image in

the current frame, and results by our method (b) and TexMesh (c).

Figure 9. Quantitative comparison on the multi-view depth fitting

error of our method, DoubleFusion [52] and RGBD-PIFu [38].

Figure 10. Comparison against per-frame keyframe selection. In-

visible details of several adjacent frames by joint keyframe selec-

tion (bottom row) and per-frame selection (top row), respectively.

eliminate the pose or visibility energy, and visualize the

keyframe trail in each situation in Fig. 12. Pose Energy:

The red ellipse in Fig. 12(a) demonstrates that these frames

select the same keyframe, so that the reconstructed invis-

ible details in these frames are static. Visibility Energy:

Fig. 12(b) demonstrates that without the visibility energy,

the pose energy guides the selection scheme to choose the

current frames, which is irrational. Fig. 12(c) shows that

with both energies the keyframe selection provides a tempo-

rally continuous keyframe trail to generate dynamic pose-

guided details in the invisible regions. For each situation

(Fig.12(a, b, c)), we evaluate the multi-view depth fitting er-

ror quantitatively as shown in Fig. 13, and using both ener-

gies reconstructs more accurate geometry because the pose-

guided invisible details are similar to the physical ones.

6. Discussion

Conclusion In this paper, we propose Pose-guided Selec-

tive Fusion (POSEFusion), the first method that can recon-

struct high-fidelity and dynamic details of a performer even

in the invisible regions from only a single RGBD camera.

Based on the proposed pose-guided selective fusion frame-

Figure 11. Comparison against the greedy algorithm. (a)(b)

Keyframe trails obtained by DP and greedy algorithm, respec-

tively, (c)(d) invisible details reconstructed by DP and greedy al-

gorithm, respectively, (e) ground truth of the invisible regions.

Figure 12. Qualitative ablation study of the pose-guided keyframe

selection. (a) The keyframe trail without the pose energy, (b) the

keyframe trail without the visibility energy, (c) the keyframe trail

using the total energy within each divided block.

Figure 13. Quantitative ablation study of the pose-guided

keyframe selection on the mean multi-view depth fitting error.

work, our method effectively combines the advantages of

tracking-based methods and tracking-free inference meth-

ods while avoiding their drawbacks. As a result, our method

outperforms the other state-of-the-art monocular capture

methods.

Limitation and Future Work It remains difficult for our

method to handle very loose cloth (e.g., long skirt) be-

cause it is challenging to track a performer wearing loose

cloth only using SMPL [30]. Replacing SMPL with a pre-

scanned template (e.g., [24, 26]) may remove this limita-

tion. Moreover, keyframe candidates in our keyframe se-

lection are required to be sequential to guarantee temporal

coherence, as for a non-sequential database, reorganizing

these candidates by shape similarity [6] may resolve this

problem. In addition, the reconstructed invisible details

may not be exactly the same as the real ones, which we

leave for future research.
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