
Point Cloud Upsampling via Disentangled Refinement

Ruihui Li Xianzhi Li∗ Pheng-Ann Heng Chi-Wing Fu

The Chinese University of Hong Kong

{lirh,xzli,pheng,cwfu}@cse.cuhk.edu.hk

Figure 1. In the top row, we show (a) a sparse real-scanned point set from [23], followed by upsampled results (16×) produced by (b)

MPU [26], (c) PU-GAN [12], and (d) our method. In the bottom row, we show the associated reconstructed 3D meshes produced by the

ball-pivoting algorithm [2]. Clearly, our method outperforms others on the local uniformity, contributing a better surface reconstruction.

Abstract

Point clouds produced by 3D scanning are often sparse,

non-uniform, and noisy. Recent upsampling approaches

aim to generate a dense point set, while achieving both

distribution uniformity and proximity-to-surface, and pos-

sibly amending small holes, all in a single network. Af-

ter revisiting the task, we propose to disentangle the task

based on its multi-objective nature and formulate two cas-

caded sub-networks, a dense generator and a spatial re-

finer. The dense generator infers a coarse but dense out-

put that roughly describes the underlying surface, while the

spatial refiner further fine-tunes the coarse output by ad-

justing the location of each point. Specifically, we design

a pair of local and global refinement units in the spatial

refiner to evolve a coarse feature map. Also, in the spa-

tial refiner, we regress a per-point offset vector to further

adjust the coarse outputs in fine scale. Extensive quali-

tative and quantitative results on both synthetic and real-

scanned datasets demonstrate the superiority of our method

over the state-of-the-arts. The code is publicly available at

https://github.com/liruihui/Dis-PU .

1. Introduction

Point clouds, as a compact representation of 3D data,

are widely explored by both traditional and deep-learning-

based methods for many applications [6, 4, 18], e.g., self-

∗corresponding author

driving cars, robotics, rendering, and medical analysis, etc.

However, raw point clouds produced by 3D scanning are

often locally sparse and non-uniform, possibly with small

holes on the object surface; see a real-scanned example

shown on the top of Figure 1(a). Obviously, we need to

amend such raw data, before we can effectively use it for

rendering, analysis, or general processing.

The goal of point cloud upsampling is not limited to gen-

erating a dense point set from the sparse input. Very impor-

tantly, the generated points should also faithfully locate on

the underlying surface and cover the surface with a uniform

distribution. As an inference-based problem, these goals are

very demanding, due to the limited information available in

the sparse input. Besides being sparse, the input points can

be non-uniform and noisy, and they may not well represent

fine structures (if any) on the underlying surface.

Benefited from data-driven machine learning and deep

neural network models, several deep-learning-based meth-

ods [28, 27, 26, 12, 21] have been proposed for point cloud

upsampling and they demonstrated superior performance,

compared with traditional methods [1, 17, 10]. The general

approach taken in existing learning-based methods is that

they first design an upsampling module to expand the num-

ber of points in the feature space, then formulate losses to

constrain the output points for the distribution uniformity

and proximity-to-surface. In other words, the designed up-

sampling module is expected not only to infer and gener-

ate dense points from the sparse input, but also to produce

points that are uniform, clean, and faithfully located on the

344



underlying surface. However, it is very hard for a network

to meet all the requirements at the same time. Therefore,

the dense points produced by existing works still tend to be

non-uniform or retain excessive noise (see the top results

in Figures 1 (b) & (c)), thus resulting in low-quality recon-

structed meshes (see results in the bottom row).

After revisiting the point cloud upsampling task, we pro-

pose to disentangle the task into two sub-goals: (i) to first

generate a coarse but dense point set with less details to

roughly describe the underlying surface, and then (ii) to re-

fine the coarse points to better cover the underlying surface

for distribution uniformity and proximity-to-surface. To

do so, we formulate an end-to-end disentangled refinement

framework, which consists of two cascaded sub-networks,

a dense generator and a spatial refiner, which are designed

to aim for sub-goals (i) and (ii), respectively. Particularly,

we design the spatial refiner with a pair of local and global

refinement units to evolve the coarse feature map inside the

refiner to take into account both the local and global geo-

metric structures. Further, inspired by the residual-learning

strategy [8], we formulate the spatial refiner to regress a per-

point offset vector for fine-tuning the coarse outputs by ad-

justing the location of each point. Compared with directly

predicting the final refined 3D point coordinates, regressing

a small residual is much easier for the network.

Compared with current upsampling methods [28, 26,

12], our disentangled refinement pipeline assigns lower re-

quirements to each sub-network, so that both the dense

generator and the spatial refiner could be more focused on

their own sub-goals. In addition, the cascading scheme al-

lows the two sub-networks to complement each other dur-

ing network learning, thus leading to a substantial perfor-

mance boost; see Figure 1(d). Extensive experimental re-

sults demonstrate that our method outperforms others on

both real-scanned and synthetic inputs.

2. Related Work

Optimization-based upsampling. To generate new points

from the inputs, optimization-based methods typically rely

on hand-crafted priors. Alexa et al. [1] introduced an early

work that inserts new points at the vertices of the Voronoi

diagram, which is computed based on the moving-least-

squares surface. Later, a locally optimal projection operator

was proposed by Lipman et al. [17], where points are re-

sampled based on the L1 norm. To upsample point cloud in

an edge-aware manner, Huang et al. [10] proposed to first

upsample points away from the edges then progressively

move points towards the edge singularities. Later, Wu et

al. [25] introduced a point-set consolidation method by aug-

menting surface points into deep points that lie on the meso-

skeleton of the shape. Overall, optimization-based methods

may fail when the prior assumptions are not satisfied.

Deep learning-based upsampling. Inspired by the suc-

cess of PointNet [20], many deep learning methods were

proposed for assorted tasks on point cloud processing, from

high-level tasks like classification [16, 31, 14] and object

detection [11, 19] to low-level tasks like completion [29, 3],

denoising [22, 9], and other applications [24, 5, 13, 15].

For the point cloud upsampling task, Yu et al. [28] in-

troduce PU-Net, the first attempt based on deep learning to

learn to extract multi-scale features and expand a point set

via a multi-branch convolution in the feature space. Later,

they introduce EC-Net [27] to achieve edge-aware point

cloud upsampling, which further enhances the surface re-

construction quality. Soon after that, Wang et al. [26] pro-

posed MPU, a network that progressively upsamples point

patches in multiple steps, while Li et al. [12] proposed PU-

GAN by leveraging the generative adversarial network to

learn to synthesize points with a uniform distribution in the

latent space. Very recently, Qian et al. [21] proposed PU-

GeoNet to first generate samples in a 2D domain and then

use a linear transform to lift up the samples to 3D.

After revisiting deep-learning-based methods for point

cloud upsampling, we found that existing works all rely

on a single network to meet all the various goals of point

cloud upsampling, i.e., dense point set generation, faith-

fulness to underlying surface, distribution uniformity, hole

amendment, etc. To better meet the multi-objective nature

of the task, we propose a new approach to disentangle the

task into two cascaded networks and demonstrate substan-

tial improvements over the prior works.

3. Method

3.1. Overview

Essentially, 3D scanning is a sampling problem in the

3D physical space, while upsampling is a prediction prob-

lem, aiming to infer more samples on the original surface,

given the sparse samples obtained in the scanning. Given

a point set P of N points, which is typically sparse, non-

uniform, and noisy, the point cloud sampling task aims to

generate a dense point set, say Q of rN points, for a given

upsampling rate r. These upsampled points should (i) faith-

fully describe the underlying object surface and (ii) cover

the surface with a uniform distribution. This upsampling

task is very challenging, since we need to infer new knowl-

edge from the sparse input, in which the information about

the original geometry is not completely represented.

Different from the existing approaches that try to meet

the various goals in upsampling all in a single network, we

propose to disentangle the upsampling task into two sub-

goals, where we first generate a coarse but dense point set

and then refine these points over the underlying surface to

improve the distribution uniformity. Before giving the de-

tails of our method, we first discuss our key insights:

345



Figure 2. An illustration of our framework. Given sparse input P of N points, the dense generator extracts feature map FP from the input,

generates the expanded feature map FE , then produces a coarse but dense point set Q′ of rN points, where r is the upsampling rate. Next,

the spatial refiner consumes both Q′ and the associated FE to obtain the refined feature map FR via a pair of local and global refinement

units. We then regress offsets ∆Q from FR, and output the final refined dense points Q by Q′
+∆Q.

• First, we propose an end-to-end disentangled refine-

ment framework with two cascaded sub-networks: one

to generate dense points that roughly locate on the un-

derlying surface and the other to aim for proximity-

to-surface and distribution uniformity. Thus, each sub-

network can better focus on its specific sub-goal, while

complementing each other in the upsampling task.

• Second, with the help from the spatial refiner sub-

network, the dense generator sub-network does not

need a complicated structure. Hence, having a simple

yet effective structure can enable it to expand features

with higher flexibility and increase the upsampling rate

without introducing extra network parameters.

• Third, we design the spatial refiner with both local

and global refinements, such that we can leverage their

complementary strengths to locally improve the distri-

bution uniformity and proximity-to-surface, and glob-

ally explore similar structures on the surface.

Figure 2 shows the overall framework of our method.

Given a sparse point set P , we first feed it into our dense

generator to generate the dense output Q′ with rN points.

At present, Q′ may still be non-uniform and noisy like P , as

illustrated in the figure’s toy example. Next, we feed it into

our spatial refiner to further regress a per-point offset vector

∆Q, which is used to adjust the location of each point in Q′,

such that the refined dense points Q can faithfully locate on

the underlying surface, while being more uniform. In the

following, we first present the details of the dense genera-

tor and spatial refiner in Sections 3.2 and 3.3, respectively.

Then, we give the details of the patch-based end-to-end net-

work training in Section 3.4.

3.2. Dense Generator

Given P ∈ R
N×3, our dense generator produces the up-

sampled coarse points Q′ ∈ R
rN×3. Similar to existing

upsampling approaches [28, 26, 12], we also expand the

number of points in the feature space.

Specifically, as shown in the left-side of Figure 2, we first

employ a feature extraction unit to embed the feature map

FP ∈ R
N×C from P , where C is the number of feature

channels. Here, we follow [26] to use the same feature ex-

traction unit by considering the efficiency and effectiveness.

Please refer to [26] for the details of this unit. Next, we feed

FP into a feature expansion unit to generate the expanded

feature map FE ∈ R
rN×C . As discussed in Section 3.1,

with the help from the cascaded spatial refiner, the dense

generator only needs to generate a dense point set to roughly

locate on the underlying surface. Hence, in the feature ex-

pansion unit, we adopt the commonly-used expansion op-

eration by duplicating FP with r copies and concatenating

with a regular 2D grid to obtain FE . Although such oper-

ation may introduce redundant information or extra noise,

these problems could be rectified by the subsequent spatial

refiner. Lastly, Q′ is generated by regressing the point co-

ordinates from FE via multi-layer perceptrons (MLPs).

3.3. Spatial Refiner

Considering that Q′ may still be noisy and non-uniform,

we thus design a spatial refiner to further fine-tune the spa-

tial location of each point in Q′ and generate a high-quality

dense point set Q, which lies on the underlying surface and

also distributes uniformly.

To do so, as shown in the right-side of Figure 2, we first

feed the coarse Q′ and the associated coarse feature map

FE into both local and global refinement units, which are

detailed later. Next, we sum the two outputs generated

by the two refinement units to obtain the refined feature

map FR ∈ R
rN×C . Then, instead of directly regressing

the refined point coordinates, we adopt residual learning to

regress the per-point offset ∆Q. The reason behind is that,

compared with the relative offset, the absolute point coor-

dinates are more diverse and have a wide distribution in 3D

space. Hence, it is difficult for the network to synthesize

points without introducing extra noise, while still preserv-

ing the uniformity and shape structures. Lastly, the final

output Q is obtained by Q′ +∆Q.

Local refinement unit aims to evolve FE by consider-

ing the local geometric structures. Figure 3(a) shows the

detailed architecture. Specifically, we first employ KNN

346



Figure 3. The architecture of (a) the local refinement unit and (b) the global refinement unit.

grouping on Q′ to search K-nearest neighbors and group

the associated neighbor points together to obtain a stacked

rN × K × 3 point volume. At the same time, we em-

ploy the same nearest neighbor indices to group FE into an

rN×K×C feature volume. Then, we duplicate Q′ with K

copies and apply a subtraction operation on the duplicated

and the grouped point volumes, which helps encode local

information. We then concatenate the subtracted point vol-

ume with the grouped feature volume and apply MLPs to

obtain the encoded local feature volume FL ∈ R
rN×K×C .

Next, to obtain the local point feature over FL, a com-

mon routine is to apply MLPs followed by a max-pooling

along the K-dimension. However, to account for the rela-

tive importance among the K neighbors, we further regress

a spatial weight W (see the light yellow volume in Figure 3

(a)) from the subtracted point volume. Then, we modify FL

via a convolution with W, followed by a summation along

the K-dimension to obtain the weighted rN × C feature

map. Lastly, we sum the weighted feature map as the final

refined local features.

Global refinement unit aims to refine FE by considering

the overall shape structure. As shown in Figure 3(b), instead

of feeding only FE to the refinement unit, we concatenate

FE and Q′ together as the input to avoid losing the over-

all shape structure. Next, we adopt the widely-used self-

attention unit [30] to obtain the refined global feature map,

since this unit regresses attention weights among all the rN

points, thus introducing long-range context dependencies.

For brevity, we will not describe the details of this attention

unit; please refer to [30] if needed.

3.4. Patch­based End­to­end Training

Since point cloud upsampling is a low-level task that re-

quires us to focus more on the local geometric structures,

we thus adopt the patch-based training strategy, as all the

existing upsampling approaches did. During training, for

each input sparse point set P and its associated target dense

point set Q̂, our framework predicts both Q′ and Q. Hence,

we formulate our objective function to encourage the geo-

metric consistency between Q′&Q̂, and between Q&Q̂:

L = LCD(Q
′, Q̂) + λLCD(Q, Q̂), (1)

where LCD(·) means the Chamfer Distance (CD) [7] to mea-

sure the average closest point distance between two point

sets. The parameter λ controls the relative importance of

each term. In the early stage of network training, we set a

small λ, so that the network focuses more on the training

of the dense generator to produce a more reliable Q′. As

the training progresses, we gradually increase λ to let our

spatial refiner to be fully trained.

Note that, we also tried to combine Eq. (1) with the re-

pulsion loss [28] to encourage the distribution uniformity.

However, we found that this repulsion loss does not con-

tribute too much in our work, because our method can al-

ready generate a relatively uniform dense point set benefited

from the disentangled refinement scheme, even without any

losses to constrain the uniformity distribution.

4. Experiments

4.1. Experimental Settings

Datasets. We employ both synthetic and real-scanned

datasets in our experiments. For the synthetic dataset, we

use the benchmark dataset provided by [12] with 120 train-

ing and 27 testing objects. For each training object, we

follow [12] to crop 200 overlapped patches, thus resulting

in totally 24,000 training surface patches. On each surface

patch, we uniformly sample rN points as target Q̂, and then

randomly downsample N points from Q̂ as the training in-

put P . For each testing shape, we follow MPU [26] and PU-

GAN [12] to sample ∼20,000 uniform points using Poisson

disk sampling as Q̂ for quantitative evaluation, and generate

1,024 non-uniform points for testing.

For real-scanned dataset, we use ScanObjectNN [23],

which contains 2,902 point cloud objects in 15 categories.

Each object has 2,048 points. Since no target dense points

are provided in ScanObjectNN, we just use this dataset for

testing. Hence, during testing, we have both synthetic and

347



real-scanned point clouds. For each testing point cloud with

2,048 points, we use farthest sampling to pick seeds and ex-

tract a local patch of N points per seed. We then feed these

patches to the network for testing and combine the upsam-

pled results as the final output.

Evaluation metrics. For quantitative evaluation, we con-

sider three widely-used evaluation metrics: (i) Chamfer dis-

tance (CD), (ii) Hausdorff distance (HD), and (iii) Point-to-

surface (P2F) distance using the original testing objects. A

lower evaluation metric indicates a better performance.

Comparison methods. To demonstrate the effectiveness

of our method, we compare it with three state-of-the-art

point cloud upsampling methods, including PU-Net [28],

MPU [26], and PU-GAN [12]. We use their released public

code and follow the same setting in the original papers to re-

train their networks using our prepared training data. Note

that, for the recent work PUGeoNet [21], we cannot provide

the comparison results without available code so far.

Implementation details. In experiments, we set N = 256.

We train our network with a batch size of 28 for 400 epochs

on the TensorFlow platform. For each patch, we apply ran-

dom scaling, rotation, and point perturbation to avoid over-

fitting. The Adam optimizer is used with the learning rate of

0.001, which is linearly decreased by a decay rate of 0.7 per

40 epochs until 10−6. The parameter λ in Eq. (1) is linearly

increased from 0.01 to 1.0 as the training progresses.

4.2. Results on Real­scanned Dataset

First, we compared our method with state-of-the-arts on

real-scanned test inputs. Besides the results shown earlier

in Figure 1, we further show more visual comparison re-

sults in Figure 7 (see page 8), where we set r = 16. For

each object, the top row shows the upsampled points by

each method, and the bottom row shows the associated re-

constructed 3D meshes using ball-pivoting surface recon-

struction algorithm [2]. Note that, since PU-Net is an early

work with not very promising results, we thus omit its re-

sults in visual comparisons. As shown in the top row of

Figure 7(a), to upsample the real-scanned sparse inputs is

very challenging, since these points are not only noisy and

non-uniform, but also exhibit many small holes and struc-

tural defects. Thus, reconstructing meshes directly from

sparse inputs often results in incomplete surfaces with many

holes; see the bottom results in (a). Comparing the upsam-

pled points produced by various methods, the other meth-

ods tend to retain noise in their results, or fail to generate a

uniform output, thus resulting in low-quality reconstructed

meshes with small holes or rough surfaces. On the contrary,

our method enables to produce uniform dense points with

low deviations to the underlying object surface. Hence, the

reconstructed meshes from our upsampled points can well

describe the geometric structures with smooth and complete

Table 1. Quantitative comparisons by using our method and state-

of-the-arts. The units of CD, HD, and P2F are all 10−3.

Methods
4X 16X

Size CD HD P2F Size CD HD P2F

PU-Net [28] 10.1M 0.844 7.061 9.431 24.5M 0.699 8.594 11.619

MPU [26] 23.1M 0.632 6.998 6.199 92.5M 0.348 7.187 6.822

PU-GAN [12] 9.57M 0.483 5.323 5.053 9.57M 0.269 7.127 6.306

Our 13.2M 0.315 4.201 4.149 13.2M 0.199 4.716 4.249

surfaces. More real-scanned comparisons can be found in

our supplementary material.

4.3. Results on Synthetic Dataset

Next, we compared our method with state-of-the-arts on

synthetic test models provided by [12]. Figure 4 shows the

visual comparisons on three sparse inputs, where we set

r=16. Comparing the dense points produced by our method

(e) and others (b-d) with the target (a), we can see that other

methods tend to introduce excessive noise (e.g., (b)), cluster

points together with a non-uniform distribution (e.g., (c)), or

destroy some tiny structures (e.g., (d)) in the results. In con-

trast, our method produces the most similar visual results to

the target points, and our dense points can well preserve tiny

local structures with a uniform point distribution; see par-

ticularly the blown-up view in Figure 4. Besides, we show

also the associated error maps, where the colors reveal the

nearest distance for each point in target point set to the pre-

dicted point set. We can see that the errors of our upsampled

results are the lowest (i.e., most points are blue), which is

also verified by both CD and HD values. More comparison

results can be found in the supplemental material.

Table 1 shows the quantitative comparisons on all the

synthetic test models under different upsampling rates. We

can see that our method achieves the lowest values on all

the evaluation metrics in terms of both upsampling rates.

Note that, different from PU-Net and MPU, the number of

learnable parameters in our network will not increase as

r increases. Hence, our method has good scalability to a

large upsampling rate. More importantly, when r increases,

the advantages of our method compared with others become

more obvious. The reason behind is that, the prediction dif-

ficulty will significantly increase given a large r for exist-

ing approaches. However, thanks to the disentangled refine-

ment scheme, our method has better adaptability.

4.4. Noise Robustness Test

We explored the noise robustness of our method by

adding Gaussian noise of different levels to the synthetic

test inputs. Figure 5 shows the visual comparisons. Clearly,

our method achieves more uniform upsampling results (d

& g) without excessive noise, under both upsampling rates.

The quantitative comparisons are summarized in Table 2,

where r = 16 and we show the CD values. Obviously, our

method produces the lowest values across all the noise lev-

els with a significant margin, compared to others.

348



Figure 4. Comparing point set upsampling (x16) results from synthetic sparse inputs (a) using different methods (b-e). We also show the

associated error maps, where the colors reveal the nearest distance for each target point to the predicted point set generated by each method.

4.5. Ablation Study

To evaluate the effectiveness of the major components in

our framework, we conducted an ablation study by simpli-

fying our full pipeline in the following four cases: (A) re-

moving the spatial refiner and only keeping the dense gener-

ator (see Figure 2); (B) removing the local refinement unit;

(C) removing the global refinement unit; and (D) remov-

ing offsets and directly regressing the point coordinates. In

each case, we re-trained the network and tested the perfor-

mance using synthetic data. Table 3 summarizes the results

of each case in terms of CD value, compared to our full

pipeline (bottom row). Clearly, our full pipeline performs

the best with the lowest CD value, and removing any com-

ponent reduces the overall performance, meaning that each

component in our framework contributes. We also present a

visual result associated with the ablation study in Figure 6.

The supplemental material provides more results with vari-

ous settings, verifying the effectiveness of our disentangled

design. Noted that since the dense generator adopts an iden-

tical or simplified design from the previous works [26, 12],

our spatial refiner is generally applicable to other networks.

5. Conclusion

In this paper, we present a disentangled refinement

framework for point cloud upsampling. Different from ex-

isting approaches that try to meet the various upsampling

349



Figure 5. Comparing point set upsampling results produced using different methods under different upsampling rate, when given noisy

sparse inputs with increasing noise level, i.e., 0.1%, 0.5%, 1.0%, and 2.0%.

Table 2. Quantitative comparisons by using our method and state-

of-the-arts to upsample noisy inputs with increasing noise level

(r = 16). Here we show CD values with the unit of 10−3.

Methods
Perturbation with different noise levels

0% 0.1% 0.5% 1.0% 2.0%

PU-Net [28] 0.699 0.717 0.794 0.860 0.945

MPU [26] 0.348 0.364 0.426 0.524 0.831

PU-GAN [12] 0.269 0.309 0.381 0.562 0.899

Our 0.199 0.213 0.229 0.310 0.592

Table 3. Comparing the upsampling performance of our full

pipeline with various cases in the ablation study (r=16). Here we

show CD values with the unit of 10−3.

Model Spatial Refiner Local Global Offset CD

A 0.684

B X X X 0.378

C X X X 0.343

D X X X 0.228

Full 0.199

goals all in a single network, we propose to disentangle the

upsampling task into two sub-goals, where we first gener-

ate coarse but dense points, and then refine these points by

adjusting the location of each point. To this end, we formu-

late an end-to-end disentangled refinement framework with

two cascaded sub-networks: a dense generator and a spatial

refiner. In the spatial refiner, we introduce a pair of local

Figure 6. Visualization results for the ablation study.

and global refinement units to evolve the coarse feature map

by considering both local and global geometric structures.

Also, we design our spatial refiner to regress offset vectors

to adjust the coarse outputs in fine scale. Experimental re-

sults demonstrate the superiority of our method over others.

Actually, this work aims to provide a generic framework

to disentangle the point cloud upsampling task. In the fu-

ture, we may continue to explore a more comprehensive ar-

chitecture for dense generator and spatial refiner. We may

further explore the possibility of designing a region adaptive

refiner, meaning that we only fine-tune regions that are non-

uniform and noisy, thus improving the overall efficiency.

Lastly, designing the refiner to be aware of edges may be

helpful for downstream tasks like mesh reconstruction.

Acknowledgments. We thank anonymous reviewers for

the valuable comments. This work is supported by the Hong

Kong Centre for Logistics Robotics, and Research Grants

Council of the Hong Kong Special Administrative Region

(Project No. CUHK 14201717 & 14201918 &14201620).

350



Figure 7. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods (b-d) from real-scanned

sparse inputs (a), while the bottom row shows the reconstructed meshes. Clearly, our method outperforms others on the local uniformity,

contributing a better surface reconstruction.

351



References

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar

Fleishman, David Levin, and Claudio T. Silva. Computing

and rendering point set surfaces. IEEE Trans. Vis. & Comp.

Graphics (TVCG), 9(1):3–15, 2003. 1, 2

[2] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,

Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. 5(4):349–359, 1999. 1, 5

[3] Xuelin Chen, Baoquan Chen, and Niloy J. Mitra. Unpaired

point cloud completion on real scans using adversarial train-

ing. Int. Conf. on Learning Representations (ICLR), 2020.

2

[4] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3D object detection network for autonomous

driving. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 1907–1915, 2017. 1

[5] Zhutian Chen, Wei Zeng, Zhiguang Yang, Lingyun Yu, Chi-

Wing Fu, and Huamin Qu. LassoNet: Deep Lasso-selection

of 3D point clouds. IEEE Trans. Vis. & Comp. Graphics

(TVCG), 26(1):195–204, 2020. 2

[6] David M. Cole and Paul M. Newman. Using Laser range

data for 3D SLAM in outdoor environments. In IEEE Int.

Conf. on Robotics and Automation (ICRA), pages 1556–

1563, 2006. 1

[7] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point

set generation network for 3D object reconstruction from a

single image. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 605–613, 2017. 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[9] Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. Total

Denoising: Unsupervised learning of 3D point cloud clean-

ing. In IEEE Int. Conf. on Computer Vision (ICCV), pages

52–60, 2019. 2

[10] Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or,

Uri Ascher, and Hao Zhang. Edge-aware point set resam-

pling. ACM Trans. on Graphics (TOG), 32(1):9:1–12, 2013.

1, 2

[11] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. PointPillars: Fast encoders

for object detection from point clouds. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages

12697–12705, 2019. 2

[12] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. PU-GAN: A point cloud upsampling ad-

versarial network. In IEEE Int. Conf. on Computer Vision

(ICCV), pages 7203–7212, 2019. 1, 2, 3, 4, 5, 6, 7

[13] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.

PointAugment: An auto-augmentation framework for point

cloud classification. In IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 6378–6387, 2020. 2

[14] Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu,

Daniel Cohen-Or, and Pheng-Ann Heng. A rotation-

invariant framework for deep point cloud analysis. arXiv

preprint arXiv:2003.07238, 2020. 2

[15] Xianzhi Li, Lequan Yu, Chi-Wing Fu, Daniel Cohen-Or,

and Pheng-Ann Heng. Unsupervised detection of distinc-

tive regions on 3d shapes. ACM Trans. on Graphics (TOG),

39(5):158:1–14, 2020. 2

[16] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. PointCNN: Convolution on X -

transformed points. In Conference and Workshop on Neural

Information Processing Systems (NeurIPS), pages 828–838,

2018. 2

[17] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hil-

lel Tal-Ezer. Parameterization-free projection for geome-

try reconstruction. ACM Trans. on Graphics (SIGGRAPH),

26(3):22:1–5, 2007. 1, 2

[18] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello,

Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim,

Philip L Davidson, Sameh Khamis, Mingsong Dou, et al.

Holoportation: Virtual 3D teleportation in real-time. In Pro-

ceedings of the 29th Annual Symposium on User Interface

Software and Technology, pages 741–754, 2016. 1

[19] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.

Guibas. Deep hough voting for 3D object detection in point

clouds. In IEEE Int. Conf. on Computer Vision (ICCV), pages

9277–9286, 2019. 2

[20] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 652–660, 2017. 2

[21] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. PUGeo-

Net: A geometry-centric network for 3D point cloud upsam-

pling. In European Conf. on Computer Vision (ECCV), 2020.

1, 2, 5

[22] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guer-

rero, Niloy J. Mitra, and Maks Ovsjanikov. PointCleanNet:

Learning to denoise and remove outliers from dense point

clouds. Computer Graphics Forum (CGF), 39(1):185–203,

2020. 2

[23] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud

classification: A new benchmark dataset and classification

model on real-world data. In IEEE Int. Conf. on Computer

Vision (ICCV), pages 1588–1597, 2019. 1, 4

[24] Yue Wang and Justin M. Solomon. Deep closest point:

Learning representations for point cloud registration. In

IEEE Int. Conf. on Computer Vision (ICCV), pages 3523–

3532, 2019. 2

[25] Shihao Wu, Hui Huang, Minglun Gong, Matthias Zwicker,

and Daniel Cohen-Or. Deep points consolidation. ACM

Trans. on Graphics (SIGGRAPH Asia), 34(6):176:1–13,

2015. 2

[26] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and

Olga Sorkine-Hornung. Patch-based progressive 3D point

set upsampling. In IEEE Conf. on Computer Vision and Pat-

tern Recognition (CVPR), pages 5958–5967, 2019. 1, 2, 3,

4, 5, 6, 7

[27] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. EC-Net: An edge-aware point set con-

solidation network. In European Conf. on Computer Vision

(ECCV), pages 386–402, 2018. 1, 2

352



[28] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. PU-Net: Point cloud upsampling network.

In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 2790–2799, 2018. 1, 2, 3, 4, 5, 7

[29] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and

Martial Hebert. PCN: Point completion network. In Int.

Conf. on 3D Vision (3DV), pages 728–737, 2018. 2

[30] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks. In

Int. Conf. on Machine Learning (ICML), pages 7354–7363.

PMLR, 2019. 4

[31] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shell-

Net: Efficient point cloud convolutional neural networks us-

ing concentric shells statistics. In IEEE Int. Conf. on Com-

puter Vision (ICCV), pages 1607–1616, 2019. 2

353


