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Abstract

In this paper, we present a regression-based pose recog-

nition method using cascade Transformers. One way to cat-

egorize the existing approaches in this domain is to sep-

arate them into 1). heatmap-based and 2). regression-

based. In general, heatmap-based methods achieve higher

accuracy but are subject to various heuristic designs (not

end-to-end mostly), whereas regression-based approaches

attain relatively lower accuracy but they have less interme-

diate non-differentiable steps. Here we utilize the encoder-

decoder structure in Transformers to perform regression-

based person and keypoint detection that is general-purpose

and requires less heuristic design compared with the ex-

isting approaches. We demonstrate the keypoint hypothe-

sis (query) refinement process across different self-attention

layers to reveal the recursive self-attention mechanism in

Transformers. In the experiments, we report competitive re-

sults for pose recognition when compared with the compet-

ing regression-based methods.

1. Introduction

We tackle the 2D human pose recognition problem

[19, 1, 32, 22] where keypoints (e.g. head, shoulders, knees,

etc.) for multiple people in an RGB image are to be detected

and localized. This is an important problem in computer vi-

sion that can be adopted in a variety of downstream tasks in-

cluding tracking, security, animation, human-computer in-

teraction, computer games, and robotics.

There has been a steady progress in 2D human pose

recognition [1, 32, 36, 22, 17, 2, 25, 29, 24, 6, 5, 28, 41, 23]

with systems becoming increasingly practical without a

strong constraint (e.g. present multiple people of varying

size). However, pose recognition is a challenging problem
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Figure 1: Illustration of the gradual refinement for the

keypoints across different Transformer decoder layers.

Through the decoding process, PRTR predicts keypoints

with increasing confidence and decreasing spatial deviation

to ground truth, transforming image-ignorant queries to fi-

nal predictions.

that remains unsolved. The difficulty lies in various aspects

such as large pose/shape variation, inter-person and self oc-

clusion, large appearance variation, and background clutter.

For multiple people in an input image [19], the task of

pose recognition is to localize the human keypoints (17 in

the experiments) for the individual persons. This can be

achieved by a two-stage process in which individual per-

sons are detected first, followed by keypoint detection from

the detected image region/patch; this is called a top-down

process [28]. An alternative strategy is called a bottom-up

process where human keypoints are detected directly from

the image without an explicit object detection stage [6]. A

discussion about the top-down and bottom-up approaches

can be found in [6].

Another way to divide the existing literature in pose

recognition is based on the choice of using heatmap or

regression. Heatmap-based approaches [37, 28] perform

dense keypoint detection followed by subsequent processes
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for clustering and grouping; they deliver strong perfor-

mance but are also subject to many heuristic designs that are

mostly not end-to-end learnable. Regression based methods

[29, 41, 35] perform regression for the keypoints directly

which have less intermediate stages and specifications.

Regression-based methods typically perform worse than

heatmap-based ones, but can be made end-to-end and read-

ily integrated with the other downstream tasks. Reasons for

the existence of both heatmap-based and regression-based

methods are present. Heatmap-based methods are adopted

when the accuracy is the priority whereas regression-based

approaches can be considered as a convenient plug-and-play

module.

Generally, heatmap-based methods adopt handcrafted

or heuristic pre/post-processing to encode ground truth to

heatmaps and decode heatmaps to predict keypoints. These

methods introduce design challenges and biases, making

them sub-optimal. They are hard to update and adapt as

well. In detail, SimpleBaseline [37] and HRNet [28] adopt

the standard coordinate decoding method designed empiri-

cally according to model performance in [22], refining the

coordinates 0.25 time from the maximum activation to the

second maximum empirically in the heatmap. DARK [40]

presents Taylor-expansion based coordinate decoding and

unbiased sub-pixel centered coordinate encoding. UDP [15]

even discovered a considerable accuracy decrease when us-

ing one-pixel flip shift in heatmap-based paradigms. For

general-purpose regression methods, we aim at removing

unnecessary designs by making the training objective and

target output direct and transparent. Coordinates should be

output directly and the loss be calculated with predictions

and ground truth coordinates straightforward.

Bearing this in mind, we present a top-down regression-

based 2D human pose recognition method using cascade

Transformers consisting of a person detection Transformer

and a keypoint detection Transformer. Two alternatives

have been developed, one being a two-stage process (shown

in Figure 2) with the two Transformers learned sequen-

tially and the other being a sequential process (shown in

Figure 3) with the two transfomers learned jointly in an

end-to-end fashion. We name our method Pose Regression

TRansformers (PRTR). We apply multi-scale features in the

keypoint detection Transformer. Visualization for the key-

point queries across different attention layers in the decoder

is given to illustrate the internal detection process. PRTR

is a general-purpose approach for keypoint regression and

we show competitive results in pose recognition when com-

pared with the existing regression-based methods in the lit-

erature. The contributions of our work include:

• We propose a regression-based human pose recognition

method by building cascade Transformers, based on a

general-purpose object detector, end-to-end object de-

tection Transformer (DETR) [3]. Our method, named

pose recognition Transformer (PRTR), enjoys the tok-

enized representation in Transformers with layers of self-

attention to capture the joint spatial and appearance mod-

eling for the keypoints.

• Two types of cascade Transformers have been developed:

1). a two-stage one with the second Transformer tak-

ing image patches detected from the first Transformer, as

shown in Figure 2; and 2). a sequential one using spatial

Transformer network (STN) [16] to create an end-to-end

framework, shown in Figure 3.

• We visualize the distribution of keypoint queries in var-

ious aspects to unfold the internal process of the Trans-

former for the gradual refinement of the detection.

On the COCO 2D human pose recognition dataset [19],

competitive results have been observed when compared

with the regression-based methods.

2. Related Work

Given an image I , the goal of pose recognition is to pre-

dict a possibly empty set of persons, {Pi}
N
i=1, where N is

the number of persons in the image. For each person, we

need to predict its bounding box position, bi, as well as its

skeleton coordinates, si = {(xj , yj)}
J
j=1, where J is the

number of joints pre-defined in each dataset.

We discuss related work from several aspects. The

field of human pose regression has witnessed a continuing

progress [1, 32, 36, 22, 17, 2, 25, 29, 24, 6, 5, 28, 41, 23], in

particular with the advancing of the deep learning technolo-

gies [18, 12, 14]. One notable development in pose recogni-

tion is the creation of the HRNet family model [28, 6] which

is itself about a new convolutional neural network (CNN)

architecture targeting the modeling of high-resolution fea-

ture responses. HRNet [28] has shown its particular advan-

tage in advancing the state-of-the-art for 2D human pose

recognition/estimation.

Heatmap-based approaches include [2, 13, 25, 21, 17,

24, 6, 5, 37, 28, 40, 39, 30] where various techniques have

been developed to perform multi-class keypoint classifica-

tion. The classifiers produce dense heatmaps (classification

map), followed by clustering and grouping processes. On

one hand, heatmap-based methods leverage fine-grained de-

tection for the keypoints by densely scanning all the pixels;

on the other hand, heatmaps create a disconnection from the

overall estimation of the keypoints, making the intermedi-

ate clustering and grouping process not directly integrable

to be end-to-end learning frameworks.

Regression-based methods [4, 41, 23, 35, 29] aim to di-

rectly approach keypoint detection with a direct loss mini-

mization between predicted and ground truth coordinates,

hence, they can be more easily integrated into an end-

to-end learning framework. However, holistic regression

can be intrinsically more difficult to optimize due to the
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Figure 2: The architecture of Pose Recognition with TRansformer (PRTR), two-stage variant. First, using whole-picture image feature

and absolute positional encoding, a person-detection Transformer detects people in the image with a set of learned person queries. After

filtering background queries, we crop the original image with predicted boxes. Cropped images are fed into a keypoint-detection Trans-

former, together with positional encoding relative to corresponding bounding boxes. Finally, we read out J keypoints from a larger set of

keypoint queries by Hungarian algorithm. The keypoint-detection Transformer processes all the non-background keypoint proposals in a

vectorized way. h(0) denotes hypotheses (queries), the feature vectors to be refined to final predictions, ŷ , through Transformer decoder.

high-precision needed by pose recognition. Furthermore,

regression-based approaches typically have a recursive pro-

cedure [9] that skips a large number of candidate locations,

creating a performance gap with the heatmap-based meth-

ods. Our work follows the line of regressive pose estima-

tion, and formulates the process of step-by-step regression

[9, 4] implicitly in a layered Transformer way.

Transformers and self-attention The attention mech-

anism [38, 33, 8] has greatly advanced the field of rep-

resentation learning in machine learning. The introduc-

tion of Transformers [33] to object detection gives another

leap-forward in building end-to-end object detection frame-

work that is free of proposal, anchor, and post process-

ing (non-maximum suppression). Here, we build cascade

Transformers based on the DETR [3] framework to perform

regression-based pose recognition. Our system, named

PRTR, aims towards a general-purpose keypoint regression

solution without specific heuristic-driven designs.

Recently, Transformer architecture and self-attention

have seen increasing application in computer vision tasks

[26, 3, 10], yet there are limited visualization works com-

pared with those done on language application [7, 34]. As

far as we know, we are the first to visualize the dynamic de-

coding process in Transformer decoder, which brings sig-

nificant insights to future Transformer designs.

3. Method

We argue that the attention mechanism in Transformer

can act as a general-purpose inference engine for regres-

sion in vision tasks by writing visual perception as a

Bayesian inference P (Y |I) ∝ P (I|Y )P (Y ) with Y =
(ŷelb, ŷknee, · · · , ŷnose). Here, Transformer for regression

performs direct learning and inference by capturing com-

plex joint relations between input I and prediction hypothe-

ses (queries), P (I|Y ), through cross-attention, and model-

ing the prior on configuration of Y , P (Y ), via hypothesis

(query) self-attention. See Figure 1.

In this section, we instantiate this idea as Pose Recog-

nition with TRansformer (PRTR) for multi-person pose

recognition. The overall architecture is shown in Figure 2.

We first introduce a cascaded double Transformer architec-

ture for person and keypoint detection, then an end-to-end

variant to streamline the entire model.

3.1. Person­Detection Transformer
We tackle multi-person pose recognition problem in a

top-down manner, and adopt a Transformer architecture

[33] following DEtection TRansformer (DETR) [3] as the

backbone for the first-stage person detection. In the encoder

stage, image features generated by a CNN are flattened and

fed into a Transformer encoder to produce contextualized

image features; in the decoder stage, given a fixed set of

learned query embedding as input, Transformer decoder

reasons about the relations between objects under the con-

text of image features, and output all the object queries in a

parallel way. At last, a classification head is used to classify

the object as person or background (∅), and a 4-channel

regression head is used to predict the bounding boxes.

3.2. Keypoint­Detection Transformer

After getting the bounding boxes, we crop the RGB im-

age and use another CNN backbone to get feature maps per
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Figure 3: The architecture of Pose Recognition with TRansformer (PRTR), end-to-end variant. For end-to-end learning,

instead of cropping at RGB image level, we apply differentiable bilinear sampling on multiple layers of backbone-generated

features to provide zoomed-in and multi-level feature for keypoint-detection Transformer.

person. Because only matched queries are involved in cal-

culating the loss for keypoint-detection Transformer, we fil-

tered out unmatched ones. Like the process of person detec-

tion, we use the encoder-decoder architecture of the Trans-

former to predict in a parallel fashion, but we use another

set of queries (quantity denoted Q). Finally, a classification

head predicts among J types of joints and background (∅)

and a 2-channel regression head outputs the coordinate of

each keypoint.

Since PRTR infers a fixed larger number of predictions

than ground truth (quantity denoted J), we need to find a

matching between them to calculate the loss. We formu-

late this matching problem as an optimal bipartite matching

problem, which can be solved efficiently by Hungarian al-

gorithm [27]. In specific, we try to find an injective function

σ ∈ [J ] → [Q] that firstly minimizes the matching cost C in

a discrete way:

C = argmin
σ

J
∑

i

C
(

yi, ŷσ(i)
)

(1)

, where ŷσ(i) means the prediction to be matched with the

i-th keypoint.

At training stage, we match our queries using a mix-

ture of classification probabilities and coordinate deviation.

For instance, the cost function for the i-th keypoint and its

matched query σ(i) is:

Ci = −p̂σ(i)(ci) + ‖bi − b̂σ(i)‖ (2)

, where p̂σ(i) is the class probabilities of the query and

ci is the class label for i-th keypoint. However, at infer-

ence stage, we do not have access to the ground-truth key-

point coordinates, thus we match J prototype keypoints to

queries using only the classification probabilities. Therefore

the matching cost for i-th keypoint is simply:

Ci = −p̂σ(i)(ci) (3)

After running the bipartite matching algorithm, we re-

turn the matched J keypoints as our prediction.

The loss function of the model is obtained by replac-

ing negative probabilities in Equation 2 with negative log-

likelihood − log p̂σ(i)(ci) for matched queries. For un-

matched queries we only backpropagate the classification

loss. To address the class imbalance caused by ∅ class, as

in [3], we set the weight of its log-probability term to 0.1.

3.3. Multi­layer Cropping with STN

In the previous section, we introduce a two-stage

pipeline. However, under an end-to-end philosophy, it is

desired that the model is end-to-end tunable to exploit the

synergy between person detection and keypoint recognition

task. To this end, we incorporate the Spatial Transformer

Network (STN) [11] to crop out image features needed by

the keypoint-detection Transformer directly from the fea-

ture map generated by the first CNN backbone. This crop-

ping operation is differentiable not only to the feature maps,

but also to the bounding box coordinates.

For instance, an w × h grid generated by b =
(xleft, xright, ytop, xdown) can be formulated by:

xi =
w − i

w
xleft +

i

w
xright (4)

yj =
h− j

h
ytop +

j

h
ydown (5)

, where b is relative to the original image, and w × h is the

desired feature map size for the keypoint-detection Trans-

former.

To mitigate the resolution challenge commonly seen in

keypoint recognition, we apply the grid to feature maps of

different scales generated at different intermediate layers of

the CNN backbone using a bilinear kernel. Denoting the

the original W × H feature map by U , the differentiable
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Table 1: Comparisons on COCO val set. + indicates using multi-scale test. ∗ indicates the end-to-end model variant.

Method Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL AR

Heatmap based

8-stage Hourglass [22] Hourglass-8 stacked 256 × 192 25.1M 14.3 66.9 − − − − −
CPN [5] ResNet-50 256 × 192 27.0M 6.20 68.6 − − − − −
SimpleBaseline [37] ResNet-50 384 × 288 34.0M 18.6 72.2 89.3 78.9 68.1 79.7 77.6

SimpleBaseline [37] ResNet-101 384 × 288 53.0M 26.7 73.6 89.6 80.3 69.9 81.1 79.1

HRNet [28] HRNet-W32 384 × 288 28.5M 16.0 75.8 90.6 82.7 71.9 82.8 81.0

Regression based

PoinSetNet+ [35] ResNeXt-101-DCN − − − 65.7 85.4 71.8 − − −
PoinSetNet+ [35] HRNet-W48 − − − 69.8 88.8 76.3 − − −
PRTR∗ ResNet-101 − − − 64.8 85.1 70.2 60.4 73.8 73.9

PRTR∗ HRNet-W48 − − − 66.2 85.9 72.1 61.3 74.4 72.2

PRTR ResNet-50 384 × 288 41.5M 11.0 68.2 88.2 75.2 63.2 76.2 76.0

PRTR ResNet-50 512 × 384 41.5M 18.8 71.0 89.3 78.0 66.4 78.8 78.0

PRTR ResNet-101 384 × 288 60.4M 19.1 70.1 88.8 77.6 65.7 77.4 77.5

PRTR ResNet-101 512 × 384 60.4M 33.4 72.0 89.3 79.4 67.3 79.7 79.2

PRTR HRNet-W32 384 × 288 57.2M 21.6 73.1 89.4 79.8 68.8 80.4 79.8

PRTR HRNet-W32 512 × 384 57.2M 37.8 73.3 89.2 79.9 69.0 80.9 80.2

sampling process can be formulated as:

Vij =
∑

m,n

Unm max (0, 1− |xi −m|)max (0, 1− |yj − n|) (6)

After getting a series of image features of the same spa-

tial size, we concatenate them into a single feature map for

the keypoint-detection Transformer. This multi-layer crop-

ping variant is illustrated in Figure 3.

4. Experiment

We validate our proposed method on the COCO Key-

point Detection task and MPII Human Pose Dataset.

4.1. Experiment Setup

Datasets. We used two human pose estimation datasets,

COCO and MPII. The COCO dataset [19] contains over

200,000 images and 250,000 person instances. Each per-

son instance is labelled with 17 joints. We train our model

on COCO train2017 dataset with 57K images, and evalu-

ate our approach on the standard val2017 and test-dev2017

split, containing 5K and 20K images respectively. The MPII

single person dataset [1] consists of around 25K images and

40K well-separated person instances. We follow the stan-

dard train/val split.

Evaluation metrics. We follow the common practice in

[28] and use Object Keypoint Similarity (OKS) for COCO

and Percentage of Correct Keypoints (PCK) for MPII to

evaluate the performance.

Person-detection Transformer finetuning. We first

tune a person detector by initializing from weights provided

by DETR [3]. We keep all weights except prototype vec-

tors for non-person class in the classifier. The tuning lasts

for 10 epochs with a leaning rate of 1e−7 for ResNet-50

backbone and 5e−6 for the rest. For pose recognition task,

people without any visible keypoints are not desired to be

detected; these people have a common characteristic of be-

ing small in area. In fact, all people with a segmentation

area less than 322 do not contain keypoints. Given this, we

skipped person annotations without visible keypoints at this

stage for both training and evaluation. After tuning, the per-

son detector scores an mAP of 67.0 on the pruned val2017

set, and an mAP of 50.2 on the standard val2017 set.

Two-stage variant. For the two-stage version of our

model, we extend the human detection bounding box in

height or width to a fixed aspect ratio (4 : 3 for COCO).

A patch is cropped using the box and then resized to

a fixed size, 384 × 288 or 512 × 384 for COCO. The

data augmentation follows [37], including random rotation

([−40◦, 40◦]), random scale ([0.7, 1.3]), and flipping. The

data pre-processing remains the same for MPII, except for

aspect ratio set to 1 : 1 and input size available in 384×384
or 512× 512. For the Transformer part, number of encoder

layers, decoder layers and keypoint queries are set to 6, 6,

100 respectively.

We use the AdamW optimizer [20]. The base learning

rate is 1e−5 for ResNet backbone and 1e−4 for the rest,

with weight decay 1e−4. Multi-step learning rate sched-

ule is used, which halves the learning rate at the 120th and

140th epoch respectively. The training process terminates

within 200 epochs for both datasets.

Testing. At test time, We use the person detection results

from the tuned person detector (with AP 50.2 on COCO

val2017 set) for both COCO val and test-dev set. Inspired

by the common practice of flip-test [5, 22, 37] used in

heatmap paradigms, we compute the keypoint coordinates

by averaging the outputs of original and flipped images.

End-to-end variant. For the end-to-end variant, we

use ground truth to match predicted people after person-

detection Transformer, and discard unmatched queries be-
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Table 2: Comparisons on COCO test-dev set, excluding systems trained with external data. + means using multi-scale test.
∗ means end-to-end model variant. For bottom-up methods and end-to-end PRTR, computation overheads are not shown for

being incomparable to two-stage methods. #Params and FLOPs are calculated for the pose estimation network, excluding

human detection and keypoint grouping. Table format is adapted from [35] and [28].

Method Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL AR

Heatmap based: keypoint heatmap prediction and post-processing to decode coordinates

CMU-Pose [2] 3CM-3PAF − − − 61.8 84.9 67.5 57.1 68.2 66.5

Mask-RCNN [13] ResNet-50 − − − 63.1 87.3 68.7 57.8 71.4 −
G-RMI [25] ResNet-101 353 × 257 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7

Assoc. Embed. [21] Hourglass-4 stacked − − − 65.5 86.8 72.3 60.6 72.6 70.2

PifPaf [17] ResNet-101-dilation − − − 66.7 − − 62.4 72.9 −
PersonLab [24] ResNet-101 − − − 65.5 87.1 71.4 61.3 71.5 70.1

PersonLab+ ResNet-101 − − − 67.8 88.6 74.4 63.0 74.8 74.5

HigherHRNet+ [6] HRNet-W48 − − − 70.5 89.3 77.2 66.6 75.8 74.9

CPN [5] ResNet-Inception 384 × 288 − − 72.1 91.4 80.0 68.7 77.2 78.5

SimpleBaseline [37] ResNet-152 384 × 288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0

HRNet [28] HRNet-W48 384 × 288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5

DARK [40] HRNet-W48 384 × 288 63.6M 32.9 76.2 92.5 83.6 72.5 82.4 81.1

Regression based: direct keypoint coordinate prediction

CenterNet+ [41] Hourglass-2 stacked − − − 63.0 86.8 69.6 58.9 70.4 −
DirectPose [31] ResNet-101 − − − 63.3 86.7 69.4 57.8 71.2 −
SPM+ [23] Hourglass-8 stacked 384 × 384 − − 66.9 88.5 72.9 62.6 73.1 −
Integral [29] ResNet-101 256 × 256 45.0M 11.0 67.8 88.2 74.8 63.9 74.0 −
PointSetNet+ [35] HRNet-W48 − − − 68.7 89.9 76.3 64.8 75.3 −
PRTR∗ ResNet-101 − − − 63.4 86.2 69.4 59.3 72.0 73.0

PRTR∗ HRNet-W48 − − − 64.9 87.0 71.7 60.2 72.5 74.1

PRTR ResNet-101 384 × 288 60.4M 19.1 68.8 89.9 76.9 64.7 75.8 76.6

PRTR ResNet-101 512 × 384 60.4M 33.4 70.6 90.3 78.5 66.2 77.7 78.1

PRTR HRNet-W32 384 × 288 57.2M 21.6 71.7 90.6 79.6 67.6 78.4 78.8

PRTR HRNet-W32 512 × 384 57.2M 37.8 72.1 90.4 79.6 68.1 79.0 79.4

Table 3: Comparisons on the MPII val set (PCKh@0.5).

Method Backbone Head Sho Elb Wri Hip Knee Ank Mean

Hmp. Based

CPM [36] CPM 96.2 95.0 87.5 82.2 87.6 82.7 78.4 87.7

SBL [37] ResNet-152 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6

HRNet [28] HRNet-W32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3

Reg. Based

Integral [29] ResNet-101 − − − − − − − 87.3

PRTR (ours) ResNet-101 96.3 95.0 88.3 82.4 88.1 83.6 77.4 87.9

PRTR (ours) ResNet-152 96.4 94.9 88.4 82.6 88.6 84.1 78.4 88.2

PRTR (ours) HRNet-W32 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5

cause they will not be contributing to training keypoint-

detection Transformer. For images with more than 5 peo-

ple, we randomly sample 5 matched queries to reduce

computational cost. Bounding boxes predicted by person-

detection Transformer are enlarged by 25% at both the

height and width dimension before sampling image features

from backbone features, which helps predicting keypoints

at the margin by taking in more contextual information.

We used the same data augmentation as DETR [3] ex-

cept randomly resizing the image to having its shortest side

being 760 to 1024 while not exceeding 1400. Optimizer

settings follow the two-stage variant, except for halving the

learning rate at the 25th and 60th epoch instead.

4.2. Results

Results on the COCO dataset. Table 1 and Table 2

compare pose estimation results on COCO val and test-

dev set respectively. Qualitative results are given in Fig-

ure 5. For the end-to-end variant, it surpasses competing

fully end-to-end components like CenterNet [41] and Di-

rectPose [31]. The two-stage variant of our approach out-

performs the competing baselines in the regression based

category. Our model with ResNet-101 backbone is compa-

rable to PointSetNet [35] which leverages a more complex

backbone (HRNet-W48). Our model benefits from larger

input size and stronger feature backbones. By enlarging in-

put size from 384×288 to 512×384, PRTR with ResNet-50

and ResNet-101 receives 2.2, 1.9 improvement respectively.

Our best model, achieving 72.1 AP, is able to emulate the

heatmap-based HigherHRNet [6].

Results on the MPII val dataset. Since only MPII val is

publicly available, we report the performance of our model

trained on the entire MPII train set, as shown in Table 3. Our

best model achieves a 89.5 PCKh@0.5 score, comparable to

that of SimpleBaseline [37]. Not needing a person detection

stage, MPII is not tried with the end-to-end variant.

4.3. Ablation Studies

We perform ablation studies on COCO dataset to verify

our design choices as listed in Table 4 and 5. The results

presented are on COCO val2017, with ResNet-50 backbone
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Figure 4: Visualization of PRTR’s decoding process for the keypoint detection Transformer. In the first row, the last column shows the

final predictions and the former 6 columns show the predictions for the initial query embedding and the intermediate 5 decoder layers. The

second row shows an overlay of heatmaps of 100 queries for Right Ear and Left Eye respectively.

Table 4: Ablation study w.r.t. number of queries on COCO

val2017. Fixed stands for class-specific queries, i.e., a query

is always mapped to a fixed keypoint type.

#Queries AP AP50 AP75 APM APL AR

100 67.7 87.7 74.9 62.6 75.7 74.2

50 67.6 87.7 74.8 63.0 75.4 74.1

17 67.3 87.9 74.4 62.1 75.4 73.1

17 (Fixed) 56.3 83.7 61.9 54.2 60.3 69.6

and input size 384× 288.

Non class-specific queries. We make the queries of

Transformer decoder to predict both keypoint coordinates

and classes, and then select the required points from all

the queries via class probabilities. This way, we do not

enforce a fixed correspondence between J keypoint types

and queries. Therefore, the queries are not class-specific

and can be used to predict different types of keypoints each

time. Here, we focus on two alternative designs: a) different

number of queries used; b) when number of queries equals

the number of required points, the necessity for queries to

be non class-specific. From Table 4, it is clear that 100-

query version only has a small advantage over 50- and 17-

query counterparts. However, using class-specific queries

will greatly hamper the performance of the model, resulting

in a large drop in AP (11.4). This illustrates the necessity

that each query dynamically predicts its preferred keypoint

type, and reads out the best estimation through Hungarian

matching during inference.

Exclusion of background prediction during infer-

ence. During inference, we exclude the logits of the

background class (∅) before normalizing class probabili-

ties to provide more keypoint candidates for the Hungarian

Table 5: Ablation study on COCO val2017. ’GT Box’, ’∅

Logit’ represent ground truth box for cropping, and inclu-

sion of background logits during inference respectively.

GT

Box

∅

Logit

Flip

Test
AP AP50 AP75 APM APL AR

67.1 87.6 74.5 62.6 74.7 73.7

✓ 69.1 90.1 77.0 66.1 73.7 73.9

✓ 66.2 87.2 73.5 62.1 72.8 72.8

✓ ✓ 68.2 89.7 75.5 65.3 72.5 72.9

✓ 67.7 87.7 74.9 62.6 75.7 74.2

✓ ✓ 70.4 91.2 78.3 67.1 75.2 74.7

✓ ✓ 66.4 86.9 73.0 62.0 73.4 72.8

✓ ✓ ✓ 68.9 89.9 75.8 65.7 73.4 73.2

matcher. From Table 5, we observe that including the logits

of background class will result in a 0.9−1.5 drop in AP.

Flip test. Flipping is a common test augmentation used

in heatmap paradigms, where input image is horizontally

flipped and fed to the model, and then flip back, align and

average the predicted heatmaps to increase accuracy. The

same technique applies to regression models as well, with

results obtained by directly averaging the predicted key-

point coordinates. Since regression operates on continuous

coordinate space, one advantage is that it does not suffer

from the inaccuracy caused by alignment errors in heatmap

paradigms, as described in [15]. From Table 5, flip test of-

fers a consistent performance boost for our model.

Oracle results. We also explore the room for improve-

ment by replacing the bounding boxes predicted by person-

detector with ground truth (GT) ones, as in Table 5. It is

evident that GT boxes improves AP by 2−2.5, indicating

the potential benefit of a stronger person-detector.
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Figure 5: Qualitative COCO human pose estimation results

on images of varying sizes and poses.

4.4. Vis. for Keypoint Detection Transformer

Figure 6: Visualization of 16 keypoint (excluding the background

class) prediction out of Q = 100 queries in the keypoint-detection

Transformer on COCO val2017. Each colored dot represents a

predicted keypoint for the corresponding class.

In this section, we show visualizations for the keypoint

detection Transformer. In Figure 6 and Figure 7 we visu-

alize the position and class distribution for keypoint pre-

dictions by the queries. Different queries are observed to

bias towards different keypoints (e.g. in our model 92.3%

of the predictions by the 89th query are nose keypoints).

We also observe that queries dedicated to certain keypoints

are biased to specific locations (e.g. the query focusing on

the nose tends to predict positions in the upper part of the

images) while the points predicted by queries focusing on

background are uniformly distributed.

In Figure 4, we explore and visualize query output results

in different decoder layers during inference. The first row

shows the queries selected by the Hungarian algorithm and

demonstrate how their predictions move and refine through

lower-to-higher decoder layers. Initially, the predictions are

randomly located in the image. After passing some decoder

layers, queries predictions gradually approach the proper lo-

cations. It is noteworthy that if a query’s prediction is close

nose

L eye

R eye

L ear

R ear

L shoulder

R shoulder

L elbow

R elbow

L wrist

R wrist

L hip

R hip

L knee

R knee

L ankle

R ankle

0 0 0 0 0 0 2 0 0 0 2 0 0 2 0 6
0 0 99 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 13
0 0 0 0 0 0 0 2 0 0 0 99 0 2 0 2
0 99 0 0 0 2 1 4 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 99 0 0 0 0 2 0 1
0 0 0 0 0 0 0 4 0 0 94 0 0 21 0 3
0 0 0 0 0 0 5 5 0 0 1 0 0 2 97 2
0 0 0 0 0 85 0 3 0 0 0 0 0 2 0 2
0 0 0 0 0 1 2 16 0 0 0 0 98 3 0 6
0 0 0 0 0 0 43 3 0 0 0 0 0 1 0 4

99 0 0 0 0 0 0 11 0 0 0 0 0 35 0 0
0 0 0 0 0 0 0 18 0 0 0 0 0 11 0 3
0 0 0 0 98 2 38 13 0 2 0 0 0 3 0 43
0 0 0 0 0 0 0 5 0 91 0 0 0 1 0 2
0 0 0 98 0 0 1 3 0 0 0 0 0 5 0 3

Figure 7: Visualization of distributions of predicted key-

point classes for 16 out of a total of Q = 100 queries in

the keypoint-detection Transformer. Numbers on heatmap

correspond to the probability (×100) for the individual key-

point classes. We observe that queries learn to specialize on

keypoint classes.

to the ground truth in lower layers, its prediction barely

changes in higher layers. The second row shows the spatial

probabilities of a certain type of keypoint. For visualization,

Gaussian heatmaps are first generated around the predicted

keypoint locations, with their peak values proportional to

class probabilities; then the heatmaps of all Q queries are

stacked to form a single probability map. Note that the ini-

tial query embedding (the first column) produces an equiv-

ocal keypoint distribution. There exists confusion of key-

point locations in the first several layers of decoder, yet as

the decoder layer goes deeper, the refinement proceeds and

eventually yields a salient keypoint probability map (the last

column).

5. Conclusion

In this paper, we have presented Pose Regression TRans-

former (PRTR), a new design for regression-based multi-

person pose recognition method based on the Transformer

structure [33, 3]. It treats the pose recognition task as a

regression task, removes complex pre/post-processing pro-

cedures and requires fewer heuristic designs compared with

existing heatmap-based approaches. Our method includes

two alternatives, one as a two-stage and the other an end-to-

end one. PRTR achieves state-of-the-art performance com-

pared with other existing regression-based methods on the

challenging COCO dataset. Distribution and refinement vi-

sualization of keypoint queries blazes the trail of revealing

Transformer decoder inner mechanisms. In the future, we

would like to investigate more powerful backbone networks

and combine regression-based human detection and pose

recognition in a more flexible manner.
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