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Abstract

Semantic correspondence is a fundamental problem in

computer vision, which aims at establishing dense corre-

spondences across images depicting different instances un-

der the same category. This task is challenging due to

large intra-class variations and a severe lack of ground

truth. A popular solution is to learn correspondences from

synthetic data. However, because of the limited intra-

class appearance and background variations within syn-

thetically generated training data, the model’s capability

for handling “real” image pairs using such strategy is in-

trinsically constrained. We address this problem with the

use of a novel Probabilistic Model Distillation (PMD) ap-

proach which transfers knowledge learned by a probabilis-

tic teacher model on synthetic data to a static student model

with the use of unlabeled real image pairs. A probabilis-

tic supervision reweighting (PSR) module together with a

confidence-aware loss (CAL) is used to mine the useful

knowledge and alleviate the impact of errors. Experimen-

tal results on a variety of benchmarks show that our PMD

achieves state-of-the-art performance. To demonstrate the

generalizability of our approach, we extend PMD to incor-

porate stronger supervision for better accuracy – the prob-

abilistic teacher is trained with stronger key-point super-

vision. Again, we observe the superiority of our PMD.

The extensive experiments verify that PMD is able to in-

fer more reliable supervision signals from the probabilistic

teacher for representation learning and largely alleviate the

influence of errors in pseudo labels. Code is available at

https://github.com/fanyang587/PMD.

1. Introduction

Matching all pixels between images is a classic research

problem in computer vision. Unlike stereo matching [62]

or optical flow [3] that deal with images containing different

viewpoints of one scene or object, semantic correspondence

poses additional challenges by pushing the boundaries of

dense matching to correspondence estimation between visu-

ally similar images. Matching beyond scene leads to many
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Figure 1. Idea Illustration. Instead of (a) ensembling multiple

models to generate “soft” predictions as the student’s target [22],

or (b) creating a single “hard” label from different transforma-

tions [54], (c) our idea is to distill knowledge from hypotheses

from a probabilistic teacher model in a probabilistic manner.

meaningful applications, such as attribute transfer [34, 44],

image editing [2, 17, 40], scene collaging [27], object dis-

covery and segmentation [43, 59]. This task is extremely

challenging due to large intra-class variation and a severe

lack of groundtruth correspondence maps.

One way to overcome these challenges is to use hand-

crafted image descriptors (e.g., SIFT [50], HOG [9],

DAISY [67]) in combination with different regularization

methods [18,31,45–47,53,61,66] to estimate semantic cor-

respondence. Unfortunately, hand-crafted descriptors are

intrinsically weak in capturing high-level semantics and

thus, less robust to large intra-class variation, geometric

deformation and background clutter. Inspired by the suc-

cess of self-supervised deep learning models, a series of

approaches have been proposed to learn semantic descrip-

tors [63], or directly regress parameters of a global trans-
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formation model [55, 64], by using synthetically gener-

ated data. Although these approaches achieve state-of-the-

art performances, using synthetic data could weaken the

model’s ability to deal with complex intra-class and back-

ground variations for real pairs due to limited appearance

variation in synthetic training pairs. To alleviate this prob-

lem, recent approaches use different types of auxiliary an-

notations (e.g., key points [5, 6, 8, 29, 37, 42], semantic

masks [7, 39], 3D CAD model [68, 70], and image-level la-

bels [26, 32, 56, 57]) as supervision signals for model train-

ing on real pairs. However, auxiliary annotations not only

are labor-intensive to collect, but also could weaken the

generalization ability of the learned network models. The

observations above inspire us to wonder: Can the knowl-

edge learned from synthetic data be generalized and even

enhanced to deal with real image pairs without using any

manual annotation?

To answer this question, as shown in Figure 1, we pro-

pose to perform knowledge distillation within a probabilis-

tic teacher-student (PTS) framework. Our idea is to gen-

erate pseudo semantic flows on unlabeled real pairs us-

ing a teacher model trained on synthetic data, and then

train the student model using the pseudo-groundtruth flows.

However, training the student model on the predictions

by a single static teacher model would inevitably encode

noisy, biased information, which causes the student to

be upper-bounded by its teacher model. To address this

problem, we employ a probabilistic teacher model to pro-

vide multiple/diverse matching hypotheses for each real

pair, and use a student model working with a probabilis-

tic supervision reweighting (PSR) module to distill ‘correct’

(pixel-wise) supervision signals from pseudo correspon-

dence maps. Moreover, a confidence-aware loss (CAL) is

introduced to further reduce the impact of errors on pseudo

flows during knowledge distillation.

Our approach, called Probabilistic Model Distillation

(PMD), can successfully distill the knowledge from hy-

potheses of the probabilistic teacher model trained on syn-

thetic data, and safely generalize it into a powerful stu-

dent model with potentially unlimited real-world image

pairs in an unsupervised manner. We demonstrate that

the model trained with our probabilistic model distilla-

tion produces better results than all state-of-the-art (SOTA)

self-supervised approaches, even those utilizing (auxiliary)

manual annotations.

To further demonstrate the advantage and generalizabil-

ity of our approach, we extend it to incorporate stronger

supervision – the probabilistic teacher is trained using the

(auxiliary) matched key points. Surprisingly, even with the

same training set, the student model outperforms the teacher

by a large margin and sets new records on multiple bench-

marks. The contributions of this work are summarized as:

• A novel probabilistic approach for model distilla-

tion. To our best knowledge, this is the first attempt

to distill knowledge from multiple/diverse hypotheses

produced by a probabilistic teacher model for self-

supervised/unsupervised model learning. This approach

is able to generalize the knowledge learned from syn-

thetic data into a new model for better handling real-

world data.

• A new probabilistic teacher-student network for se-

mantic correspondence. We present the probabilistic

teacher-student network, an effective instantiation of our

probabilistic model distillation for semantic correspon-

dences, which consists of a probabilistic teacher model

learning knowledge from synthetic data, and a static stu-

dent model working with a novel probabilistic supervi-

sion reweighting (PSR) module to perform distillation

from multiple hypotheses of each real image pair.

• State-of-the-art results on widely-used benchmarks.

The model trained with our probabilistic model distilla-

tion outperforms state-of-the-art methods on a variety of

benchmarks, e.g., PF-WILLOW, PF-PASCAL and SPair-

71k . Our method even surpasses approaches that require

extra (auxiliary) annotations for model learning.

• Potential generalizability to stronger supervision. We

show that our approach can be extended to incorporate

stronger supervision signals for better accuracy. With the

strongly supervised teacher model, the student model can

achieve better performance, outperforming existing state-

of-the-art methods with different degrees of supervision.

2. Related Work

Knowledge Distillation. Knowledge distillation is mostly

used to learn small and compact models [4, 22, 58, 69] in

various practical applications. Romero et al. [58] introduce

FitNet to compress wide and deep networks into thinner

and deeper ones. Zagoruyko et.al [69] propose attention

as a mechanism of transferring knowledge from the teacher

model to the student model. In [4], an end-to-end train-

able framework is introduced to compact multi-class object

detection models. Radosavovic et.al [54] use the data distil-

lation technique to exploit omni-supervised setting for mul-

tiple tasks. In addition to learning compact models, distil-

lation technique has been explored for transferring knowl-

edge between different domains [12,16], or from an ensem-

ble of models to a single student model [36, 41]. Unlike

prior works, our novelty lies in using diverse hypotheses of

a single probabilistic model trained on synthetic data as su-

pervisions to learn a static model on unlabeled real data.

Dense Semantic Correspondence. The goal of seman-

tic correspondence is to build correspondences between se-

mantically similar images. Liu et al. [47] pioneer the idea

of densely matching across semantically similar scenes, and

present SIFT flow [45]. This approach has been further im-

proved with more carefully designed descriptors [20, 67] or

7506



…

Synthetic pair Synthetic flow

C
o

rr
e

la
ti

o
n

 

K
e

rn
e

l 
so

ft
 

a
rg

m
a

x

…

…

𝒩 𝜇, 𝜎

…

…

C
o

rr
e

la
ti

o
n

 

K
e

rn
e

l 
so

ft
 

a
rg

m
a

x

Real pair

Probabilistic teacher model

Student model

Images

Image pairs

H
yp
o
th
eses

Prediction

Loss

Co-channel 

attention

Sample 

z1,z2,z3…

Flow 1, 2, 3… 

Multiplication

…

… Auto-generation

、

Prediction

𝒫!"#

𝒫$%&'

𝐏𝒓𝒆𝒂𝒍
𝒊

𝐏𝒔𝒚𝒏
𝒊

𝐅𝒔𝒚𝒏
𝒊

ℳ!%

ℳ!&

ℛ∑

Pixel-wise

weight
generation

𝒲(𝒍)

{𝐅𝒓𝒆𝒂𝒍
𝒊 (𝒍)}

Loss

Teacher model training Student model training

𝒩_e(0, Σ)

Figure 2. Main Pipeline. Our probabilistic teacher-student network consists of a probabilistic teacher model, a static student model and

a probabilistic supervision reweighting module. The probabilistic teacher model is trained on synthetic pairs while the student model is

trained on real pairs with our confidence-aware loss (CAL). Please refer to § 3 for more details.

graphical models [18, 31, 46, 53, 61, 66]. However, with

hand-crafted features, these approaches often suffer from

large intra-class variation, geometric deformation and back-

ground clutter for the lack of semantics in feature repre-

sentations. Recent works overcome this issue by utilizing

deep neural networks to extract semantic features [49, 63]

or regress parameters of a global transformation model [55,

64]. Due to the severe lack of groundtruth correspondence

maps, existing models are trained with either synthetic data

in a self-supervised manner [49,55,63,64] or real data with

auxiliary annotations (e.g., key points [5, 6, 8, 29, 37, 42],

semantic masks [7, 39], 3D CAD model [68, 70], image-

level labels [26, 32, 56, 57]). In this paper, we show that

the knowledge for semantic correspondence acquired from

the synthetic data can be generalized to the distilled model

with unlabeled real data to better handle difficult real-world

challenges. Moreover, the strong supervision signals can be

greatly enhanced with our approach to better guide the rep-

resentation learning of the student model.

3. Methodology

3.1. Preliminaries

Problem Definition. Let the semantic matching model

be represented by the function MΘ parameterized by

weights Θ, that takes an image pair P
i
real = (Isi , I

t
i) ∈

Preal as input, and generates the semantic flow F
i
real =

MΘ(P
i
real; Θ) ∈ Freal which reflects the pixel-wise cor-

respondences between source image Isi and target image Iti.

Our goal is to learn Θ for achieving the accurate semantic

flow when given only unlabeled image pairs.

Overview. To achieve this goal, we propose to perform

knowledge distillation within a probabilistic teacher-student

(PTS) framework, as shown in Figure 2. The probabilis-

tic teacher network MΘT
, parametrized by weights ΘT , is

first trained on a data set with synthetic image pairs Psyn

and groundtruth flows hypotheses Fsyn generated synthet-

ically using random transformations of the same image.

Then, multiple/diverse pseudo flows {Fi
real(l)}

m
l=1 are gen-

erated by the trained teacher MΘT
for each real image pair

P
i
real ∈ Preal. To optimize ΘS , the static student network

MΘS
works with a probabilistic supervision reweighting

(PSR) module RΣ to gradually infer the more “correct” su-

pervision signal at each position among {Fi
real(l)}

m
l=1 for

parameter learning, under the supervision of a confidence-

aware loss (CAL).

3.2. Probabilistic Teacher­Student Network

Semantic Matching Network. We start by introducing our

basic matching model for semantic correspondence. Simi-

lar to most deep matching models [39,55,63,64], our model

employs a siamese network architecture, which takes a pair

of images as input and generates the pixel-wise flow map.

As shown in Figure 3 (a), we follow [39, 55, 57] to use

a ResNet-101 [21] pretrained on ImageNet [11] with two

additional convolution layers to extract features from im-

age pairs P = (Is, It): P 7→ (ds,dt). Inspired by [24],

a lightweight co-channel attention module, consisting of a

concatenation layer, two 1 × 1 convolution layers, a global

average pooling layer and a sigmoid activation function, is

used to enhance the representational power of the extracted

features, i.e., (ds,dt) 7→ (Ds,Dt). Finally, based on the

enhanced features, one correlation layer [14] followed by

the kernel soft argmax [39] is employed to generate the

semantic flow, i.e., (Ds,Dt) 7→ F. The training of our

matching model can be formulated as a regression problem,
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Figure 3. Network architectures. (a) Semantic matching network (student model). (b) Probabilistic matching network (teacher model).

which, theoretically, needs “groundtruth” semantic flows

as supervision signals. Since it is difficult to acquire the

groundtruths for real image pairs, we provide a reasonable

alternative for model training by using a novel distillation

technique within a probabilistic teacher-student framework.

Probabilistic Teacher Network. To overcome the severe

lack of groundtruth correspondence maps on real pairs, we

use a teacher model trained on synthetic data to provide

the supervision signals. However, such a teacher model

usually provides unreliable and biased predictions for real

pairs, which would cause the student model to be misguided

and upper-bounded. One way to alleviate this problem

is to ensemble different teacher models to provide diverse

and individually accurate predictions as in [1, 13, 23, 65],

which, unfortunately, is time-consuming for training. Un-

like these approaches, we draw inspiration from the varia-

tional bayesian approach [35] and learn a single probabilis-

tic teacher network to mimic a group of models.

Our probabilistic teacher network MΘT
basically shares

the same architecture as our semantic matching network.

The difference is that what our probabilistic teacher model

delivers to each position is no longer a single flow vector but

multiple/diverse hypotheses. Since the flow is intrinsically

generated by feature matching, we propose to model atten-

tion distributions in the extracted feature maps as Gaussian,

parameterized by mean µ and variance σ. Intuitively, en-

riching the extracted features with different co-attention in-

formation could enable dense correspondence fields to ex-

hibit different tendencies, so that meaningful hypotheses

can be produced. Therefore, as shown Figure 3 (b), we

replace the co-channel attention module with a distribution

attention module which has two additional branches to learn

the distributions. From the probabilistic perspective, each

attention feature is treated as a random variable. Mathemat-

ically, the distribution attention module AΥ, parametrized

by weights Υ, learns the probability of these variants for the

extracted features (ds,dt). This distribution, denoted as Z,

is modelled as a Gaussian with mean µ
(

(ds,dt); Υ
)

∈ R
c

and variance σ
(

(ds,dt); Υ
)

∈ R
c. To generate a set of at-

tention features, we apply the teacher network to the same

input pair for m times . At each iteration l ∈ {1, 2, . . . ,m},

we get a random sample zl ∈ R
c from distribution Z,

zl ∼ Z(· | (ds
,d

t))

= N
(

µ
(

(ds
,d

t); Υ
)

, diag
(

σ((ds
,d

t); Υ)
)

)

.
(1)

The sample zl is then used to enhance the extracted features

(ds,dt), i.e., Ds(l) = fe(d
s, zl) and D

t(l) = fe(d
t, zl)

where fe means the channel-wise multiplication operation,

similar to [24]. Finally, a function fm composed of a

correlation layer [14] and a kernel soft argmax [39] takes

(Ds(l),Dt(l)) and maps them to the semantic flow F(l).

(1) Training with Synthetic Data. Since the groud-truth cor-

respondence maps for real data are unavailable, we are mo-

tivated by self-supervised learning approaches [55, 63, 64]

and create a synthetic training train set Psyn including

Nsyn synthetic image pairs {Pi
syn}

Nsyn

i=1 ∈ Psyn and corre-

spondence maps {Fi
syn}

Nsyn

i=1 ∈ Fsyn (by applying random

affine transformations on each single image). Therefore,

our probabilistic teacher network MΘT
can be trained with

synthetic data using the following loss function:

LT (ΘT ,Υ) = Lmse(Fsyn,F(l)) + α · Lsmooth(F(l))

+ β · DKL(Z(· | (ds,dt)) ‖ N (0, I)),
(2)

where the loss for probabilistic teacher network LT is a

weighted combination of a standard mean squared error

(MSE) loss Lmse, a smoothness loss [39] Lsmooth and a

Kullback-Leibler (KL) divergence DKL.

(2) Hypotheses Generation with Real Data. Given Nreal unla-

beled real pairs Preal, we can use the trained probabilistic

teacher network to generate m diverse pseudo-groundtruth

flows (hypotheses) {F̌i
real(l)}

m
l=1 ∈ F̌real for each of them

P
i
real ∈ Preal. Our goal is to distill knowledge from these

pseudo flows to train a powerful student model.

Student Network. We take the semantic matching net-

work as our student model, denoted as MΘS
, and use the

pseudo flows F̌real on the real-world pairs Preal by MΘT

to learn its parameters ΘS . Instead of “naı̈vely” fusing them

by average as supervision signals, we use a novel prob-

abilistic model distillation (PMD) approach to gradually

infer more “correct” (pixel-wise) supervision signals from

{F̌i
real(l)}

m
l=1 ∈ F̌real. Next, we detail our PMD approach.
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3.3. Probabilistic Model Distillation

For each real-world pair Pi
real ∈ Preal, the probabilis-

tic teacher model produces m pseudo-groundtruth flows

{F̌i
real(l)}

m
l=1 ∈ F̌real as candidate labels for training the

student model. Instead of naı̈vely ensembling all pseudo

flows (e.g., by average) as the student’s target, our idea

is to automatically measure the correctness of pixel-wise

pseudo labels, and assign higher weights to more correct

ones with a learnable probabilistic supervision reweighting

(PSR) module.

Probabilistic Supervision Reweighting. Inspired by [30],

we formulate the supervision reweighting for pseudo-

groundtruth flows as a learning-with-multiple-labels prob-

lem and infer the correctness by modeling the pixel-wise

error distributions within them, as shown in Figure 4.

(1) Probabilistic Error Modeling. Given a real image

pair P
i
real ∈ Preal and a corresponding pseudo flow

F̌
i
real(l)(p) = (ǔi

real(l)(p), v̌
i
real(l)(p)) ∈ F̌real, the error

at position p can be represented as: ei(l)(p) = F
i
real(p) −

F̌
i
real(l)(p), where F

i
real(p) = (ui

real(p), v
i
real(p)) ∈

Freal denotes the correct flow. We assume that the errors

at each position follow the zero-mean Gaussian distribu-

tion ξip: ei(l)(p) ∼ ξip, and only depend on the image pair

P
i
real. Furthermore, as the flow field is a two-dimensional

vector, we treat errors in each dimension independently.

Therefore, there are a total of h×w×2 distributions for each

flow map, modeled by Σi = {σi
u(p), σ

i
v(p)}

h×w
p=1 . The prob-

abilistic supervision reweighting (PSR) module RΣ there-

fore includes Σ = {Σi}Nreal

i=1 learnable parameters, which

are used to parameterize the pixel-wise error distributions of

all (Nreal) real pairs. Assuming error is known, then we can

estimate the weight of pseudo-groundtruth flow F̌
i
real(l) at

position p by the following equations:











Wi
u(l)(p) = e

−
||ei(lu)(p)||2

(σi
u(p))2 = e

−

||ui
real

(p)−ǔi
real

(l)(p)||2

(σi
u(p))2 ,

Wi
v(l)(p) = e

−
||ei(lv)(p)||2

(σi
v(p))2 = e

−

||vi
real

(p)−v̌i
real

(l)(p)||2

(σi
v(p))2 ,

(3)
where Wi

u(l)(p) and Wi
v(l)(p) mean the weight for

F̌
i
real(l) of each dimension at position p.

(2) Joint Model Distillation and Supervision Reweighting. We

connect our PSR module RΣ with the student network

MΘS
to learn both the error parameters Σ and the stu-

dent model parameters ΘS . Recall that our goal is to as-

sign higher weights to the more correct labels (at pixel-wise

level) for training, on the condition that groud truths are un-

known. It turns out that the expectation-maximization (EM)

algorithm [10] can be applied to accomplish our goal, re-

sulting in a procedure which iterates between error model

parameter estimation and student model training. Simi-

lar to [30], starting with the assumption that all pseudo-

groundtruth flows at position p, i.e., {Fi
real(l)(p)}

m
l=1, are

equally likely, we learn parameters of the student model

ΘS . Then, we fix ΘS and treat the student model’s pre-

diction as the correct flow F
i
real(p) = F̂

i
real(p) to estimate

the error distribution for each position, and then use Eq. 3

to reweight the pseudo labels and so on.

Specifically, we design the following objective function

for training MΘS
and RΣ:

L(ΘS ,Σ)

=
1

h× w

h×w
∑

p=1

{

Wi
u(l)(p) · Lflowu

(

û
i
real(l)(p), ǔ

i
real(l)(p)

)

+Wi
v(l)(p) · Lflowv

(

v̂
i
real(l)(p), v̌

i
real(l)(p)

)}

+ λ · Lerror(Σ, Σ̂),
(4)

where Lflowu
(or Lflowv

) and Lerror are losses for super-

vising the flow and error distributions respectively. Lflowu

(or Lflowv
) is composed of a smooth loss Lsmooth [39] and

a MSE loss Lmse.

For each image pair P
i
real, we measure the agreement

of the student’s prediction F̂
i
real(p) with the pseudo flow

F̌
i
real(l)(p) (by teacher). To measure the difference be-

tween the error distribution and the true posterior error dis-

tribution, we use Kullback–Leibler divergence:

Lerror(Σ, Σ̂) =

Nreal
∑

i=1

DKL(Σ ‖ Σ̂)

=

Nreal
∑

i=1

(log
σ̂i

σi

−
1

2
+

σ2
i

2σ̂i
2
),

(5)

where Σ̂ means the true posterior distribution, i.e., the em-

pirical variance of the measurements correct Fi
real minus

F̌
i
real(l). This step corresponds to the M-step in the EM

algorithm [10].

Then, in the E-step, the true posterior distribution at iter-

ation t, denoted as σ̂t
i , is estimated by assuming the student

model’s prediticons are equal to correct flows, and update

the error distributions for the next iteration (t+ 1) by using

the following equation:

(σt+1
i )2 = (σt

i)
2 + ϕ((σ̂t

i)
2 − (σt

i)
2), (6)
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Algorithm 1 : Iterative optimization algorithm

Input: {Pi
real}

Nreal

i=1 , {F̌i
real(l)}

Nreal

i=1

1: initialize ΘS randomly

2: initialize Σ to be zero

3: initialize Wu and Wv to be 1
4: repeat

5: for i = 1 to Nreal do

6: fix Σi, compute Wi
u(l) and Wi

v(l) by Eq. 3

7: optimize ΘS by Eq. 4

8: end for

9: for i = 1 to Nreal do

10: fix ΘS , update Σi by Eq. 6

11: end for

12: until convergence

Output: updated ΘS

where ϕ is the step size. We repeat E-step and M-step un-

til convergence. More details about the EM-based iterative

training algorithm are detailed in Algorithm 1.

3.4. Confidence­aware Loss

To further alleviate the influence of errors on the

pseudo flows during knowledge distillation, we introduce a

confidence-aware loss (CAL) to replace the standard MSE

loss in Lflow (Eq. 4). Our idea is to produce a “soft

mask” Ci along with each pseudo flow F̌
i
real (by MΘT

)

based on the consistency between pseudo flows F̌
i,S
real and

F̌
i,T
real, where F̌

i,S
real means the flow from source to target im-

ages while F̌
i,T
real is the flow from target to source images.

Specifically, we compute the differences between F̌
i,S
real and

t(F̌i,T
real): ∆F

i = F̌
i,S
real − t(F̌i,T

real), where t(·) is an op-

eration that maps the estimated flow from target back to

source. For a position p, its confidence score can be com-

puted as: Ci(p) = 1 − 1

1+e
−b(‖∆Fi(p)‖2

−τ)
, where b = 50

and τ = 0.08 are controlling parameters. Thus, we replace

the MSE loss Lmse for flow in Eq. 4 by:

Lcal

(

F̂
i
real, F̌

i
real

)

=
1

h× w

h×w
∑

p=1

{

(

‖
(

û
i
real(p)− ǔ

i
real(l)(p) ‖

2 ·Ci(p)
)

+
(

‖
(

v̂
i
real(p)− v̌

i
real(l)(p) ‖

2 ·Ci(p)
)

}

.

(7)

In the above equation (Eq. 7), the “soft mask” Ci is ap-

plied separately for each dimension of the flow, which en-

sures that the student model focuses on consistent matches

during knowledge distillation.

4. Experiments

4.1. Experimental Settings

Datasets and Evaluation Metric: We perform extensive

experiments on three most-widely used benchmarks: PF-

PASCAL [56], PF-WILLOW [18] and SPair-71k [52]. Fol-

lowing the standard experimental protocol [39, 55, 56], we

use the probability of correct keypoint (PCK) to measure

the precision of overall assignment (αimg for PF-PASCAL,

and αbox for PF-WILLOW and SPair-71k).

Training Objective: To show the generalizability of our

PMD approach, we train our model using different degrees

of supervision: self/un-supervised, weakly-supervised

and strongly-supervised regimes:

• Learning under self- (un-) supervision. In this setup,

we first train our teacher model using synthetically gener-

ated training pairs from PASCAL VOC [15] as in [55,60].

Then, for training the student model, we randomly gen-

erate pairs by using PF-PASCAL images [56] as the

train set. In our experiments, we generate 60, 000 real

pairs where there are only 2, 911 (<5%) matched pairs.

• Learning under weak supervision (only well-paired

images). In the weakly-supervised learning setup, the

teacher model is trained with synthetically generated

training data (the same as the self-supervised setup). For

training the student model, we use the well-paired PF-

PASCAL [56] or SPair-71k images [52] as the train

sets. Note that, in our setup, the only manual knowledge

is that the given training pairs include object(s) from the

same category. Supervision signals like category labels

or object masks are not used in our approach.

• Learning under strong supervision. In this setup, key-

point matches are given for each training image pair,

which are used to guide the generation of groundtruth

semantic flow for each pair. The teacher model is first

trained with such annotated train set. Then, the stu-

dent model is trained with our PMD on the same train

set. Note that, keypoint matches will be removed during

the training process of the student model.

Detailed Training Settings: For training our probabilistic

teacher model, we set α = 0.05 and β = 0.01 in Eq. 2,

and use the Adam optimizer to learn parameters. The ini-

tial learning rate is set to 3 × 10−5 and divided by 5 after

40 epochs (100 epochs in total). For jointly training RΣ

and MΘT
, we first run the probabilistic teacher model on

each real image pair multiple (m = 4) times to create a

train set which includes multiple macthing hypotheses

for each image. The weights of the student model’s feature

extractor are initialized from ResNet-101 [21] pretrained on

ImageNet [11], while the remaining weights are randomly

initialized. The parameters of probabilistic error modeling

module are initialized to be zero. We set λ = 0.01 in

Eq. 4, and all parameters are iteratively updated by using

Algorithm 1. For learning ΘS , we set the learning rate to

3 × 10−5. For updating Σ, we set ϕ to 0.01. A total of 40
rounds are performed to train the student model.
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Table 1. Per-class PCK (αbox = 0.1) on SPair-71k test [52]. The best scores in each group are highlighted in bold.

Sup. Method aero bike bird boat bot bus car cat cha cow dog hor mbik pers plnt she trai tv all

Weak.

WS-SAres101 [56] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NCNres101 [57] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

SFNetres101 [39] 26.9 17.2 45.5 14.7 38.0 22.2 16.4 55.3 13.5 33.4 27.5 17.7 20.8 21.1 16.6 15.6 32.2 35.9 26.3

Oursres101 26.2 18.5 48.6 15.3 38.0 21.7 17.3 51.6 13.7 34.3 25.4 18.0 20.0 24.9 15.7 16.3 31.4 38.1 26.5

Strong.

HPFres101 [51] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

OTres101−FCN [48] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

Oursres101 38.5 23.7 60.3 18.1 42.7 39.3 27.6 60.6 14.0 54.0 41.8 34.6 27.0 25.2 22.1 29.9 70.1 42.8 37.4

Table 2. Quantitative comparison with SOTAs on the PF-PASCAL

test and PF-WILLOW in terms of average PCK.

Sup. signal Method
PF-PASCAL

(αimg = 0.1)

PF-WILLOW

(αbox = 0.1)

– PFHOG [18] 55.6 54.0

U
n
. syn. pairs

A2Netres101 [60] 70.8 68.8

CNNGeores101 [55] 69.5 69.2

syn. + random Oursres101 80.5 73.4

W
ea

k
.

pixel-wise

masks

SFNetres101 [39] 81.9 73.5

GSFres101 [28] 84.5 75.8

image-level

labels

FCSSVGG [33] 69.6 61.0

WS-SAres101 [56] 74.8 70.2

NCNres101 [57] 78.9 67.0

RTNsres101 [32] 75.9 71.9

Oursres101 81.2 74.7

S
tr

o
n
g
.

keypoint

matches

UCNGoogLeNet [8] 55.6 54.0

SCNet-AG+vgg16 [19] 72.2 70.4

Arbicon-Netres101 [5] 77.3 -

DFSres101 [25] 86.0 75.0

DCCNetres101 [26] 82.3 73.8

ANC-Netres101 [42] 88.7 -

HPFres101 [51] 80.4 74.4

Oursres101 90.7 75.6

Testing Phase: During test time, the input image pair is

simply forwarded through the trained student model to gen-

erate a full-resolution semantic correspondence (flow) map.

4.2. Main Results

PF-PASCAL [56] and PF-WILLOW [18]: Following the

experimental protocol in [39,51,55,56], we train our student

model on PF-PASCAL train set, and evaluate the per-

formance on PF-PASCAL test set and PF-WILLOW. Ta-

ble 2 reports the PCK values of 16 SOTAs and ours. For fair

comparison, these SOTAs are divided into different groups

by degree of supervision. Across multiple degrees of su-

pervision, our approaches with different settings achieve

better performance. On PF-PASCAL, our self-supervised

model yields very competitive result (80.5%), which is sig-

nificantly better than all approaches under the same level

of supervision, and is even better than most of approaches

with stronger supervisions. Our weakly supervised model

achieves the PCK score of 81.2%, which is better than ex-

isting weakly supervised approaches except for those us-

ing additional (pixel-wise) mask annotations. Our strongly

supervised model sets a new record of PCK score 90.7%.

Figure 5 provides the visual samples of different models

on PF-PASCAL. On PF-WILLOW, our approaches also set

Table 3. Ablation studies on PF-PASCAL test. “ST” means the

static teacher; “PT” stands for the probabilistic teacher; “PSR” is

the probabilistic supervision reweighting module; “CAL” denotes

the confidence-aware loss.

Method Sup. signal Train Data
PF-PASCAL

(αimg = 0.1)

U
n
.

Teacher model (Static) synthetic pairs PASCAL VOC 76.6

Teacher model (Probabilistic) synthetic pairs PASCAL VOC 76.3

Student model ST PF-PASCAL (random) 54.1

Student model + PSR PT (m=2) PF-PASCAL (random) 70.3

Student model + PSR PT (m=4) PF-PASCAL (random) 75.2

Student model + PSR PT (m=8) PF-PASCAL (random) 75.5

Student model + PSR + CAL PT (m=4) PF-PASCAL (random) 80.5

W
ea

k
.

Teacher model (Static) synthetic pairs PASCAL VOC 76.6

Teacher model (Probabilistic) synthetic pairs PASCAL VOC 76.3

Student model ST PF-PASCAL (paired) 74.3

Student model + PSR PT (m=2) PF-PASCAL (paired) 78.2

Student model + PSR PT (m=4) PF-PASCAL (paired) 80.8

Student model + PSR PT (m=8) PF-PASCAL (paired) 80.8

Student model + PSR + CAL PT (m=4) PF-PASCAL (paired) 81.2

new records for different degrees of supervision. The com-

parisons clearly show that our PMD can 1) transfer and en-

hance the knowledge learned from synthetic data to a new

model (i.e., our un-/weakly-supervised models) and, 2) can

be extended to incorporate stronger key-point supervision

for better accuracy (i.e., our strongly-supervised models).

SPair-71k [52]: We follow [38, 51] to train all models on

SPair-71k train set, and perform evaluation on SPair-71k

test set. As shown in Table 1, on the largest and most

challenging benchmark SPair-71k, our weakly supervised

model achieves PCK score of 26.5%, which is higher than

all approaches under the same degree of supervision. Our

strongly supervised model sets a new PCK record of 37.4%.

The comparisons again demonstrate the superiority of our

approach compared to existing approaches.

4.3. Ablation Experiments

Here, our ablation experiments are conducted by using

our un-supervised and weakly supervised models.

Effectiveness of Probabilistic Model Distillation: To

show the effectiveness of distilling knowledge from a prob-

abilistic teacher model (PT), we provide a baseline student

model which is distilled from a static teacher model (con-

ventional model distillation) under different settings. As

shown in Table 3, in all settings, we observe that the base-

line student model is upper-bounded by its static teacher

model. In contrast, our PMD approach enables the same

student model to achieve better performance than its prob-

abilistic teacher model (PT). In the un-supervised set-
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Source Target WS-SA NCN SFNet Ours

Figure 5. Quantitative comparison of dense correspondence. Diamonds and crosses denote the key points in source and target respectively,

and vectors depict the matching error. Zoom-in for details.

60

65
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80

PF-PASCAL PF-WILLOW

1st round 10th round 20th round 40th round

P
C

K
 %

Source.

Target.

(a) 1st (b) 10th

(d) 40th(c) 20th

Figure 6. Performance analysis of each round. Top: Average PCK

on two datasets; Bottom: Some visual examples.

ting, we observe that our confidence-aware loss (CAL)

can greatly improve accuracy. It indicates that the “un-

matched” pairs (e.g., one image for a “dog” and the other

for a “bus”) can be filtered out by using our CAL loss.

In the weakly-supervised setting, CAL still brings perfor-

mance gain (0.4%). It can be observed that the probabilistic

teacher model has a slight drop in performance compared

to the static teacher model, yet it can provide meaningful

pixel-wise hypotheses to better guide the learning of a stu-

dent model. We also show that our PSR brings significant

performance gains under both settings. Moreover, to ver-

ify the effectiveness of our iterative training algorithm, we

provide comparisons of different rounds using our weakly-

supervised model in Figure 6. Clearly, the average PCK

scores gradually improve when more rounds of training are

performed, which means the correct pixel-wise supervision

signals can be gradually inferred during iterative training.

Effect of Unmatched Pairs: In the challenging un-

supervised setting, the matched pairs only occupy less than

5% of the training data. Yet, our model achieves the PCK

score of 80.5%, which is only 0.7% lower than our weakly

supervised model (81.2%) on PF-PASCAL. A new ques-

tion arises — Does the proposed method really need any

matched pairs? To answer this question, we thoroughly in-

vestigate the effect of unmatched pairs. First, we fix the

number of matched pairs to be 2, 911, and manually add

different numbers of unmatched pairs to control the propor-

76.4

78.2
79.3

80.1 80.4 80.5

70.2

71.9 72.4 72.9 73.2 73.4

65

70

75

80

500 1000 1500 2000 2500 2911

PF-PASCAL WILLOW

Number of matched pairs

P
C

K
 (

%
)

(b)

81.0 80.9 80.7 80.7 80.5 80.5

74.3 74.1 73.7 73.6 73.3 73.4

65
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80
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Number of unmatched pairs
P

C
K

 (
%

)

(a)

Figure 7. Analysis for the effect of unmatched pairs on the PF-

PASCAL test set and PF-WILLOW in terms of average PCK.

tion of matched pairs. As can be seen in Figure 7 (a), our ap-

proach is almost immune to the image pair-level noise. This

is because our PSR and CAL can best alleviate the influence

of noise data. Second, we fix the number of unmatched

pairs to be 60, 000, and manually add different numbers of

matched pairs for training the student model. As shown in

Figure 7 (b), the accuracy improves when more matched

pairs are included for training. Therefore, we can conclude

that our PMD approach requires matched pairs, yet it is ro-

bust to the image pair-level noise. It should be noted that,

theoretically, matched pairs can be automatically generated

if large amounts of (unlabeled) images are collected.

5. Conclusion

In this paper, we introduce a novel probabilistic model

distillation (PMD) approach, and use it within a proba-

bilistic teacher-student framework to solve the semantic

correspondence problem. The proposed method substan-

tially outperforms existing self-supervised/un-supervised

approaches, and even surpasses models trained with

(strong) auxiliary annotations. Moreover, we show that our

PMD can be extended to incorporate stronger supervision

for better accuracy. The results demonstrate the effective-

ness of our PMD approach for semantic correspondence.

We believe that our PMD can be applied to other domains

where annotations are difficult or labor-intensive to collect.
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