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Abstract

Single domain generalization is a challenging case of

model generalization, where the models are trained on a

single domain and tested on other unseen domains. A

promising solution is to learn cross-domain invariant rep-

resentations by expanding the coverage of the training do-

main. These methods have limited generalization perfor-

mance gains in practical applications due to the lack of ap-

propriate safety and effectiveness constraints. In this pa-

per, we propose a novel learning framework called pro-

gressive domain expansion network (PDEN) for single do-

main generalization. The domain expansion subnetwork

and representation learning subnetwork in PDEN mutu-

ally benefit from each other by joint learning. For the

domain expansion subnetwork, multiple domains are pro-

gressively generated in order to simulate various photo-

metric and geometric transforms in unseen domains. A

series of strategies are introduced to guarantee the safety

and effectiveness of the expanded domains. For the do-

main invariant representation learning subnetwork, con-

trastive learning is introduced to learn the domain invari-

ant representation in which each class is well clustered so

that a better decision boundary can be learned to improve

it’s generalization. Extensive experiments on classification

and segmentation have shown that PDEN can achieve up

to 15.28% improvement compared with the state-of-the-art

single-domain generalization methods. Codes will be re-

leased soon at https://github.com/lileicv/PDEN

1. Introduction

In this paper, we define domains as various distributions

of objects appearance caused by different external condi-

tions(such as weather, background, illumination etc.) or in-
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(a) The traditional decision bound-

ary learned with the original train-

ing domain.

(b) The new decision boundary

learned with our progressively ex-

panded domains.

Ƹ𝑠3Ƹ𝑠2Ƹ𝑠1𝑆 𝑆𝑆3𝑆1 𝑆2

Model

MNIST[22] MNIST-M[10] SVHN[31]

Model

SYNTHIA[35]-DAWN SYNTHIA-NIGHT SYNTHIA-WINTER

Train/Source domain Test/Unseen target domains

Task1: Object Recognition
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Figure 1. The illustration of our PDEN for single domain general-

ization. The tiny images in (a) and (b) with red border denote the

source domain and the one with green border denote the expanded

domains with our PDEN.

trinsic attributes(such as color, texture, pose etc.), as shown

in Fig.1. The performance of a deep model usually drops

when applied to unseen domains. For example, The accu-

racy of the CNN model(trained on MNIST) on MNIST test

set is 99%, while that on SVHN test set is only 30%. Model

generalization is important to machine learning.

Two solutions have been proposed to deal with the above

issue, namely, domain adaptation [10, 30, 36, 9] and do-

main generalization [29, 11, 12, 16]. Domain adaptation

aims to generalize to a known target domain whose labels

are unknown. Distribution alignment(e.g., MMD) and style
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transfer(e.g., CycleGAN) are frequently used in these meth-

ods to learn domain-invariant features. However, it requires

data from the target domain to train the model, which is dif-

ficult to achieve in many tasks due to lack of data.

Domain generalization, which not requires access to any

data from the unseen target domain, can solve these prob-

lems. The idea of domain generalization is to learn a

domain-agnostic model from one or multiple source do-

mains. Particularity, in many fields we are usually faced

with the challenge of giving a single source domain, which

is defined as single domain generalization [33]. Recently,

studies have made progress on this task [34, 45, 38, 40,

33, 46]. All of these methods, which are essentially data

augmentation, improve the robustness of the model to the

unseen domain by extending the distribution of the source

domain. Specifically, additional samples are generated by

manually selecting the augmentation type[45, 34] or by

learning the augmentation through neural networks[33, 46].

Data augmentation has proved to be an important means

for improving model generalization [44]. However, such

methods require the selection of an augmentation type and

magnitude based on the target domain, which is difficult to

achieve in other tasks. They cannot guarantee the safety

and effectiveness of synthetic data or even reduce accuracy.

[42, 20].

In this paper, we propose the progressive domain expan-

sion network (PDEN) to solve the single domain general-

ization problem. Task models and generators in PDEN mu-

tually benefit from each other through joint learning. Safe

and effective domains are generated by the generator under

the precise guidance of the task model. The generated do-

mains are progressively expanded to increase the coverage

and improve the completeness. Contrastive learning is in-

troduced to learn the cross-domain invariant representation

with all the generated domains. It is noteworthy that we can

flexibly replace the generator in PDEN to achieve different

types of domain expansion.

Our main contributions are as follows:

• We propose a novel framework called progressive do-

main expansion network (PDEN) for single domain

generalization. The PDEN contains domain expansion

subnetwork and domain invariant representation learn-

ing subnetwork, which mutually benefit from each

other by joint learning.

• For the domain expansion subnetwork, multiple do-

mains are progressively generated to simulate various

photometric and geometric transforms in unseen do-

mains. A series of strategies are introduced to guaran-

tee the safety and effectiveness of these domains.

• For the domain invariant representation learning sub-

network, contrastive learning is introduced to learn the

domain invariant representation in which each class is

well clustered so that a better decision boundary can

be learned to improve it’s generalization.

• Extensive experiments on classification and segmen-

tation have shown the superior performance of our

method. The proposed method can achieve up to

15.28% improvement compared with other single-

domain generalization methods.

2. Related Work

Domain Adaptation. In recent years, many domain

adaptation methods [10, 30, 36, 9] have been proposed to

solve the problem of domain drift between source and target

domain, including feature-based adaptation[10], instance-

based adaptation [6] and model parameter based adapta-

tion [14]. The domain adaptation method in deep learn-

ing is mainly to align the distribution of source domain

and target domain, including two kinds of methods: MMD

based adaptation method[39, 25] and adversarial based

method[10]. DDC[39] is first proposed to solve the do-

main adaptation problems in deep networks. DDC fixes

the weights of the first 7 layers in AlexNet, and MMD is

used on the 8th layer to reduce the distribution difference

between the source domain and target domain. DAN[25]

increased the number of adaptive layers (three in front of

the classifier head) and introduced MK-MMD instead of

MMD. AdaBN[24] proposed to measure the distribution of

the source domain and target domain in BN layer. With

the emergence of GAN, a lot of domain adaptation meth-

ods based on adversarial learning have been developed.

DANN[10] is the first research work to reduce the dis-

tribution difference between the source domain and tar-

get domain by adversarial learning. DSN[1] assumes that

each domain includes a domain-shared distribution and a

domain-specific distribution. Based on this assumption,

DSN learned the shared feature and the domain-specific fea-

ture respectively. DAAN[43] measures the marginal distri-

bution and conditional distribution with a learnable weight.

Domain Generalization. Domain generalization is

more challenging than domain adaptation.Domain general-

ization aims to learn the model with data from the source

domain and the model can be generalized to unseen do-

mains.

Domain generalization can be categorized as such sev-

eral research interests: Domain alignment[29, 28, 23, 8]

and domain ensemble[26]. Domain alignment methods as-

sume that there is a distribution shared by different domains.

These methods map the distribution from different domains

to the shared one. CCSA[28] propose the contrastive se-

mantic alignment loss to minimize the distance between

data with the same label but from different domains and

maximize the distance between the data with different class

labels. In MMD-AAE[23], the feature distribution of source

domain and target domain are aligned by MMD, and then
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(b) Expand the kth unseen domain

Figure 2. Illustration of the proposed method PDEN. (a) We show how the domain is progressively extended. We trained the task model

M and unseen domain generator G alternately. G is trained to synthesize the unseen domain Ŝ under the guidance of M . Each synthetic

domain will be added to the source domain. The task model M will be finetuned after the source domain is updated. (b) We show the

network structure of PDEN. Note that M and Mk share the weights, and different G have the same structure but do not share the weights.

the feature representation is matched to the prior Laplace

distribution by AAE. Model ensemble[26] methods train

models for each source domain in the training set, and then

ensemble their outputs according to the confidence of each

model.

Single-domain generalization assumes that the training

set only contains samples from just one source domain.

Recent, many studies have made progress on this task

[34, 45, 38, 40, 33, 46]. These methods are generally ap-

plied to synthesize more samples in image space or feature

space to expand the range of data distribution in the training

set. BigAug[45] observed that the differences in medical

images (such as T2 MRI) are mainly different in 3 aspects:

image quality, image appearance, and spatial configuration.

They augment more variants for the 3 aspects by data aug-

mentation. However, such methods require the selection of

an augmentation type and magnitude based on the target do-

main, which is difficult to achieve in other tasks. GUD[40]

and MADA[33] synthesize more data through adversarial

learning to promote the model’s robustness. However, on

the one hand, the augmentation type is relatively simple;

on the other hand, too much adversarial examples used for

training will damage the performance of the classifier.

Contrastive Learning. Contrastive learning is a kind

of unsupervised pre-training method for image recognition,

which is popular these years. The key idea of contrastive

learning is to train a model by bringing the positive pairs

closer and pushing apart negative pairs. SimCLR[3] gen-

erates positive pairs by imposing strong augmentation on

whole images. CPC[32] utilizes augmentation on image

patches and uses the patch-level views for loss optimiza-

tion.

3. Method

The PDEN proposed in this paper is used for single do-

main generalization. Suppose the source domain is S =
{xi, yi}

NS

i=1
, the target domain is T = {xi, yi}

NT

i=1
, where

xi, yi is the i-th image and class label, NS , NT represent

the number of samples in source domain and target domain

respectively. The aim is to train the model with only S then
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it can be generalized to the unseen T .

3.1. The task model M

The overall model architecture of PDEN is shown in Fig.

2 (b), including the task net M and unseen domain genera-

tor G. In this section, we will introduce the task model in

the PDEN.

There are 3 parts in M . (1) Feature extractor F : X →
H, where X is the image space and H is the feature space.

F is a stack of convolution layers followed by the pooling

layers and activation layers. The output of F is a 1-d vector

obtained by global pooling. (2) Classifier head C : H → Y ,

where Y is the label space. Here we focus on the clas-

sification task, so the task head C is optimized by cross-

entropy loss. In our experiment, C is a stack of fully con-

nected layers followed by nonlinear activation layers, and

the last activation layer in C is softmax. (3) Projection head

P : H → Z , where Z is the hidden space in which the

contrastive loss will be calculated. P contains only one full

connection layer in our experiments. We normalize the out-

put vector of P to lie on a unit hypersphere, which enables

using an inner product to measure similarity in the Z space.

3.2. The Unseen Domain Generator G

G can convert the original image x(original domain S)

to a new image x̂(unseen domain Ŝ) as follows:

x̂ = G(x, n), n ∼ N(0, 1)

Ŝ = {(G(xi, n), yi)|(xi, yi) ∈ S}
(1)

where x̂ has the same semantic information as x, but the

domains of x̂ and x is different.

G can be a variety of structures depending on related

downstream tasks, such as AutoEncoder [18], HRNet [37],

spatial transform network(STN) [15] or a combination of

these networks.

Autoencoder as G: In our experiment, we mainly use

the Autoencoder with AdaIN [17] as the generator, as the

Gk shown in Fig 2. The generator G contains the encoder

GE , the AdaIN and the decoder GD. In AdaIN, there are

two fully-connected layers Lfc1, Lfc2:

AdaIN(z, n) = Lfc1(n)
z − µ(z)

σ(z)
+ Lfc2(n)

G(x, n) = GD(AdaIN(GE(x), n))

(2)

where n ∼ N(0, 1). Fig.3(a) shows the unseen domains

generated by Autoencoder.

STN as G: The Autoencoder can be replaced by the

STN[15] as the generator. The STN is a geometry-aware

module which can transform the spatial structure of the im-

age. Fig.3(b) shows the unseen domains generated by STN.

PDEN is a framework in which generators can be re-

placed with different structures depending on the tasks. In

our experiment, the autoencoder is applied.

(a) Domains generated by our domain expansion subnetwork with autoen-

coder.

(b) Domains generated by our domain expansion subnetwork with STN.

Figure 3. The domains generated by our domain expansion sub-

network.

3.3. Progressive Domain Expansion

In order to improve the completeness of the generated

domains and expand its coverage, we progressively gener-

ate K unseen domains {Ŝk = Gk(S)}
K
k=1

with the learn-

able generator G. The task model M is trained with these

unseen domains to learn the cross-domain invariant repre-

sentation. We train the task model and generator alternately,

as shown in Fig. 2.

Take the kth domain expansion as an example. First, the

generator G and task model M are jointly trained to syn-

thesize safe and effective unseen domains Ŝk by minimize

Equ.(9). Then, the task model M will be retrained with the

updated data set S ∪ {Ŝi}
k
i=1 by minimize Equ.(3). The

performance of M will be improved, so M can guide the

generator Gk+1 to synthesize better unseen domains. The

algorithm is shown in Alg.1.

3.4. Domain Alignment and Classification

In this section, we will introduce how to learn cross-

domain invariant representation. Given a minibatch B =
{xi, yi}

2N
i=1, xi is the source image, x+

i = G(xi, n) is the

synthetic image originating from xi(xi and x+

i have the

same semantic information, but come from different do-

mains), yi is the class label. M is optimized by:

Lce(ŷi, yi) = min
F,C
−
∑

m

ymi log(ŷmi )

LNCE(zi, z
+

i ) = min
F,C
−log

exp(zi · z
+

i )
∑2N

j=1,j 6=i exp(zi · zj)

Lsrc = Lce(ŷi, yi) + LNCE(zi, z
+

i )

(3)

where ymi is the mth dimension of yi; ŷi = C(F (xi));
zi = P (F (xi)).

Lce is the cross-entropy loss used for classification.

LNCE is the InfoNCE loss[32] used for contrastive learn-

ing. In the minibatch B, zi and z+i have the same semantic

information but come from different domains. By minimiz-

ing LNCE , the distance between zi and z+i will be smaller.
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In other words, samples from different domains with the

same semantic information will be closer in the Z space.

LNCE will guide F to learn domain-invariant representa-

tion.

3.5. Unseen Domain Ŝ Generation

In this section, we will show how to generate kth unseen

domain Ŝk from S via the generator Gk(For convenience,

we use G, Ŝ instead of Gk, Ŝk). Ŝ satisfy the constraints of

safety and effectiveness. Safety means the generated sam-

ples contain the domain-invariant information. Effective-

ness means the generated samples contain various unseen

domain-specific information.

Safety. Ŝ is safe if all the x ∈ Ŝ can be predicted cor-

rectly by task model M . Formally, we optimize:

Lcls = min
G,F,C

Lce(C(F (G(x, n))), y), n ∼ N(0, 1) (4)

Cycle consistency loss[47] is introduced to further en-

sure the safety of Ŝ . Ŝ is safe if it can be converted to S by

an generator Gcyc. Gcyc has the same structure as G, but no

noise input. Formally, we optimize:

Lcyc = min
G,Gcyc

‖x−Gcyc(G(x, n))‖2 (5)

Effectiveness. Adversarial learning is introduced to gen-

erate effective unseen domains. The generator G and task

model M are learned jointly. The task model M which ex-

tracts the domain-share representation is always trained to

minimize the InfoNCE loss. The generator G is trained to

maximize the InfoNCE loss. Through adversarial training,

G will generate unseen domains from which M can’t ex-

tract domain shared representation, and M will be better

able to extract cross-domain invariant representations. The

loss can be defined as:

L̃adv =min
G
−LNCE(P (F (x)), P (F (G(x, n))))+

min
F,P

LNCE(P (F (x)), P (F (G(x, n))))
(6)

However, the loss function Equ. 6 is difficult to con-

verge. As the first item in L̃adv gets smaller, the gradient

gets larger. Therefore, we use the following equation to ap-

proximate L̃adv .

LNCE2(zi, z
+

i ) =
2N
∑

i

log

(

1−
exp(zi · z

+

i )
∑2N

j=1,j 6=i exp(zi · zj)

)

Ladv =min
G
−LNCE2(P (F (x)), P (F (G(x, n))))+

min
F,P

LNCE(P (F (x)), P (F (G(x, n))))

(7)

We also use a loss function to encourage G to generate

more diverse samples.

Ldiv = min
G
−‖G(x, n1)−G(x, n2)‖2 (8)

Algorithm 1 PDEN

Input: Source domain dataset S; Pre-train task model M ;

Number of synthetic domains K

Output: learned task model M

1: Initialize: Sall ← S
2: for k=1,...,K do

3: initialize the weights of Gk randomly

4: for t=1,...,T do ⊲ Train Gk to get Ŝk
5: Sample (xi, yi) from S
6: (x+

i , yi)← (Gk(xi, n), yi)
7: train G and M using Eq.(9)

8: Synthetic kth unseen domain Ŝk using Eq.(1)

9: Sall = S ∪ Ŝk
10: for t=1,...,T do ⊲ Retrain M

11: Sample (xi, yi) from Sall
12: train M using Eq.(3)

13: return M

where n1, n2 ∼ N(0, 1), and n1 6= n2. To sum up, the loss

function of training generate G is as follow:

Lunseen = Lcls+wcyc ·Lcyc+wadv ·Ladv+wdiv ·Ldiv (9)

The weight of Lcls is always 1, wcyc, wadv, wdiv are the

weights of Lcyc, Ladv, Ldiv .

4. Experiment

4.1. Datasets and Evaluate

Follow [33, 40], we evaluated our approach on Digits,

CIFAR10-C and SYNTHIA.

Digits Dataset: Digits dataset contains 5 datasets:

MNIST[22], MNSIT-M[10], SVHN[31], USPS[7],

SYNDIGIT[10]. Each dataset is considered as a domain.

We use MNIST as the source domain and the other four

data sets as the target domains. The first 10,000 images in

MNIST are used to train the model.

CIFAR10-C Dataset: We use the CIFAR10[21] as the

source domain and the CIFAR10-C[13] as the target do-

main. CIFAR10-C is a benchmark dataset to evaluate the ro-

bustness of classification models. CIFAR10-C dataset con-

sists of test images with 19 corruption types, which are al-

gorithmically generated. The corruptions come from 4 cat-

egories and each type of corruption has 5 levels of severity.

SYNTHIA Dataset: The SYNTHIA VIDEO

SEQUENCES[35] dataset is used for traffic scene

segmentation. The dataset consists of 3 locations: High-

way, New York ish and Old European Town. Each location

consists of the same traffic situation but under different

weather/illumination/season conditions(we use Dawn, Fog,

Spring, Night and Winter in our experiment). Following

the protocol in[40], we train our model on one domain
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Method
Manual Data

Augmentation
SVHN MNIST-M SYNDIGIT USPS Avg.

ERM[19] False 27.83 52.72 39.65 76.94 49.29

CCSA, WVU, 2017[28] False 25.89 49.29 37.31 83.72 49.05

d-SNE, UH, 2019[41] False 26.22 50.98 37.83 93.16 52.05

JiGen, Huawei, London, 2019[2] False 33.80 57.80 43.79 77.15 53.14

GUD, Stanford, 2018[40] False 35.51 60.41 45.32 77.26 54.62

MADA, UDel, 2020[33] False 42.55 67.94 48.95 78.53 59.49

PDEN False 62.21(19.66↑) 82.20(14.26↑) 69.39(20.44↑) 85.26(6.73↑) 74.77(15.28↑)

AutoAugment, Google, 2018 [4] True 45.23 60.53 64.52 80.62 62.72

RandAugment, Google, 2020 [5] True 54.77 74.05 59.60 77.33 66.44

PDEN False 62.21(7.44↑) 82.20(8.15↑) 69.39( 9.79↑) 85.26(7.93↑) 74.77(8.33↑)

Table 1. Experiment results on Digits dataset. All the models are trained on MNIST. The top half of the table is the comparison with other

single domain generalization methods. None of these methods use manual data augmentation. The following section of the table is the

comparison with other methods which use manual data augmentation.

and evaluate on the other domains. For each domain, we

randomly sample 900 images from the left front camera

and all the images are resized to 192× 320 pixels.

Evaluate: For Digit and CIFAR10 datasets, we com-

pute the mean accuracy on each unseen domain. For SYN-

THIA dataset, we use the standard mean Intersection over

Union(mIoU) to evaluate the performance on each unseen

domain.

4.2. Evaluation of Single Domain Generalization

We compare our method with the following state-of-the-

art methods. (1) Empirical Risk Minimization(ERM) [19]

is the baseline method trained with only the cross-entropy

loss. (2) CCSA [28] aligns samples from different domains

of the same category to get the robust feature space for do-

main generalization. (3) d-SNE[41] minimizes the maxi-

mum distance between sample pairs of the same class and

maximizes the minimum distance among sample pairs of

different categories. (4) GUD [40] proposes an adversar-

ial data augmentation method to synthesize more hard sam-

ples which can improve the robustness of the classifier. (5)

MADA [33] minimizes the distance of semantic space and

maximize the distance of pixel space to generate more ef-

fective samples. (6) JiGen [2] proposes a multi-task learn-

ing method that combines the target recognition task and the

Jigsaw classification task to improve the cross-domain gen-

eralization of the model. (7) AutoAugment(AA) [4] pro-

poses a method to automatically searches improved data

augmentation policies for the specific data set. (8) Based

on AA, RandAugment(RA) [5] has a better data augment

policies, which greatly reduces the policies space .

Comparison on Digits: We train the model with the first

10,000 images in the MNIST train set, validate the model on

the MNIST test set, and evaluate the model on the MNIST-

M, SVHN, USPS, and Syndigits datasets. We calculate the

mean accuracy on each data set as the evaluation index. We

first compared with the single-domain generalization meth-

ods, as shown in the top half of Table 1. To be fair, we did

not use any manual data augmentation. We observed that

our method performs much better than other methods on

SVHN, MNIST-M and USPS. On USPS, the performance

of our method is comparable to others, mainly because the

USPS is more similar to MNIST. The d-SNE[41] performs

well on USPS, but bad on other data sets. We also com-

pare with the data augmentation methods as shown in the

bottom half of Table 1. The hyperparameters are consistent

with those in the original paper. We found that our method

performs better than these methods. What’s more, our ap-

proach is orthogonal to these data augmentation techniques.

Comparison on CIFAR10: We train all the models on

the CIFAR10 train set, validate the models on the CIFAR10

test set, and evaluate the models on the CIFAR10-C. The

experimental results across five levels of corruption sever-

ity are shown in Tab2. Our approach performs better than

other single-domain generalization methods such as GUD

and MADA. The severer the corruption, the more our ap-

proach surpasses MADA. Compared to approaches using

manual data augmentation, our approach performs as well

as they do at lower corruption levels and outperform them at

higher corruption levels. We also show the experimental re-

sults across different types of corruptions with the 5th level

severity in Tab 3. Our approach has higher average accuracy

than other approaches. In some corruption types, the Ran-

dAugment approach performs better than us. However, it is

important to note that there is no manual data augmentation

in our approach, and our approach can be used together with

RandAugment.

Comparison on SYNTHIA: Follow the protocol in

[33], we conducted three experiments, using Highway-

Dawn, Highway-Fog and Highway-Spring as the source

domain respectively, and taking all the weather in New

York ish and Old European Town as the unseen target do-
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Method Level1 Level2 Level3 Level4 Level5

ERM[19] 87.8 81.5 75.5 68.2 56.1

GUD[40] 88.3 83.5 77.6 70.6 58.3

MADA[33] 90.5 86.8 82.5 76.4 65.6

AA[4] 91.42 87.88 84.10 78.46 71.13

RA[5] 91.74 88.89 85.82 81.03 74.93

PDEN 90.62 88.91 87.03 83.71 77.47

Table 2. Experiment results on CIFAR10-C dataset across different

levels.
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Figure 4. Visualization of different domains in the feature space.

Rows 1 and 2 represent the feature space of baseline model and

ours, respectively. Columns 1 and 2 represent the feature distribu-

tion of MNIST and MNIST M, respectively.

mains. The scene segmentation results(mIoU) are show in

Tab 4. Our approach improves the average mIoU compared

to other approaches. When the source domain is highway-

Dawn or Highway-fog, the improvement is greater.

4.3. Additional Analysis

Validation of K: We study the effect of the hyper-

parameters K on the Digits dataset. We use the MNIST as

the source domain, and take MNIST-M, SVHN, USPS and

SYNDIGIT as the unseen target domains. The experimen-

tal result is shown in Fig.5(a). We report the classification

accuracy on the target domains when K = 1, 2, ..., 20. The

accuracy is increased rapidly when K is small, and gradu-

ally converges when K is large. In experiments on Digits,

we set K = 20. In the Digits experiment in MADA[33],

their approach performed best at K = 3 and decreased as

K grew.This indicates that the domain generated by our ap-

proach is safer than MADA.

Validation of wadv: We study the effect of the

hyper-parameters wadv on Digits dataset. The experi-

mental results are shown in Fig.5(b). We report the

classification accuracy on target domains when wadv =
0.02, 0.05, 0.08, 0.1, 0.13, 0.16, 0.2. We found that the ac-

curacy increases with the increase of wadv on the unseen
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Figure 5. Hyper-parameters tuning of K,wadv, wcyc on the Digit

dataset.

target domains.

Validation of wcyc: We study the effect of the hyper-

parameters wcyc on Digits dataset. The experimental re-

sult is shown in Fig.5(c). We report the classification ac-

curacy on MNIST-M, USPS, SVHN and SYNDIGIT when

wcyc = 0, 10, 20, 30, 40, 50. On MNIST-M, SVHN and

SYNDIGIT, the accuracy increases with the increases of

wcyc. On USPS, the classification accuracy did not change

significantly (fluctuated within a small range) with the in-

crease of wcyc, mainly because of the high similarity be-

tween USPS and MNIST.

Validation of wdiv: We illustrate the effect of the hyper-

parameters wdiv in Fig.5(d). For all the unseen domain in

Digit dataset, the classification accuracy increases with the

increases of wdvi.

Visualization of the feature space: Fig.4 illustrates the

difference in 2-d feature spaces between PDEN and the

baseline models. For PDEN, the sample distribution of tar-

get domain is consistent with that of source domain. For the

baseline model, most of the target samples are mixed in the

feature space so that it is difficult to classify them.

4.4. Evaluation of of Fewshot Domain Adaptation

We also compared our methods in the experimental set-

ting of few-shot domain adaptation [27]. In few-shot do-

main adaptation, data from the source domain S and a few

samples from the target domain T are used to train the

model.

We use MNIST as the source domain and SVHN as the
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Weather Blur Noise Digital

Fog Snow Frost Zoom Defocus Glass Speckle Shot Impulse Jpeg Pixelate Spatter Avg.

ERM[19] 65.92 74.36 61.57 59.97 53.71 49.44 41.31 35.41 25.65 69.90 41.07 75.36 56.15

CCSA[28] 66.94 74.55 61.49 61.96 56.11 48.46 40.12 33.79 24.56 69.68 40.94 77.91 56.31

d-SNE[41] 65.99 75.46 62.25 58.47 53.71 50.48 45.30 39.93 27.95 70.20 38.46 73.40 56.96

GUD[40] 68.29 76.75 69.94 62.95 56.41 53.45 38.45 36.87 22.26 74.22 53.34 80.27 58.26

MADA[33] 69.36 80.59 76.66 68.04 61.18 61.59 60.88 60.58 45.18 77.14 52.25 80.62 65.59

AA[4] 84.61 81.04 72.32 83.94 84.38 52.29 52.14 45.40 52.54 73.65 36.12 89.13 71.13

RA[5] 85.99 80.13 74.97 88.60 89.33 57.70 60.50 56.03 55.64 74.92 37.36 90.42 74.93

PDEN 69.64 81.81 84.50 83.73 82.15 60.13 79.31 81.28 66.79 85.24 70.82 79.38 77.47

Table 3. The experimental result on CIFAR10-C. The model is trained on the clean data of CIFAR10 and evaluate on CIFAR10-C. We

compared the accuracy of 19 types of corruption(only 12 corruptions are shown in the table) at level 5(the severest) in different methods.

New York ish Old European Town

Source Domain Method Dawn Fog Night Spring Winter Dawn Fog Night Spring Winter Avg.

Highway/Dawn

ERM[19] 27.80 2.73 0.93 6.80 1.65 52.78 31.37 15.86 33.78 13.35 18.70

GUD[40] 27.14 4.05 1.63 7.22 2.83 52.80 34.43 18.19 33.58 14.68 19.66

MADA[33] 29.10 4.43 4.75 14.13 4.97 54.28 36.04 23.19 37.53 14.87 22.33

PDEN 30.63 21.74 16.76 26.10 19.91 54.93 47.55 36.97 43.98 23.83 32.24

Highway/Fog

ERM[19] 17.24 34.80 12.36 26.38 11.81 33.73 55.03 26.19 41.74 12.32 27.16

GUD[40] 18.75 35.58 12.77 26.02 13.05 37.27 56.69 28.06 43.57 13.59 28.53

MADA[33] 21.74 32.00 9.74 26.40 13.28 42.79 56.60 31.79 42.77 12.85 29.00

PDEN 25.61 35.16 17.05 32.45 21.03 45.67 54.91 37.38 48.29 20.80 33.83

Highway/Spring

ERM[19] 26.75 26.41 18.22 32.89 24.60 51.72 51.85 35.65 54.00 28.13 35.02

GUD[40] 28.84 29.67 20.85 35.32 27.87 52.21 52.87 35.99 55.30 29.58 36.85

MADA[33] 29.70 31.03 22.22 38.19 28.29 53.57 51.83 38.98 55.63 25.29 37.47

PDEN 28.17 27.67 27.53 34.30 28.85 53.75 51.53 46.87 55.63 30.61 38.49

Table 4. Segmentation experiment results on SYNTHIA. We report the mIoU. All the models are trained on Highway and tested in New

York ish and Old European Town.

target domain. We first train the model on mnist with the

proposed PDEN, and then finetune the model with few sam-

ples from SVHN. The model will be evaluated on SVHN, as

shown in Fig. 6. We found that finetuning with few samples

from the target domain can significantly improve the perfor-

mance of the model on the target domain. Compared with

MADA, the proposed PDEN performs better in this case.
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Figure 6. Few-shot domain adaptation experiment. We train the

model with all the samples from MNIST and few samples from

SVHN, and test the model on SVHN.

5. Conclusion

In this paper, we propose a single domain generaliza-

tion learning framework to learn the domain-invariant fea-

ture, which can generalize the model to the unseen do-

mains. We learn the generator to synthetic unseen do-

mains, which share the same semantic information as the

source domain. The domain-invariant representation can

be learned by aligned the source and unseen domain dis-

tribution. We mine the hard unseen domains in which the

domain-invariant representation cannot be extracted by the

task model. The model will be more robust by adding these

generated domains to the training set. The novel method

PDEN proposed in this paper provides a promising direc-

tion to solve the single-domain generalization problem.
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