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Abstract

Unsupervised learning methods have recently shown

their competitiveness against supervised training. Typi-

cally, these methods use a single objective to train the en-

tire network. But one distinct advantage of unsupervised

over supervised learning is that the former possesses more

variety and freedom in designing the objective. In this

work, we explore new dimensions of unsupervised learning

by proposing the Progressive Stage-wise Learning (PSL)

framework. For a given unsupervised task, we design multi-

level tasks and define different learning stages for the deep

network. Early learning stages are forced to focus on low-

level tasks while late stages are guided to extract deeper

information through harder tasks. We discover that by pro-

gressive stage-wise learning, unsupervised feature repre-

sentation can be effectively enhanced. Our extensive ex-

periments show that PSL consistently improves results for

the leading unsupervised learning methods.

1. Introduction

Aiming at learning features from label-free data, unsu-

pervised representation learning, including self-supervised

learning, is an important problem to study. Many efforts

have been made, to bridge the performance gap between

supervised and unsupervised learning algorithms. These

methods can be roughly divided into two categories: i)

handcrafted pretext tasks, that learns data-level invariant

features (e.g., jigsaw puzzle [38], image rotation [21], im-

age colorization [13]) and ii) contrastive visual representa-

tion learning, which learns the similarity and dissimilarity

*Work done while visiting Johns Hopkins University.
†Now at Waymo.
‡Corresponding author.
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Figure 1. We present the framework of the proposed Progres-

sive Stage-wise Learning (PSL) algorithm, aiming for improv-

ing unsupervised/self-supervised task. We take the jigsaw puz-

zle task G for example. We first do multi-level task partition

G → {G1,G2,G3} with an increased task complexity and perform

progressive stage-wise training for different learning stages of the

network. The black arrow denotes forward pass while colored ar-

row represents the backward pass of each learning stage (i.e., S1,

S2, and S3).

between data pairs [9, 10, 11, 26]. For approaches using

pretext tasks, they usually generate pseudo labels based on

some data attributes and learn visual features through cor-

responding objective functions of the pretext tasks. There-

fore, the final performance of these approaches is highly re-

lated to how the pretext tasks were initially designed. Most

pretext tasks are designed heuristically, limiting the qual-

ity of learned representation. Contrastive learning methods

usually generate positive/negative sample pairs through a

set of image transformations and learn visual representa-

tion by bringing positive sample pairs closer while pushing

negative sample pairs away from each other. The design

of the contrastive loss and the configuration of image trans-

formations are essential to the quality of the resulting net-
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works. Those methods have shown great promise in the

area of unsupervised learning, achieving state-of-the-art re-

sults [25, 16, 40, 2]. Some recent methods show it is possi-

ble for unsupervised learned features to surpass supervised

learning in some downstream applications [9]. However,

performance gaps still exists between unsupervised and su-

pervised learning methods in most cases [23]. Therefore,

how to fully explore the potential of unsupervised learning

and improve the learning quality is a valuable topic.

Instead of designing a new pretext task or a better con-

trastive learning loss, we try to look into this problem from a

new perspective. As curriculum learning [5] suggests, when

dealing with a complex learning target, learning things pro-

gressively can be very useful. Indeed, as humans, we learn

visual concepts from easy to hard, and from elementary to

fine-grained. Similarly, learning high-quality feature repre-

sentations in an unsupervised manner is a challenging task,

and may benefit from such ideas. In this paper, we propose

PSL, a progressive stage-wise learning framework for un-

supervised visual representation learning.

As presented in Fig 1, for a given unsupervised learn-

ing task G (e.g., the jigsaw puzzle pretext task), we first

do multi-level task design G → {G1,G2,G3} with an in-

creased task complexity. Then, a stage-wise network par-

tition is performed to get early/mid/late stages (i.e., S1,

S2 and S3). Each learning stage is assigned with a task,

following the principle of easy-to-hard. Then, a stage-

wise training is performed. The training of lower stages

become much easier as they focus on more simple tasks.

The feature representations learned in upper stages are of

better quality because they are trained upon the learning

experience of former tasks. Our starting point is to de-

sign PSL as a plug-in learning method, which can be ap-

plied in any unsupervised learning scenarios under proper

multi-level task design. We validate the effectiveness of

the proposed PSL framework by evaluating our method on

several unsupervised/self-supervised tasks (e.g., the jiasaw

puzzle [38] and image rotation [21] pretext task and con-

trastive learning [10]) and present results on linear classifi-

cation, semi-supervised learning and transfer learning.

In general, the contributions of this paper can be summa-

rized as follows:

• PSL creates new dimensions for unsupervised learning

research. Specifically, this includes task series, net-

work partitions, and stage-wise training.

• PSL is design to be a general framework, that can

be applied to multiple unsupervised learning tasks be-

longing to either pretext tasks or contrastive learning

(e.g., jigsaw puzzle, image rotation, and SimCLR).

• By experiments of downstream applications (e.g.,

semi-supervised learning, transfer learning), we show

that the feature representations learned by PSL consis-

tently achieve better quality than the original unsuper-

vised task.

2. Related Work

Our method falls in the area of unsupervised visual rep-

resentation learning. We first revisit two categories of un-

supervised learning method. Then, we review methods

involving self-paced learning and local network training,

which give inspiration in our PSL training scheme.

Handcrafted Pretext Tasks. Many self-supervised meth-

ods use a handcrafted pretext task to learning visual rep-

resentations. Typically, a pretext task involves predicting

an explicit property of an image transformation and the

network is then trained to learn the feature representation.

The quality of the learned representation is highly related

to these tasks (e.g., predicting context [14], image rota-

tion [21], image colorization [13, 49, 30, 32, 33], jigsaw

puzzle [38, 6, 23] and visual counting [39]). Instead of de-

signing a new pretext task, we propose a plug-in method

to enhance the self-supervised learning, which can be used

collaboratively with many pretext tasks.

Contrastive learning. Unsupervised contrastive learning

recently attracts lots of attention, for achieving state-of-the-

art results on ImageNet [10, 26, 9]. Typically, a contrastive

learning method learns feature representations by contrast-

ing positive pairs against negative pairs, which is firstly pro-

posed by Hadsell et al. [25]. Then, Dosovitskiy et al. [16]

propose to represent each instance with a parametric vector.

Later, the concept of memory bank, which stores the infor-

mation of instance class representation, is adopted and de-

veloped further in many works [51, 44, 37]. Besides, there

are many clustering-based methods [7, 8, 1, 20, 29, 47]. Our

PSL training scheme can also fit into contrastive learning

methods, bringing improvement to the quality of the learned

feature representation.

Self-paced Learning Many self-paced learning methods

simulate the learning process of “easy-to-hard” [24, 19, 42,

18]. [24] incorporates self-paced learning into deep clus-

tering methods by controlling the number of selected data

samples. [19] uses a self-paced learning strategy by iden-

tifying reliable and unreliable clusters to improve the accu-

racy in the re-clustering step. These methods are based on

data-level information by defining easy/hard data samples

while our method focus on the task-level design.

Local Network Learning. The end-to-end training pro-

tocol inaugurated a new era in deep learning. Some works

jump out of traditional forward-backward training mode,

with inspiration from neuroscience. An early research [35]

shows that the way of the brain processing its perceptions
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is to maximally preserve the information contained in each

layer. Several methods try to explore greedy layer-wise

training schemes [4, 3], in which the possibility of scaling

this scheme to ImageNet is discussed. Later, GIM [36] ar-

gues that with greedy self-supervised training, end-to-end

propagation of a supervised loss is not necessary. Based

on GIM [36], LoCo [48] improves the performance of lo-

cal contrastive learning. Inspired by these local training

strategy, we propose a stage-wise training algorithm and

improve the performance in multiple unsupervised learning

task.

3. Method

3.1. Overview

This work aims to introduce an unsupervised pre-

training strategy. Many previous methods focus on de-

signing handcrafted pretext tasks in a self-supervised learn-

ing setting [38, 21, 13]. Correspondingly, the results are

highly related to how the pretext tasks are designed. An-

other type of work focuses on exploring the potential behind

contrastive learning. These works concentrate on learn-

ing similar/dissimilar representations from organized simi-

lar/dissimilar data pairs. Both kinds are trying to uncover

internal information of unlabeled data. As unsupervised

learning becomes more and more important and challeng-

ing, how to take the best advantage of existing unsupervised

learning ways is vital. In another word, how to do unsuper-

vised learning more effectively?

In this work, we provide a new dimension in enhanc-

ing the unsupervised learning representation. Inspired by

curriculum learning, we try to guide the neural network to

learning feature representations in a progressive way (e.g.,

from easy tasks to hard tasks, from low-level features to

high-level). To do so, we introduce our progressive stage-

wise learning (PSL) framework for unsupervised learning.

3.2. Progressive Stage­wise Learning

In this sub-section, we explain how our progressive

stage-wise learning (PSL) works. Suppose we have a learn-

ing target G, which can be an unsupervised contrastive

learning task or any pretext task in the self-supervised learn-

ing setting. We use a neural network with a block-based ar-

chitecture (designed by stacking blocks vertically, such as

ResNet [27] and Inception [43]). What we do can be sum-

marized into the following steps:

Multi-level Task Design Firstly, for the given learning

target G, we design a series of learning tasks that share a

similar form (e.g. the same pretext task) but with different

task complexity. We sort these tasks according to their com-

plexity: {G1,G2,G3}, where G3 is more complex than G2,

and so is G2 compared to G1 . We use L1,L2,L3 to repre-

sent the corresponding loss function. Instead of focusing on

the hardest task (e.g., G3) at the very beginning, we enable

easier learning targets in the early learning stage. By doing

so, we can train the neural network in a progressive learning

manner, which turns out to be more efficient in many differ-

ent unsupervised settings. We introduce our multi-level task

design for specific tasks in Sec 3.3.

Stage-wise Network Partition In this step, we define dif-

ferent learning stages, which are basically determined by

the layer depth. We take ResNet-50 for an example. Based

on the resolution of the feature map, we divide all layers

into five large block: B1, B2, B3, B4 and B5, where B1

represents the layer conv1, B2 consists of all layers named

conv2 x, and so on1. Further, we group every three con-

secutive blocks into one learning stage: Stage S1 consists of

B1, B2 and B3; Stage S2 consists of B2, B3 and B4; Stage

S3 consists of B3, B4 and B5. By doing so, we get three

stages (S1, S2 and S3), representing lower, mid and upper

learning stages of the network. Notice that there are over-

lappings between each two learning stages, which is dis-

cussed more in Sec 3.4.

Progressive Network Learning After we get a series of

multi-level tasks and a proper stage partition, we begin the

training process. As shown in Fig 2, the traditional end-

to-end training protocol, forces the whole neural network

to learn the final target directly. Instead, we train the neural

network progressively in a stage-wise manner. More specif-

ically, we set a different learning target for each stage, fol-

lowing the principle of easy-to-hard. We force lower layers

of the network (e.g., layers in S1) to learn low-level fea-

tures by solving easier tasks (e.g., G1). As the lower part

of the network learns a good feature representation for the

easy task, we increase the task complexity for the mid and

upper stages by targeting at the task G2 and G3. By doing

so, we naturally guide the network to gain better feature

representation ability as the layer goes deeper. The benefits

are three-fold. Firstly, the lower stage only has to focus on

the easy task, which leads to easier training. Secondly, the

upper stage can take advantage of the lower stages through

weight sharing when dealing with a harder task. Thirdly,

the backward propagation path is much shorter within each

learning stage compared to end to end training. With-

out gradient error accumulation, the overall training can be

much more efficient and effective.

More details of our framework are shown in Fig 2.

The training targets {G1,G2,G3} are assigned to stages

1Here, all layers within the same block shares the same feature map

resoltuion. The layer name conv1 and conv2 x are inherited from the

notation of ResNet [27].
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Figure 2. We present the detail of the proposed Stage-wise Progressive Learning framework. In the right is the end-to-end learning scheme

while we present PSL in the middle. g and {gi}
3

i=1 are projection heads, mapping the intermediate representation to the target feature

space. After the training is completed, we throw away the projection heads and use the backbone network for downstream tasks.

{S1, S2, S3} respectively. Notice that different from end-

to-end training, backward gradients only flow back to layers

in the same stage.

3.3. Multi­level Task Design Cases

In this sub-section, we introduce our multi-level task

design for several different unsupervised/self-supervised

learning tasks.

3.3.1 Multi-level Jigsaw Puzzle

The jigsaw puzzle task [38] was first introduced to learn vi-

sual representations from unlabeled data, which turns out to

be very useful in many downstream tasks, such as detection

and classification. To create a jigsaw puzzle, a 225 × 225
pixel window is randomly cropped from an image. Then,

the whole window is divided into a 3 × 3 grid, leading to

nine 75×75 pixel cells. For each cell, a 64×64 pixel tile is

picked randomly. Then an index permutation is sampled

(e.g., {1, 2, 3, 4, 5, 6, 7, 8, 9} → {3, 5, 7, 8, 4, 6, 9, 2, 1})

from a pre-defined permutation set C. The obtained 9 tiles

are reordered according to the permutation. Finally, the re-

ordered tiles of the puzzle are stacked along the channels

and fed to the neural network to predict the permutation,

which is usually a classification task. There are several fac-

tors that influence the complexity of the jigsaw puzzle. Ac-

cording to [38], the permutation set C influences the jigsaw

task from two aspects: the set cardinality of C and the ele-

ment similarity of C. Generally, the difficulty of the jigsaw

task increases as the set cardinality increases or the element

similarity decreases. Under the original task setting, there

are 9! = 362880 different permutations in total for every 9

tiles. Therefore, it is nearly impossible to include all permu-

tations in the permutation set. Previous methods [38, 6] usu-

ally define a permutation set with a fixed size (e.g., 1000) in

advance.

Task Set† Cardinality Hamming

G1 C1 500 ∼8.0

G2 C2 1000 ∼8.0

G3 C3 2000 ∼8.0

Table 1. Multi-level task design for jigsaw puzzle. Set† denotes

the permutation set.

In this work, we design multi-level jigsaw puzzle tasks

by changing cardinality of C. As shown in Table 1, we gen-

erate three permutation sets C1, C2, C3 with cardinality 500,

1000, and 2000. Notice that C1 ⊆ C2 ⊆ C3. We keep the av-

erage hamming distance of each permutation set around 8.0

so that the element similarity within each set stays in the

same level. The task complexity increases as permutation

gets bigger.

In addition to the change of cardinality of permutation

sets, there are other methods to control the task complexity.

For example, one can increase or decrease the size of the

grid (e.g. from 3 × 3 to 2 × 2 and 4 × 4). However, the

resulting difficulty gap between adjacent tasks is too larger

under our multi-level jigsaw puzzle design. [23] reported

that increasing the number of patches (i.e. from 9 to 16)

does not necessarily result in a higher quality representa-

tion. Therefore, we do not adopt this scheme in this work.

3.3.2 Multi-level Image Rotation

The Image rotation task was firstly designed in self-

supervised learning [21]. Image rotation can be consid-

ered as one of the image geometric transformations, which

is very easy to perform. The core idea for this task is to

use the neural network to estimate geometric transforma-

tion (i.e., the angle of rotation in this case). A common

practice is to define the set of geometric transformation R
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Task Set† Cardinality Angle Base

G1 R1 2 180◦

G2 R2 4 90◦

G3 R3 8 45◦

Table 2. Multi-level task design for image rotation. Set† denotes

the rotation transformation set.

Task Set† scheme

G1 T1 random crop

G2 T2 crop+color distortion

G3 T3 crop+color distortion+filtering

Table 3. Multi-level task design for contrastive learning. Set† de-

notes the transformation set.

as all the image rotations of 90 degrees (e.g., 2d image

rotations by 0, 9, 180 and 270 degrees). Here, we use

the size of transformation set R to control the task diffi-

culty. As shown in Table 2, we defined three set of geo-

metric transformations as all image rotations of 180/90/45

degree, with 2/4/8 operations within each set respectively.

For example, R1 = {0◦, 180◦}, R2 = R1 ∪ {90◦, 270◦}
and R3 = R2 ∪ {45◦, 135◦, 225◦, 315◦}. Notice that,

R1 ⊆ R2 ⊆ R3, which indicates an increase in task com-

plexity.

3.3.3 Multi-level Contrastive Learning

Contrastive learning has recently become a dominant ap-

proach in the area of self-supervised learning [10, 26, 11],.

Typically, contrastive learning approaches learn represen-

tations by contrasting positive pairs against negative pairs.

For example, SimCLR [10] makes use of multiple data aug-

mentation operations to generate positive data pairs. Then

a based encoder network is trained to maximize the simi-

larity of positive data pairs meanwhile minimize the sim-

ilarity of negative data pairs using a contrastive loss. We

design our multi-level contrastive tasks based on the set-

ting of SimCLR [10]. We control the task difficulty by

manipulating the augmentation set T . For the low-level

task (e.g., G1), we use a simple augmentation scheme and

we increase the complexity of the augmentation scheme for

high-level tasks (e.g., G3). Three kinds of augmentation are

adopted: i) geometric transformation of data, such as crop-

ping and resizing; ii) appearance transformation, such as

color distortion and iii) other transformation, such as Gaus-

sian blur and Sobel Filtering. As shown in Table 3, we

set T1 = {Random Crop} as the first augmentation set for

task G1 and we add color distortion into the augmentation

set T2 for task G2. Other transformation operations are in-

cluded in the augmentation set T3 for task G3. Notice that

T1 ⊆ T2 ⊆ T3.

Algorithm 1 Progressive Stage-wise Learning Algorithm.

Input: Learning Target G, Learning Loss L, backbone Net-

work f , projection head g1, g2 and g3, batch size N

1: G → {G1,G2,G3} ⊲ Multi-level Task Design

2: L → {L1,L2,L3}
3: f → {S1, S2, S3} ⊲ Stage-wise Network Partition

4: for i ∈ {1, 2, 3} do ⊲ Stage-wise Learning

5: for sampled minibatch {xk}
N
k=1

do

6: Data pre-processing for task Gi

7: hk = f(xk|Si) ⊲ Forward propagation

8: zk = gi(hk)
9: Computer gradient with respect to Li(xk, zk)

10: Update layers within Si

11: Update gi
12: end for

13: end for

14: Return f , and discard g1, g2 and g3

3.4. Stage­wise Network Training

As explained in section 3.2, three learning tasks

{G1,G2,G3} are obtained, corresponding to three losses

{L1,L2,L3} and stages S1, S2, S3. Unlike traditional end-

to-end learning, we adopt a local learning strategy. To be

specific, the gradient of each learning stage does not flow

back to other stages. For example, gradients generated by

L2 only influence layers within S2 (i.e.,B2, B3 and B4) dur-

ing the second learning stage. This allow the corresponding

layers focus on the current learning target, which turns out

to be good for overall training. Our learning algorithm is

summarized in Algorithm 1. After we finish multi-level task

design and stage-wise network partition, we start progres-

sive stage-wise learning. There are three learning stages in

total. During the i-th stage, we do data pre-processing first,

which is determined by the specific learning task Gi. Then

we do forward propagation with hk = f(xk|Si) represent-

ing the output feature of stage Si. Then, hk is sent to a

decoder gi for further processing before applying the stage

loss Li. Only layers within Si and the decoder gi are up-

dated. After the training, all decoders will be removed and

no extra computation cost is introduced in f .

Notice that there are overlappings between each stage.

Another stage partition approach is to cut the encoder into

several non-overlapping parts and train the whole network

in a greedy layer-wise manner like GIM [36]. In the case

of GIM, upper layers/stages cannot receive gradient feed-

back from lower layers/stages. However, as the difficulty of

the multi-level task increases, the quality of the intermedi-

ate representation of lower stages has a large influence on

the final performance of the upper stages. Therefore, it is

necessary for stages to have overlapping layers, which play

a role in connecting and communicating between stages.
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4. Experiment

In this section, we conduct experiments to validate the

effectiveness of the proposed Progressive Stage-wise Learn-

ing (PSL) framework. Firstly, we apply PSL on several dif-

ferent kinds of unsupervised/self-supervised learning tasks

to evaluate the quality of the learned representation on Im-

ageNet [12]. Then, we report experiment results of down-

stream tasks, i.e., semi-supervised and transfer learning.

4.1. Implementation Details

Generally, we conduct contrast experiments on three dif-

ferent unsupervised/self-supervised learning methods. The

basic implementation details for each task as follows:

Jigsaw puzzle. We perform multi-level task design G →
{G1,G2,G3} following Sec 3.3.1. Correspondingly, we use

three different cardinality {500, 1000, 2000} for the permu-

tation set {C1, C2, C3}, with C1 ⊆ C2 ⊆ C3, representing an

increase in task complexity. We use ResNet-50 [27] as our

backbone network and do PSL training on 8-gpus. For each

input image, we resize the shorter side to resolution 256,

randomly crop a 225x225 image and apply horizontal flip

with 50% probability. For the training, we use mini-batch

size of 256, initial learning rate of 0.01 with the learning

rate dropped by a factor of 10. Following [23], we use mo-

mentum of 0.9, weight decay 1e-4 with no decay for the bias

parameters. For each training stage of PSL, we train for 60

epochs and use the learning rate schedule of 20/20/10/10.

Image rotation. We perform multi-level task design

G → {G1,G2,G3} following Sec 3.3.2. Correspondingly,

we set the rotation transformation set R1 ={0◦, 180◦},

R2 ={(90× i)◦|0 ≤ i ≤ 3} and R3 ={(45× i)◦|0 ≤ i ≤
7}. Notice that R1 ⊆ R2 ⊆ R3, representing an increase

in task complexity. We use RevNet50 [22] as our backbone

network and do PSL training on 8-gpus2. For each input

image, we resize the shorter side to 256 and do the rota-

tion transformation according to the transformation set. We

perform a center crop on the rotated image remaining the

resolution and then randomly crop 224x224 image. For the

training, we use mini-batch size of 256, initial learning rate

of 0.01 with the learning rate dropped by a factor of 10. For

each training stage of PSL, we train for 60 epochs and use

the learning rate schedule of 20/20/10/10.

Contrastive learning. We perform multi-level task de-

sign G → {G1,G2,G3} following Sec 3.3.3. Correspond-

ingly, we set the transformation set as: T1 ={Random

crop}, T2 = T1∪ {Color Distortion} and T3 = T2∪
{Gaussian Blur, Sobel Filtering}. Notice that T1 ⊆

2Compared with ResNet [27], RevNet [22] is more suitable in image

rotation tasks [31]. We don’t use RevNet50w4×, which is reported with

better performance, because scaling up model complexity is not discussed

in this paper.

Method Arch # Param(M) Top 1

Colorization [49] R50 24 39.6

BigBiGAN [15] R50 24 56.6

LA [51] R50 24 58.8

NPID++ [37] R50 24 59.0

MoCo [26] R50 24 60.6

PIRL [37] R50 24 63.6

CPC v2 [28] R50 24 63.8

PCL [34] R50 24 65.9

SwAV [9] R50 24 75.3

Jigsaw [38] R50 24 45.7

Jigsaw +PSL R50 24 50.9

Rotation [21] Rv50w4× 86 47.3

Rotation* Rv50 24 48.6

Rotation+PSL Rv50 24 53.3

SimCLR [10] R50 24 61.9

SimCLR+PSL R50 24 64.3

MoCov2 [11] R50 24 67.5

MoCov2+PSL R50 24 68.1

Table 4. ImageNet accuracy of linear classifiers trained on self-

supervised learned representations. All are reported as unsuper-

vised pre-training on ImageNet, followed by supervised linear

classification and evaluated on the ImageNet validation set. Note

that Rotation [21] uses R2 as the transformation set while Ro-

tation* uses R3 as the transformation set. SimCLR results are

obtained by 200 training epochs with batchsize 256.

T2 ⊆ T3, representing an increase in task complexity.

We use ResNet-50 as our backbone network and a 2-layer

MLP projection head to project the representation to a

128-dimensional space. Limited by computing resources,

we use mini-batch size of 256 and train for 200 epochs

(60/70/70 epochs for each learning stage) on 8-gpus. No-

tice that the max performance is not obtained in 200 epochs

and 256 batch-size3, reasonable results and fair compari-

son can still be achieved. Based on SimCLR [10], We use

NT-Xent loss, learned in LARS optimizer with learnig rate

of 0.3 with a cosine decay schedule without restart. Simi-

larly, we apply PSL on the data-augmentation part of Mo-

Cov2 [11] and get an improvement of 0.6%.

4.2. Linear Classification

In this subsection, we verify our method by linear clas-

sification on ImageNet [12]. Following a common pro-

tocol, We conduct contrast experiments on three different

unsupervised/self-supervised learning methods. Firstly, we

perform unsupervised pre-training on ImageNet. Then, we

train a supervised linear classifier (a fully-connect layer fol-

lowed by softmax). Table 4 summaries the single crop

31000 epochs with batch-size 4096 is reported with the best perfor-

mance in SimCLR [10].
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Method Arch B1 B2 B3 B4 B5

Supervised R50 11.6 33.3 48.7 67.9 75.5

Jigsaw R50 12.4 28.0 39.9 45.7 34.2

SL R50 10.8 27.2 39.6 45.5 34.7

PSL R50 10.9 27.0 43.2 50.9 38.5

PSLf R50 10.8 27.3 43.1 51.0 38.2

Table 5. Jigsaw Puzzle task of ResNet-50 top-1 centrer-crop

accuracy for linear classification on the ImageNet dataset. Here

B1 ∼ B5 represent the blocks defined in Sec 3.2. The supervised

results are presented for reference. Jigsaw is end-to-end trained

with the task G3. SL is short for stage-wise learning. In SL, we do

stage-wise training with the jiasaw puzzle task G3 as the learning

target of each stage. PSLf is a full-gradient version of PSL. More

discussion can be found in ablation in Sec 4.5.

Method Arch B1 B2 B3 B4 B5

Supervised Rv50 11.7 32.6 47.8 66.6 74.3

Rotation Rv50 10.9 30.1 40.2 48.6 46.5

SL Rv50 11.1 29.1 41.5 50.7 47.9

PSL Rv50 11.3 30.8 42.9 53.3 49.5

PSLf R50 10.5 31.1 42.1 52.9 49.7

Table 6. Image rotation task of RevNet-50 top-1 centrer-crop ac-

curacy for linear classification on the ImageNet dataset. Here

B1 ∼ B5 represent the block defined in Sec 3.2. The supervised

results are presented for reference. Rotation is end-to-end trained

with the task G3. SL is short for stage-wise learning. In SL, we do

stage-wise training with the image rotation task G3 as the learning

target of each stage. PSLf is a full-gradient version of PSL. More

discussion can be found in ablation in Sec 4.5.

top-1 classification accuracy on the ImageNet validation

set, comparing our results with previous approaches [49,

15, 51, 37, 26, 28, 34, 11, 9] as well as three baseline

method [38, 21, 10]. Compared with the vanilla jigsaw

puzzle task, PSL training improves the results by 5.2%

(45.7%→ 50.9%). Compared with the vanilla image ro-

tation task, PSL training improves the results by 4.7%

(48.6%→ 53.3%). As for the SimCLR contrastive learn-

ing, PSL training improves the results by 2.4% (61.9% →
64.3%), under the setting of 200 training epoch and batch-

size 256. These results indicate the PSL training can effec-

tively improve the unsupervised learning quality. Specifi-

cally, we extract image features from five different layers

(i.e., the output of B1, B2, B3, B4 and B5) after unsuper-

vised pre-training and train linear classifiers on these fixed

representations. For the jigsaw puzzle task, detailed results

are shown in Table 5. Results of the image rotation task are

presented in Table 6.

Task 1% labels 10% labels

Supervised 48.4 80.4

Jigsaw [38] 45.4 79.6

Jigsaw+PSL 48.7 83.5

Rotation [21] 52.1 82.5

Rotation+PSL 54.8 83.7

Table 7. Semi-supervised learning on ImageNet. We use

ResNet-50 as our backbone networks and report single-crop top-

5 accuracy on the ImageNet validation set. All models are self-

supervised trained on ImageNet and finetuned on 1% and 10% of

the ImageNet training data, following [46, 37]. The supervised

results are presented for reference.

4.3. Semi­supervised Learning

Following the experiment setup of [46, 37], we perform

semi-supervised image classification on ImageNet to eval-

uate the effectiveness of the pre-trained network in data-

efficient settings. We do a class-balanced data selection to

obtain 1% and 10% of the ImageNet training data and fine-

tuned the whole pre-trained network. Table 7 reports the

top-5 accuracy of the resulting models on the ImageNet val-

idation set. By contrast experiments on two pretext tasks,

the proposed PSL training method can improve the top-5

accuracy by a large margin. In the jigsaw puzzle task, PSL

brings an improvement of 3.3% and 3.9% for 1% and 10%

labeled data respectively. For the image rotation task, PSL

improves the performance by 2.7% and 1.2% respectively.

4.4. Transfer Learning

To further investigate the generalization ability of our

method, we conduct transfer learning experiments includ-

ing object detection on PASCAL VOC [17] and image clas-

sification results on three datasets. In this subsection, we

use ResNet-50 as our backbone network both jigsaw puzzle

and image roration tasks. Results are reported in Table 8

and Table 9.

4.4.1 Object Detection

Following previous works [23, 37], we perform object de-

tection experiments on the PASCAL VOC dataset [17] us-

ing VOC07+12 training split. We use Faster RCNN [41] ob-

ject detector and ResNet-50 C4 [27] backbone. We follow

the same training schedule as [23, 37] to finetune all models

on VOC with BatchNorm parameters fixed during finetun-

ing. We report our performance of {AP50, AP75, ∆AP75}
in Table 8. Compared with the vanilla pretext task, our PSL

training scheme can substantially improve the three indi-

cators, representing an enhancement of the learned feature

representation. In the jigsaw puzzle pretext task, we get an

improvement of {2.2, 3.8, 2.4} respectively, while in the
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Task
Object Detection

APall AP50 AP75 ∆AP75

Supervised 52.6 81.1 57.4 0.0

Jigsaw [38] 48.9 75.1 52.9 -4.5

Jigsaw+PSL 51.1 78.9 55.3 -2.1

Rotation [21] 46.3 72.5 49.3 -8.1

Rotation+PSL 47.6 74.6 51.1 -6.3

Table 8. Object detection results of transfer learning on PASCAL

VOC dataset. We report AP on the test set after finetuning Faster

R-CNN modelswith a ResNet-50 backbone, that are unsupervised

pre-trained on ImageNet. The supervised results are presented for

reference.

Task
Transfer Dataset

PASCAL Places iNat18

Supervised 87.5 51.5 45.4

Jigsaw [38] 64.5 41.2 21.3

Jigsaw+PSL 67.2 44.7 24.1

Rotation [21] 63.5 41.9 23.0

Rotation+PSL 65.9 43.0 25.9

Table 9. Image classification results of transfer learning on PAS-

CAL [17], Places [50] and iNat18 [45]. We use linear classifiers

on image representations obtained by self-supervised learners that

are pre-trained on ImageNet. We report mAP on the PASCAL

dataset and top-1 accuracy on Places and iNat18. We compare re-

sults on the jigsaw puzzle and image rotation pretext tasks with the

proposed PSL. The supervised results are presented for reference.

image rotation pretext task, PSL brings an improvement of

{1.3, 2.1, 1.8}.

4.4.2 Image Classification on other datasets

Next, we conduct transfer learning experiments on the im-

age classification task. We use models pre-trained on Ima-

geNet and assess the quality of learned features by training

linear classifiers on fixed image representations. Following

the setting of [23], we evaluate feature representations ex-

tracted from five intermediate blocks of the pre-trained net-

work, and report the best classification results in Table 9.

We report transfer learning performance on PASCAL [17],

Places [50] and iNat18 [45]. In PASCAL, our PSL training

improves the jigsaw puzzle task by 2.7%, and image rota-

tion task by 2.4%. In Places, the PSL training improves

the performance by 3.5% and 1.1% while in iNat18, the

improvement is 2.8% and 2.9% for these two tasks respec-

tively.

4.5. Analysis

Ablation: Progressive Mechanism. Here we discuss the

effectiveness of the progressive mechanism. We design

comparison experiments in ImageNet linear classification

to compare stage-wise learning w/o progressive learning,

namely PSL vs. SL. For SL, we use the same learning

task (G3) in each learning stage, which means the network

is trained to learn the hardest task for each learning stage.

For PSL, the task complexity increases for learning stages

S1, S2 and S3. We present PSL vs. SL in Table 5 and

Table 6. For both tasks, PSL leads to better results than SL

without the progressive mechanism.

Ablation: Gradient Association. As discussed in Sec-

tion 3.4, we adopt a stage-wise training scheme with limited

a gradient association in each learning stage. Specifically,

the gradient of L2 will not flow back to B1 and the gradi-

ent of L3 will not influence B1 and B2. We implement the

full gradient version of PSL where in each learning stage,

all layers are updated without gradient restriction. We show

the linear classification results on ImageNet dataset as PSLf

in Table 5 and Table 2. From the results, we conclude that

full gradient training does not necessarily bring an improve-

ment in the unsupervised training performance. Therefore,

we set gradient restriction in each learning stage, which will

also reduce the computation cost during training.

Local Training. We do not adopt a greedy block-wise

learning scheme like [36]. Instead, we enhance stage-wise

the connection by enabling graident flow between stages. A

similar approach is adopted in LoCo [48], where gradient

connections are enabled in adjacent blocks. In PSL, block

connections are further enhanced (e.g., learning stage S3

have impact on B3, which is also included in learning stage

S1). By comparing PSL and PSLf in Table 5 and 6, we

show that this design helps enhance the learning quality of

various unsupervised tasks.

5. Conclusion

In this work, we present a Progressive Stage-wise Learn-

ing (PSL) framework for unsupervised/self-supervised

learning. Through multi-level task design and progressive

stage-wise training, PSL improves many mainstream unsu-

pervised methods. We provide experiments in three differ-

ent tasks (i.e., jigsaw puzzle, image rotation and contrastive

learning) in this paper and validate the effectiveness of PSL.

Our future work involves exploring PSL on other tasks and

searching for the optimal architecture for PSL framework.

We hope PSL can be a universal unsupervised training ap-

proach in enhancing the learned feature representation.
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