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Abstract

We study the query-based attack against image retrieval

to evaluate its robustness against adversarial examples un-

der the black-box setting, where the adversary only has

query access to the top-k ranked unlabeled images from

the database. Compared with query attacks in image clas-

sification, which produce adversaries according to the re-

turned labels or confidence score, the challenge becomes

even more prominent due to the difficulty in quantifying the

attack effectiveness on the partial retrieved list. In this pa-

per, we make the first attempt in Query-based Attack against

Image Retrieval (QAIR), to completely subvert the top-k re-

trieval results. Specifically, a new relevance-based loss is

designed to quantify the attack effects by measuring the set

similarity on the top-k retrieval results before and after at-

tacks and guide the gradient optimization. To further boost

the attack efficiency, a recursive model stealing method is

proposed to acquire transferable priors on the target model

and generate the prior-guided gradients. Comprehensive

experiments show that the proposed attack achieves a high

attack success rate with few queries against the image re-

trieval systems under the black-box setting. The attack eval-

uations on the real-world visual search engine show that it

successfully deceives a commercial system such as Bing Vi-

sual Search with 98% attack success rate by only 33 queries

on average.

1. Introduction
Despite of its impressive performance in many tasks

such as image classification [17], object detection [7] and

image retrieval (IR) [37], deep neural network (DNN) has

been shown to be vulnerable to adversarial examples that

can trigger the misbehavior with human-imperceptible per-

turbations [14, 10, 13]. Such vulnerability has raised great

concerns about the robustness and real-world deployment of

DNNs for image retrieval [24, 39] and object detection [7],
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Figure 1. (a) (Left)Taxonomy of adversarial attacks. Different

from existing attacks for IR, our attack is applicable to real-world

scenarios since it only needs query access to the target model.

(Right) The output of image classification(Cls) is a label or confi-

dence score while it is a list of unlabeled images in IR.

(b) Demonstration of the query-based black-box attack on IR.

Given a target model, the attackers use queries to update and gen-

erate adversarial perturbations.

et al.. For example, in digital right management, the origi-

nal graphic designs are protected by checking if there exists

a same design in the top-k similar ones retrieved from the

whole graphic design database. By adding adversarial per-

turbations on protected designs, attackers can deceive the

target IR system into retrieving some irrelevant images for

evading the censorship of professional monitors. There-

fore, it is crucial to develop a practical robustness evalua-

tion technology to explore the vulnerability of IR systems

against adversarial attacks, and then facilitate the develop-

ment of the corresponding countermeasures.

A general idea of adversarial attack is to generate ad-

versarial examples with human-imperceptible perturbations

along the gradient direction by maximizing a certain loss

function, e.g., a classification loss [14, 11]. However, as

shown in Fig. 1, the IR system produces a list of images

for a query input. This makes it hard to define the objective
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function for indicating the attack effectiveness only with the

retrieved list. Under this circumstance, the gradients can

hardly be estimated for deriving effective attacks. Though

there exist some decision-based methods [3, 5] in attacking

classification models which only rely on the final decision

to indicate whether the attack succeeds, they usually require

a significant attack cost by a tremendous number of queries

to cross the decision boundary via greedy search [10].

Furthermore, in adversarial attacks, the gradients for

guiding the attack process are usually calculated based on

the knowledge of the target model, e.g., the model struc-

ture and parameters. Existing studies on adversarial attacks

against IR systems mainly focus on the white-box attacks in

which attackers are assumed to have complete knowledge

about the target model [41, 24, 36, 33], so the gradients can

be directly acquired. However, the underlying white-box

assumption does not hold in reality. Some studies try to

use an approximate gradient instead for crafting adversarial

examples [27, 36]. The approximate gradient could be ei-

ther the gradient of a surrogate model (a.k.a. transfer-based

attacks) or numerically estimated by methods (a.k.a. query-

based attacks) such as the zero-order optimization [6]. The

transfer-based methods attack the target model by leverag-

ing adversarial examples generated against a white-box sub-

stitute model [36, 24], requiring training data that are usu-

ally protected. Besides, their attack success rate is still un-

satisfactory due to the lack of adaptation procedure when

the generated adversarial examples fail to attack the target

model [10]. The query-based attacks produce the gradient

with methods such as finite difference [6, 2], random gradi-

ent estimation [27]. However, they are not efficient enough

due to the lack of knowledge about the target model.

To address the aforementioned challenges, we propose

the first attempt on practical Query-efficient Attack against

Image Retrieval (QAIR) under the black-box setting. First

of all, we formulate the problem of black-box attacks on IR

systems, and propose a new relevance-based loss to quan-

tify the attack effects on target models with probabilistic in-

terpretation. In this way, the structural output of IR systems

can help to guide the gradient estimation during attacks. Be-

sides, considering the fact that retrieved images are ranked

based on similarities with the input image, which can gen-

erate plenty of labeled triplets, a recursive model stealing

method is constructed on the ranking list to acquire transfer-

based priors and generate the prior-guided gradients. Ex-

tensive experiments show that the proposed method can

achieve a high attack success rate against IR systems with

a remarkable Recall@K drop. We also evaluate our attack

efficacy on the real visual search system1, which demon-

strates its practicability in real-world scenarios.

Our main contributions can be summarized as follows:

1https://www.bing.com/visualsearch

• We formulate the problem of black-box attacks against

image retrieval systems, and propose a new relevance-

based loss to quantify the attack effects.

• We develop a recursive model stealing method to ac-

quire transfer-based priors of target model for boosting

the query-attack efficiency.

• We demonstrate the efficacy of our attack through ex-

tensive experiments on simulated environments and

real-world commercial systems.

2. Related Work

In this section, we briefly introduce image retrieval and

review existing adversarial attacks.

2.1. Image Retrieval

Image retrieval is a popular topic in computer vision

and has been widely used in commercial systems such as

Google Image Searching2, Bing Visual Search1, etc. [24].

A deep metric learning based image retrieval system usually

consists of a metric learning model (a.k.a image retrieval

model) and a database (known as gallery) [37]. Given a

query image, the metric learning model will extract and

compare its feature with images in the gallery, then retrieve

related ones based on their similarities with the query.

The metric learning model can be different in terms of

training strategies. For example, contrastive loss [16] is

proposed to make representations of samples from positive

pairs to be closer while those from negative pairs to be far

apart. Some researchers claim that pair-wise metric learning

often generates a large amount of pair-wise samples, which

are highly redundant. Training with random sampling may

significantly degrade the model capability and also slow the

convergence. Thus, hard mining strategy [32] and lifted

structure loss [28] are proposed. Recently, multi-similarity

loss [37] is proposed to establish a general pair weighting

framework to formulate deep metric learning into a unified

view of pair weighting and has achieved a state-of-the-art

performance.

2.2. Adversarial Attack

Adversarial examples are maliciously crafted by adding

human-imperceptible perturbations that trigger DNNs to

misbehave [14]. The attacks for generating adversar-

ial examples can be summarized into white-box [14, 26],

transfer-based [11] and query-based attacks [3, 5] in terms

of the information that attackers rely on [11]. The gradient

calculation also differs a lot among these kinds of attacks.

White-box. Under the white-box setting, attackers have

full access to the target model and they can directly acquire

the true gradient of the loss w.r.t. the input. For instance,

2https://images.google.com/
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Opposite Direction Feature Attack (ODFA) [40] gener-

ates adversarial examples by querying the target model’s

parameters and pushing away the feature of adversarial

query in the opposite direction of their initial counterparts.

To generate image-agnostic universal adversarial perturba-

tions (UAP), Li et al. [24] try to optimize the traditional

triplet loss inversely against metric learning on feature em-

beddings. However, the underlying white-box assumption

usually does not hold in real-world scenarios.

Transfer-based. Transfer-based attacks do not rely on

model information but need information about the training

data to train a fully observable substitute model [29, 15].

For instance, DeepMisRanking (DeepMisR) [1] deceives

the target models based on the transferability of adversar-

ial examples generated against the substitute model by a

white-box attack. But the training data may be unavailable

in real applications. Though some work [42, 22] propose

to steal model in a data-free manner, e.g., producing inputs

by generative models, this issue needs to be further inves-

tigated in image retrieval tasks. Besides, the performance

of transfer-based attacks is limited due to the lack of adjust-

ment when the gradient of the surrogate model points to a

non-adversarial region of the target model [10].

Query-based. The query-based attack is more practi-

cal since the adversary in reality usually only has query ac-

cess to the output of the target model. This kind of attack

has been widely studied in the task of image classification

and can be primarily divided into score-based attacks and

decision-based attacks [3, 11].

Under the score-based setting, attackers have access to

the confidence score of the prediction, which can be used

to guide the attack process [6, 27]. Most score-based at-

tacks usually estimate the gradient by zero-order optimiza-

tion methods through query access to the output of the tar-

get model [10]. Specifically, a perturbation is firstly initial-

ized and added to the input image. The output score will

guide the algorithm to find out the optimization direction of

the next step. For instance, Zero-Order Optimization Based

Black-box Attack (Zoo) [6] estimates the gradient at each

coordinate by using the symmetric difference quotient. To

improve the query efficiency, a random gradient-free (RGF)

method [27] is proposed to get an approximated gradient by

sampling random vectors independently from a distribution.

Different from score-based ones, attacks under decision-

based setting are more challenging since only the final de-

cision is provided for indicating whether the attacks suc-

ceed. Existing decision-based attacks include Boundary At-

tack (BA) [3], HopSkipJumpAttack (HSJA) [5], etc. They

usually treat an irrelevant or target image as the start point

and decrease the perturbation gradually to make the adver-

sarial examples visually similar to input image [3, 5, 9].

However, most of these attacks are proposed for image clas-

sification tasks, and to the best of our knowledge, there still

exists no query-based attacks for image retrieval.

3. Methodology

In this section, we first formulate the problem of at-

tacking image retrieval models under the black-box setting

and then elaborate our proposed attack. The whole attack

pipeline is shown in Alg. 1, given an input image x, we first

conduct a white-box attack on a substitute model s which

is acquired with a recursive model stealing method before-

hand (shown in Fig. 3), to provide the transfer-based pri-

ors for the following query-based attack. Then, we quantify

the attack effects with a delicately designed relevance-based

loss, and do gradient estimation following the basic idea of

the score-based methods, aiming to provide the proper di-

rection for the attack. Finally, we repeat the aforementioned

steps till the generated adversarial image x̂ can deceive the

target model successfully.

3.1. Problem Formulation

As shown in Fig. 1, given a query image x, the image

retrieval system with metric learning model f and gallery

G returns a list of images

RList
n(x, f) = {x1, x2, ..., xi, ..., xn|xi ∈ G}, (1)

ordered by their similarities to x, where n is the number

of returned images and f projects x to the feature space

as f(x). In other words, Df (x, xi) ≤ Df (x, xj), s.t. i <
j where Df (x, xi) = ‖f(x) − f(xi)‖

2
2 is the metric that

measures the feature distance between two images.

In this paper, the adversary aims to fool the target model

into outputting a list of images whose top-k has no overlap

with original outputs under the assumption that the target

model behaves well, i.e., the returned images are well orga-

nized according to the similarities to the input image. Then,

the attack goal can be formalized as

RList
K(x, f)∩RListK(x+δ, f) = Ø s.t. ||δ||

p
≤ ǫ, (2)

where K is the number of top-ranked images to be consid-

ered and ǫ is the perturbation budget. p determines the kind

of tensor norm (ℓ∞ by default) to measure the perturbation.

The above goal can be solved by borrowing the idea of

decision-based attacks proposed in the image classification

task [5], in which only the final decision (i.e., the predicted

top label) instead of class probabilities is available to attack-

ers. However, as shown in Fig. 2(left), the loss landscape is

discontinuous, it hence requires combinatorial optimization

or exhaustive search algorithms with a tremendous number

of queries to perform a successful attack [8].

3.2. Objective Function

To solve the above problems, we delicately design an

objective function to quantify the attack effects on the re-

trieval model to guide the generation of adversarial images.
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Algorithm 1 The query-based attack for image retrieval

Require: Target model f ; input image x; stolen model s;

number of iterations for momentum Ni; max number

of queries T ; max perturbation ǫ; step size σ; learning

rate α; number of considered images K;

1: Initialize x̂← x,Lprev ← 1.0, y ← RListK(x, f)
2: for t← 1 to T/2 do

3: {Calculate basis u with stolen model s} ⊲ Eq. 11

4: Initialize x̂t ← x̂, u← 0
5: for i← 1 to Ni do

6: u = β · u+∇x̂t(Lw(x̂
t, y))

7: x̂t = CLIPx,ǫ(x̂
t + α · sign(u))

8: {Query attack with the resulted basis u} ⊲ Eq. 9

9: ĝ ← L(x̂+σu,y)−L(x̂,y)
σ

· u
10: x̂← CLIPx,ǫ(x̂+ α · sign(ĝ))
11: if L(x̂, y) == Lprev then

12: σ ← 2 · σ
13: Lprev ← L(x̂, y)

14: return adversarial sample x̂

Concretely, denote by P (x̂, y) the probability that the ad-

versarial image x̂ generated from the input x fails to trigger

the target model f to misbehave, and denote by y the true

label of x, i.e., y = RListK(x, f). Then, the objective is

min L(x̂, y) = P (x̂, y), s.t. ||δ||p ≤ ǫ. (3)

To make P (x̂, y) computable, density estimation meth-

ods such as kernel density estimators [30] can be applied.

Since the computation cost is directly related to the number

of samples, we need to sample as few samples as possible

but approximate the distribution of x as accurately as pos-

sible. We leverage the nearest neighbor density estimation

method to approximate P (x̂, y) based on the top-K near-

est neighbors of x obtained by querying the target model.

Then, P (x̂, y) can be approximately rewritten as

P (x̂, y) ≈
K∑

i=1

P (xi)P (x̂, y|xi) =
K∑

i=1

ωi · ϕi, (4)

where ωi = P (xi) denotes the prior sampling probability

and ϕi = P (x̂, y|xi) denotes the conditioned attack failure

probability.

In the typical image retrieval system, xi is related to x
with a specific similarity score. However, this score cannot

be obtained under the black-box setting. The simplest strat-

egy to tackle this problem is to treat each xi equally, i.e.,

∀i ∈ [1,K], ωi = 1/K (denoted as the Count-based Loss).

However, this is not the optimal strategy since it cannot re-

flect the attack effect in a fine-grained manner. Recall that

xi is ranked according to its similarity to x, thus we can

use the ranking information to approximate their relevance.

! Relevance−based) Decision−based . Count−based

!

"

#

Figure 2. Loss (z-axis) landscape visualization of the target re-

trieval model. Compared with perturbations with Gaussian (x-

axis), the loss gets to 0 faster with adversarial perturbations (y-

axis), showing the model’s vulnerability against adversarial ex-

amples. We can find the hard-label problem is relaxed from left

to middle. When relevance is considered, the loss gets to 0 with

smaller perturbations.

Specifically, we refer to the Normalized Discounted Cumu-

lative Gain metric (NDCG) used in classical ranking prob-

lem [21] and define ri as the relevance between xi and x.

The probability P (xi) is defined as:

P (xi) = ωi =
2ri − 1

∑K

i=1(2
ri − 1)

. (5)

With ri = K − i, the probability of the i-th result to be

sampled is a decaying exponential.

ϕi = P (x̂, y|xi) indicates the attack failure probability

of x̂ given xi. It can be obtained from the retrieved results.

If xi ∈ RListK(x̂, f), both x and x̂ are similar to xi and

thus x̂ should be similar to x, which also means the attack

fails. Considering the aforementioned rank-sensitive rele-

vance and supposing that xi ranks at the j-th position in

RListK(x̂, f), ϕi can be denoted as

ϕi =

{

ωj , xi ∈ RList
K(x̂, f) and xi = x̂j

0, xi 6∈ RList
K(x̂, f)

. (6)

Then, the Relevance-based objective function L is

rewritten as

L(x̂, y) =
∑K

i=1
ωi · ϕi, s.t. ‖δ‖p ≤ ǫ. (7)

In this way, the attack effects can be evaluated only based

on RListK(x, f) and RListK(x̂, f) according to Eq. 7. As

shown in Fig. 2, compared to the count-based loss, the at-

tack with relevance-based loss requires a smaller perturba-

tion to reduce the loss to 0.

3.3. Recursive Model Stealing

In adversarial attacks, the gradients for guiding the at-

tack process are usually calculated based on the knowledge

of the target model, which is unavailable under the black-

box setting. Thus, some studies try to use surrogate models

to obtain prior-guided gradients and improve the attack ef-

ficiency [4, 10, 15]. However, the training data of the target

model required for training a surrogate model is usually un-

available. To tackle this problem, we propose to steal the

gallery data of the IR system recursively via query access.
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Specifically, as shown in Fig. 3, queried by a random

image x, the image retrieval system returns a set of re-

trieved images RListn(x, f), from which we select Nc im-

ages evenly for greater diversity. These images again form a

new image set as new queries to find more data. The above

procedure will be repeated for C times to guarantee the di-

versity of collected images. To better obtain the priors for

attacks, the surrogate model should be trained to have a sim-

ilar ranking capacity as the target IR model. Hence, we

query the target model with the collected M images to get

final triplets as the ground-truth for training the surrogate

model s, of which the objective function is defined as
∑

j>i
[Ds(x, xi)−Ds(x, xj) + λ]

+
. (8)

We set n = 1, 000, Nc = 10, C = 3 and λ = 0.05
for all experiments. Thus, we only need 1,111 (summed

by 1+10+100+1,000) queries to steal a model. Besides, the

stolen model is dependent exclusively on the target model.

In addition to the stolen model, the stealing cost is also

shared by all the test samples. For example, the average

query cost for each one is only 1 ≈ 1, 111/1, 000 if the

number of test samples is 1,000.

Our model stealing method is featured with the advan-

tage that it requires no data beforehand. This is quite differ-

ent from model distillation algorithms [24] which is usually

performed based on the same training data with the target

model. It also differs from generative model based meth-

ods [42] , in which the collected data are usually out-of-

distribution from the galleries of the target model. Besides,

the diversity of the generated samples may be limited due

to the problem of mode collapse. In contrast, by querying

target models constantly, we can steal data from the gallery

in a recursive manner and guarantee the performance.

3.4. Attack Optimization with Priors

Since the decision-based problem in Eq. 2 is relaxed

with the proposed relevance-based loss, most of the query-

based attacks proposed in image classification tasks can be

extended to the retrieval tasks. We therefore adopt RGF-

attack [27] as our base framework and define its loss by the

proposed relevance-based loss for the extension to retrieval

systems. The attack process can be summarized into two

parts, i.e., gradient estimation and perturbation optimiza-

tion. Denote ui as the i-th sampled basis vector which is

sampled for q times and ĝ as the final estimated gradient.

Then, gradient estimation and perturbation optimization are

accomplished as follows:

ĝ =
1

q

q
∑

i=1

ĝi, ĝi =
L(x+ σui, y)− L(x, y)

σ
· ui,

x̂ = CLIPx,ǫ(x+ α · sign(ĝ)),

(9)

where σ is the parameter to control the sampling variance

and α is the learning rate. The CLIPx,ǫ operation aims to

…
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Figure 3. The pipeline of our model stealing. First, an arbi-

trary image is put into the target image retrieval (IR) system ( 1©).

The retrieved images are then evenly selected to construct a new

query set, which will be put into the IR system in the next iteration

( 2©, 3©) for more triplets. Finally, The stolen triplets ( 4©) will be

used to train the substitute model s.

make the perturbation bounded in the budget [34]. Besides,

the generated adversarial example is converted to integer

before it is fed into the target model to ensure its validity.

In RGF, the basis initialization is achieved by sampling

random vectors independently from a distribution such as

Gaussian. This can be improved with transferable pri-

ors [15]. For this, we follow the state-of-the art work Learn-

able Black-Box Attack [38], which utilizes the surrogate

model s to obtain the transfer-based priors and guide the

basis selection. Specifically, Momentum Iterative Method

(MIM) [12] is firstly adopted to conduct the white-box at-

tack based on the stolen model. The derived momentum

item u is then used as the basis for the query-based attack.

The loss Lw used for white-box attack is

Lw(x̂, y) = ||s(x̂)−
∑K

i=1
wi · s(xi)||

2
2. (10)

And the optimization procedure for momentum is:

u = β · u+∇x̂(Lw(x̂, y)),

x̂ = CLIPx,ǫ(x̂+ α · sign(u)),
(11)

where u is initialized with 0 and β = 0.9. The above pro-

cedure will be repeated for Ni times.

Note that our QAIR is different from previous transfer-

based attacks against image retrieval that utilize substitute

models for crafting adversarial examples directly. Instead,

QAIR employs the stolen model for obtaining transfer-

based priors and generating prior-guided gradients for query

attack. In this way, adversarial examples can be further rec-

tified with query response until the attack succeeds.

4. Experiments

In this section, we evaluate the proposed attack on var-

ious image retrieval models. More details can be found in

our supplementary material.

4.1. Experimental Settings

Datasets. We evaluate our attack on three public

datasets. Caltech-UCSD Birds-200-2011 (CUB-200) [35]:

3334



0.8246

0.5614

0.0175

0

0.9474

1

CUB-200

In-Shop

SOP

Figure 4. Visualization of the attack procedures (left) and attack results (right). Images in red boxes are generated adversarial examples,

which can fool the target model to return irrelevant images with imperceptible perturbations in the corresponding rows. Scores on the left

are the corresponding loss to their searched results on their right. As more samples in the original sets disappear, the loss decays to 0.

Attacks
CUB-200 SOP In-Shop

1 2 4 8 16 32 AQ ASR 1 10 100 1000 AQ ASR 1 10 20 30 40 50 AQ ASR

Original 0.61 0.73 0.87 0.91 0.98 0.99 0 0 0.724 0.816 0.904 0.960 0 0 0.642 0.868 0.910 0.926 0.938 0.945 0 0

Comparsion with the State-of-the-art Methods

OptAttack [8] 0.08 0.15 0.30 0.49 0.63 0.89 9708 0.04 0.012 0.032 0.744 0.928 7931 0.288 0.004 0.020 0.564 0.680 0.764 0.828 3017 0.948

Sign-Opt [9] 0.11 0.21 0.35 0.57 0.70 0.88 8833 0.00 0.008 0.024 0.696 0.916 6746 0.372 0.014 0.032 0.464 0.560 0.660 0.728 5564 0.492

HSJA [5] 0.13 0.23 0.41 0.47 0.60 0.92 10000 0.00 0 0 0.632 0.880 5888 0.420 0.004 0.024 0.316 0.470 0.564 0.624 5379 0.472

QAIR 0.16 0.23 0.32 0.45 0.56 0.76 93 0.69 0.016 0.064 0.472 0.832 35 0.904 0.008 0.044 0.132 0.256 0.312 0.352 35 0.916

Component Analysis

QAIRC 0.59 0.76 0.83 0.94 0.96 0.97 199 0.01 0.176 0.372 0.724 0.916 113 0.480 0.296 0.556 0.716 0.764 0.800 0.832 147 0.310

QAIRC−I 0.36 0.51 0.60 0.74 0.80 0.92 152 0.32 0.060 0.112 0.572 0.868 60 0.812 0.072 0.164 0.272 0.396 0.476 0.520 65 0.784

QAIRC−S 0.31 0.46 0.52 0.58 0.72 0.85 142 0.37 0.056 0.088 0.532 0.848 51 0.836 0.052 0.124 0.204 0.320 0.404 0.432 50 0.844

QAIRR−S 0.16 0.23 0.32 0.45 0.56 0.76 93 0.69 0.016 0.064 0.472 0.832 35 0.904 0.008 0.044 0.132 0.256 0.312 0.352 35 0.916

Table 1. Comparison with state-of-the-art methods on CUB-200, SOP and In-Shop before (Original) and after attack (others). Smaller

Recall@K, smaller average number of queries (AQ) over both successful and failed attacks as well as higher Attack Success Rate (ASR)

mean stronger attack.

It has 200 classes of birds with 11788 images. The first

100 classes are split out for training and the rest for test-

ing. It is a small but hard dataset for attack since it only

has 100 classes in testing data. Stanford Online Products

(SOP) [28]: It is a large scale dataset in image retrieval with

23k classes of 120k online product images from eBay.com.

It is split into 11,318 classes of 59,551 images for training

and 11,316 classes of 60,502 images for testing. In-Shop

Clothes (In-Shop) [25]: This dataset contains 54,642 im-

ages of 11,735 clothing items from Forever21. It provides

3,997 and 3,985 classes for training (25,882 images) and

testing (28,760 images).

Evaluation metrics. We use the commonly used metric

Recall@K [28] in image retrieval for evaluation. Greater

drop of Recall@K indicates stronger attack. Besides, the

commonly used attack success rate (ASR) metric in adver-

sarial attack community is also employed. We treat the at-

tack as successful when Eq. 2 satisfies, thus ASR can be

evaluated as the percentage of successful attacks. Note that

ASR is designed for evaluating attacks against image re-

trieval under the black-box setting. This is different from

Recall@K where true labels are required.

Implementation details. We adopt the state-of-the-art

image retrieval models3 [37] as targets. They are imple-

mented with BN-Inception Network [20] as most image

retrieval works do for fairness and trained by their Multi-

Similarity Loss. The image retrieval results are listed in

the Tab. 1 (The row with “Original”). For model steal-

ing, ResNet50 [17] is adopted as the default backbone and

trained with random horizontal flip and resized crop only

since the pre-processing of the target model is unavailable

3https://github.com/bnu-wangxun/Deep Metric/
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Metric Learning Models
Recall@K before our attacks Recall@K after our attacks

AQ ASR DRR@1
1 2 4 8 16 32 1 2 4 8 16 32

BN-Inception [20]

Multi-Similarity [37] 0.61 0.73 0.87 0.91 0.98 0.99 0.16 0.23 0.32 0.45 0.56 0.76 93.40 0.69 73.77%

Contrastive [16] 0.57 0.66 0.81 0.89 0.92 0.96 0.16 0.28 0.45 0.55 0.64 0.78 89.99 0.68 71.93%

HardMining [32] 0.62 0.75 0.81 0.88 0.94 0.97 0.24 0.29 0.39 0.48 0.62 0.75 96.34 0.64 61.29%

Lifted [28] 0.62 0.73 0.84 0.92 0.94 0.97 0.14 0.24 0.28 0.40 0.52 0.80 90.14 0.71 77.42%

DenseNet121 [19]

Multi-Similarity [37] 0.66 0.81 0.89 0.94 0.96 0.99 0.08 0.15 0.24 0.37 0.53 0.67 84.46 0.72 87.88%

Contrastive [16] 0.66 0.80 0.88 0.91 0.95 0.98 0.10 0.15 0.23 0.29 0.42 0.60 83.80 0.70 84.85%

HardMining [32] 0.66 0.76 0.85 0.92 0.97 0.99 0.12 0.17 0.27 0.33 0.47 0.65 161.92 0.27 81.82%

Lifted [28] 0.66 0.79 0.87 0.92 0.95 0.98 0.07 0.15 0.26 0.41 0.51 0.65 84.36 0.68 89.39%

Table 2. Recall@K performances on the CUB-200 dataset before and after our attacks. It can be found that the proposed attack is effective

on different image retrieval architectures trained with different metric learning methods. DRR@1 is the drop rate on Recall@1. The higher

it is, the more vulnerable the image retrieval model is.

Attacks
CUB-200

1 2 4 8 16 32

Original 0.61 0.73 0.87 0.91 0.98 0.99

T

FGSM [14] 0.33 0.45 0.56 0.66 0.76 0.85

BIM [23] 0.28 0.44 0.60 0.77 0.77 0.85

MIM [12] 0.20 0.28 0.39 0.52 0.61 0.75

Q Ours (QAIR) 0.16 0.23 0.32 0.45 0.56 0.76

Table 3. Comparison with transfer-based attacks (T). Q means

query-based attack.

to attackers. We evaluate on randomly sampled 250 images

in the test sets on SOP and In-Shop (100 for CUB-200). The

perturbation budget ǫ is set to 0.05 under ℓ∞-norm and the

maximal number of query T is set to 200. The parameters

in Eq. 9 are set as follows: q = 1, σ = 0.1, α = 0.01 [27].

For each dataset, we set K = 16 in Eq. 2 by default.

4.2. Comparison with State­of­the­art Methods

Since the adversarial attack against image retrieval sys-

tems under black-box setting is a kind of decision-based

attack, we compare our QAIR with several state-of-the-

art decision-based attacks including Optimization-based at-

tack (OptAttack) [8], Sign-Opt [9] and HopSkipJumpAt-

tack (HSJA) [5]. For these attacks, the maximum number

of queries is set to 10,000 to find adversarial examples with

small perturbations. As shown in Tab. 1, our method can

achieve comparable attack effects and at the same time, re-

quire much fewer queries. This proves the practical value of

our method. We found that though decision-based methods

can completely subvert the top K results in most cases, the

required maximum perturbation after 10,000 queries is usu-

ally much higher than ǫ, resulting in a low ASR. For a com-

prehensive study, we evaluate the ASR under different max

perturbation limitations further. As shown in Fig. 5 (left),

our attack can always get a higher ASR than other meth-

ods, showing the effectiveness of the proposed approach.

The visualization comparison of generated adversarial ex-

amples and comparison on defensive models can be found

in our supplementary material.

Model
CUB-200

1 2 4 8 16 32 AQ ASR

Original 0.61 0.73 0.87 0.91 0.98 0.99 0 0

Sr18 0.18 0.24 0.35 0.53 0.62 0.78 92.14 0.70

Sr50 0.16 0.23 0.32 0.45 0.56 0.76 93.40 0.69

Sr101 0.24 0.29 0.35 0.44 0.60 0.79 99.92 0.65

Sv16 0.28 0.37 0.44 0.52 0.65 0.82 121.84 0.54

Sd121 0.14 0.23 0.34 0.42 0.55 0.77 87.64 0.73

Sd169 0.18 0.24 0.30 0.45 0.56 0.74 86.48 0.71

Table 4. Recall@K performance after our attack in terms of stolen

models with different architectures.
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Figure 5. Comparisons under different perturbation budgets on

CUB-200 dataset (left) and Recall@K in terms of different num-

bers of queries used to steal the target model (right).

4.3. Comparison on Transfer and Query Attacks

We also compare the proposed query-based attack with

transfer-based attacks. The evaluation results are listed

in Tab. 3, from which we can see that the proposed at-

tack outperforms transfer attacks developed based on dif-

ferent white-box attacks such as Fast Gradient Sign Method

(FGSM) [14] and Basic Iterative Method (BIM) [23], as

well as the Momentum Iterative Method (MIM) [12]. This

is reasonable since the query-based attack can adjust the

optimization direction with retrieval results, while transfer-

based attack heavily relies on the transferability of gener-

ated adversarial examples.

3336



0 10 20 30

0.2

0.4

0.6

0.8

1.0

Re
cal

l@
K

Original
K=1
K=2
K=4
K=8
K=16
K=32

0 10 20 30
                    K                             

0.2

0.4

0.6

0.8

1.0

Original
ǫ=0.01
ǫ=0.02
ǫ=0.03
ǫ=0.04
ǫ=0.05
ǫ=0.06

Figure 6. Recall@K in terms of different number of considered

candidates K (left) and perturbation budgets ǫ (right).

4.4. Attacks on Various Image Retrieval Models

For comprehensive studies, we further evaluate the pro-

posed methods on different target models trained with var-

ious metric learning methods (Multi-Similarity loss, Con-

trastive Loss [16], Semi-Hard Mining Strategy [32] and

Lifted Structure Loss [28]) on different architectures, in-

cluding BN-Inception and Densenet121 [19]. As shown

in Tab. 2, the proposed attack can always produce a great

Recall@K drop against different image retrieval models,

showing its generalization across models.

4.5. Ablation Study

Component analysis. We treat RGF attack with the

count-based loss as our baseline (QAIRC), which samples

bases from Gaussian distribution as RGF does. As shown

in Tab. 1, the proposed attack can already make a great drop

on Recall@K on both SOP and In-Shop datasets. This val-

idates the vulnerability of large scale image retrieval mod-

els. To validate the effectiveness of the proposed model

stealing, we compare attacks with bases provided by our

stolen model (QAIRC−S) and model pretrained on Ima-

geNet [31] (QAIRC−I ) for fairness. We can find that at-

tacks with the stolen model are stronger under all datasets.

Besides, the attack with relevance-based loss (QAIRR−S)

is much stronger than that with count-based loss, validating

the effectiveness of our relevance-based loss.

Number of queries for model stealing. We find that

QAIR with bases from Gaussian distribution can already

get a high ASR on large scale datasets, such as SOP and

In-Shop, so we only evaluate the attack performances on

CUB-200 dataset with different numbers of queries (156 /

1,111 / 3,616 / 8,421, corresponding to Nc = 5/10/15/20
respectively) for stealing model. As shown in Fig. 5, with

more queries, the attack gets stronger.

Parameter analysis on K and ǫ. As shown in Fig. 6

(left), with largerK, the attack leads to a higher Recall@K.

With more candidates involved, the attacking procedure

keeps more related samples of the original query out of the

attacked one. The Recall@K of attacks under different per-

Query Retrieved images

Original

Adversarial

Original

Adversarial

Figure 7. Searched results before (odd rows) and after (even rows)

our attacks with Bing Visual Search.

turbation budgets can be found in Fig. 6 (right), from which

we can see that a larger ǫ results in higher Recall@K drop.

Different model architectures for stolen model. Tab. 4

shows the attack results with the stolen model from vari-

ous model architectures. It can be found that the Recall@K
drops a lot under all circumstances, validating the univer-

sality of the proposed model stealing method.

4.6. Attacks on Real­world Commercial System

Fig. 7 shows several attack examples generated against

a real-world image retrieval system, i.e., Bing Visual

Search [18]. The even rows show the perturbed queries

along with the retrieved images, which are completely dif-

ferent from the original ones at the odd rows. For the quan-

titative analysis, we randomly sample 1,000 images from

ImageNet for testing and the proposed method can achieve

98% attack success rate with only 33 queries on average,

which demonstrates its practicability in real-world scenar-

ios.

5. Conclusion

In this paper, we introduce the first attempt on query-

based attack against image retrieval under the black-box set-

ting, where neither model parameter nor the training data is

available. First, a relevance-based loss is designed to quan-

tify the attack effects by measuring the set similarity on

the top-k retrieval results before and after the attack and

guide the optimization of adversarial examples. To fur-

ther boost the attack efficiency, a recursive model stealing

method is proposed to obtain transfer-based priors and gen-

erate prior-guided gradients. Extensive experiments show

that the proposed attack achieves a high attack success rate

with few queries against various image retrieval models. Fi-

nally, the evaluation on the industrial visual search system

further demonstrates the practical potential of the proposed

method. One limitation of our approach is that the attack

may fail when the number of truly relevant images in the

gallery is large, as shown in the supplementary material. In

future work, we aim to go further for a more advanced ob-

jective towards stronger black-box attacks for developing

robust image retrieval models.

3337



References

[1] Song Bai, Yingwei Li, Yuyin Zhou, Qizhu Li, and Philip HS

Torr. Metric attack and defense for person re-identification.

arXiv preprint arXiv:1901.10650, 2019.

[2] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.

Practical black-box attacks on deep neural networks using ef-

ficient query mechanisms. In European Conference on Com-

puter Vision, pages 158–174. Springer, 2018.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge.

Decision-based adversarial attacks: Reliable attacks against

black-box machine learning models. arXiv preprint

arXiv:1712.04248, 2017.

[4] Thomas Brunner, Frederik Diehl, Michael Truong Le, and

Alois Knoll. Guessing smart: Biased sampling for efficient

black-box adversarial attacks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4958–

4966, 2019.

[5] Jianbo Chen, Michael I Jordan, and Martin J Wainwright.

Hopskipjumpattack: A query-efficient decision-based attack.

In 2020 IEEE Symposium on Security and Privacy (SP),

pages 1277–1294. IEEE, 2020.

[6] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and

Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-

box attacks to deep neural networks without training substi-

tute models. In Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security, pages 15–26, 2017.

[7] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen

Horng Polo Chau. Shapeshifter: Robust physical adversar-

ial attack on faster r-cnn object detector. In Joint European

Conference on Machine Learning and Knowledge Discovery

in Databases, pages 52–68. Springer, 2018.

[8] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan

Zhang, and Cho-Jui Hsieh. Query-efficient hard-label black-

box attack: An optimization-based approach. arXiv preprint

arXiv:1807.04457, 2018.

[9] Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu

Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-opt: A query-

efficient hard-label adversarial attack. arXiv preprint

arXiv:1909.10773, 2019.

[10] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and

Jun Zhu. Improving black-box adversarial attacks with a

transfer-based prior. In Advances in Neural Information Pro-

cessing Systems, pages 10934–10944, 2019.

[11] Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang

Su, Zihao Xiao, and Jun Zhu. Benchmarking adversar-

ial robustness on image classification. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 321–331, 2020.

[12] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-

tacks with momentum. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

9185–9193, 2018.

[13] Yan Feng, Bin Chen, Tao Dai, and Shu-Tao Xia. Adversar-

ial attack on deep product quantization network for image

retrieval. arXiv preprint arXiv:2002.11374v1, 2020.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

[15] Yiwen Guo, Ziang Yan, and Changshui Zhang. Subspace

attack: Exploiting promising subspaces for query-efficient

black-box attacks. In Advances in Neural Information Pro-

cessing Systems, pages 3825–3834, 2019.

[16] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), volume 2, pages 1735–1742.

IEEE, 2006.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[18] Houdong Hu, Yan Wang, Linjun Yang, Pavel Komlev, Li

Huang, Xi Chen, Jiapei Huang, Ye Wu, Meenaz Merchant,

and Arun Sacheti. Web-scale responsive visual search at

bing. In Proceedings of the 24th ACM SIGKDD interna-

tional conference on knowledge discovery & data mining,

pages 359–367, 2018.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[21] Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation meth-
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