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Abstract

This paper is concerned with ranking many pre-trained

deep neural networks (DNNs), called checkpoints, for the

transfer learning to a downstream task. Thanks to the broad

use of DNNs, we may easily collect hundreds of checkpoints

from various sources. Which of them transfers the best to

our downstream task of interest? Striving to answer this

question thoroughly, we establish a neural checkpoint rank-

ing benchmark (NeuCRaB) and study some intuitive rank-

ing measures. These measures are generic, applying to the

checkpoints of different output types without knowing how

the checkpoints are pre-trained on which datasets. They

also incur low computation cost, being practically mean-

ingful. Our results suggest that the linear separability of

the features extracted by the checkpoints is a strong indi-

cator of transferability. We also arrive at a new ranking

measure, NLEEP, which gives rise to the best performance

in the experiments. Code will be made publicly available.

1. Introduction

There is an increasing number of pre-trained deep neural

networks (DNNs), which we call checkpoints. We may pro-

duce hundreds of intermediate checkpoints when we sweep

through various learning rates, optimizers, and losses to

train a DNN. Furthermore, semi-supervised [10, 4, 47, 35,

56, 38, 36, 8] and self-supervised [14, 25, 11, 60, 42] learn-

ing make it feasible to harvest DNN checkpoints with scarce

or no labels. Fine-tuning [63, 43] has become a de facto

standard to adapt the pre-trained checkpoints to target tasks.

It leads to faster convergence [15, 26, 49] and better perfor-

mance [34] on the downstream tasks.

However, not all checkpoints are equally useful for a tar-

get task, and some could even under-perform a randomly

initialized checkpoint (cf. Section 2.2). This paper is con-

cerned with ranking neural checkpoints, which aims to

measure how effectively fine-tuning can transfer knowledge

*This work was done while the first author was an intern at Google.

from the pre-trained checkpoints to the target task. The

measurement should be generic enough for all the neu-

ral checkpoints, meaning that it works without knowing

any pre-training details (e.g., pre-training examples, hyper-

parameters, losses, early stopping stages, etc.) of the check-

points. It also should be lightweight, ideally without train-

ing on the downstream task, to make it practically useful.

We may use the measurement to choose the top few check-

points before running fine-tuning, which is computationally

more expensive than calculating the measurements.

Ranking neural checkpoints is crucial. Some domains or

applications lack large-scale human-curated data, like med-

ical images [46], raising a pressing need for high-quality

pre-trained checkpoints as a warm start for fine-tuning. For-

tunately, there exist hundreds of thousands of checkpoints

of popular neural network architectures. For instance,

many computer vision models are built upon ResNet [27],

Inception-ResNet [54], and VGG [50]. As a result, we can

construct a candidate pool by collecting the checkpoints re-

leased by different groups, for various tasks, and over dis-

tinct datasets.

It is nontrivial to rank the checkpoints for a down-

stream task. We explain this point by drawing insights from

the related, yet arguably easier, task transferability prob-

lem [1, 18, 64, 40], which aims to provide high-level guid-

ance about how well a neural network pre-trained in one

task might transfer to another. However, not all checkpoints

pre-trained in the same source task transfer equally well

to the target task [68, 34]. The pre-training strategy also

matters. Zhai et al. [66] find that combining supervision

with self-supervision improves a network’s transfer results

on downstream tasks. He et al. [25] also show that self-

supervised pre-training benefits object detection more than

its supervised counterpart under the same fine-tuning setup.

We may also appreciate the challenge in ranking neu-

ral checkpoints by comparing it with another related line

of work: predicting DNNs’ generalization gaps [39, 30, 5].

Jiang et al. [29] use a linear regressor to predict a DNN’s

generalization gap, i.e., the discrepancy between its training

and test accuracies, by exploring the training data’s margin
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distributions. Other signals studied in the literature include

network complexity and noise stability. Ranking neural

checkpoints is more challenging than predicting a DNN’s

generalization gap. Unlike the training and test sets that

share the same underlying distribution, the downstream task

may be arbitrarily distant from the source task over which

a checkpoint is pre-trained. Moreover, we do not have ac-

cess to the pre-training data at all. Finally, instead of keep-

ing the networks static, fine-tuning dramatically changes all

weights of the checkpoints.

We establish a neural checkpoint ranking benchmark

(NeuCRaB) to study the problem systematically. Neu-

CRaB covers various checkpoints pre-trained on widely

used, large-scale datasets by different training strategies

and architectures at a range of early stopping stages. It

also contains diverse downstream tasks, whose training

sets are medium-sized, making it practically meaningful to

rank and fine-tune existing checkpoints. Pairing up all the

checkpoints and downstream tasks, we conduct careful fine-

tuning with thorough hyper-parameter sweeping to obtain

the best transfer accuracy for each checkpoint-downstream-

task pair. Hence, we know the groundtruth ranking of the

checkpoints for each downstream task according to the final

accuracies (over the test/validation sets).

A functional checkpoint ranking measurement should be

highly correlated with the groundtruth ranking and, equally

importantly, incurs as low computation cost as possible.

We study several intuitive methods for ranking the neural

checkpoints. One is to freeze the checkpoints as feature ex-

tractors and use a linear classifier to evaluate the features’

separability on the target task. Another is to run fine-tuning

for only a few epochs (to avoid heavy computation) and then

evaluate the resulting networks on the target task’s valida-

tion set. We also estimate the mutual information between

labels and the features extracted from a checkpoint.

Finally, we propose a lightweight measure, named

Gaussian LEEP (NLEEP), to rank checkpoints based on

the recently proposed log expected empirical prediction

(LEEP) [40]. LEEP was originally designed to measure

between-task transferabilities. It cannot handle the check-

points pre-trained by unsupervised or self-supervised learn-

ing since it requires all checkpoints to have a classification

head. Its computation cost could blow up when the classifi-

cation head corresponds to a large output space. Moreover,

it depends on the classification head’s probabilistic output,

which, unfortunately, is often overly confident [24].

To tackle the above problems, we replace the check-

points’ output layer with a Gaussian mixture model

(GMM). This simple change kills two birds with one

stone. On the one hand, GMM’s soft assignment of in-

put to clusters seamlessly applies to LEEP, resulting in the

lightweight, effective NLEEP measure that works regard-

less of the checkpoints’ output types. On the other hand,

since we fit GMM to the target task’s data, instead of the

pre-training data of a different source task, the cluster as-

signment probabilities are likely more calibrated than the

classification probabilities for the target task, if there exist

classification heads.

2. The Neural Checkpoint Ranking Bench-

mark (NeuCRaB)

We formalize ranking neural checkpoints as follows.

Suppose we have m pre-trained neural networks, called

checkpoints, C := {θi}
m
i=1

. Denote by T a distribution

of tasks. Without loss of generality, we mainly study clas-

sification downstream tasks, each of which, t ∼ T , con-

tains a training set and a test set. An evaluation procedure,

G : C×T 7→ R, replaces the output layer of a checkpoint θi
with a linear classifier for a downstream task t, followed by

fine-tuning using the task’s training set. It employs hyper-

parameter sweeping and returns the best accuracy on the

test set. We apply this evaluation procedure to all the check-

points for task t and obtain their test accuracies:

Gt := {G(θi, t)}
m
i=1
∈ R

m, (1)

which defines the groundtruth ranking list for task t.
Denote byR all measures that return a ranking score for

any checkpoint-task pair under a computation budget b. A

measure R ∈ R gives rise to the following ranking scores

for a task t,

Rt := {R(θi, t;b)}
m
i=1
∈ R

m, (2)

where we underscore the computation budget b in the mea-

sure R(·, ·;b).
Our objective in ranking neural checkpoints is to find the

best ranking measure in expectation,

R
∗ ← argmax

R∈R

Et∼T M(Rt,Gt) (3)

where M is a metric evaluating the ranking scores Rt

against the test accuracies Gt. Section 2.3 details the eval-

uation methods used in this work. Equipped with such a

ranking measure R
∗, we can identify the checkpoints that

potentially transfer to a downstream task better than the oth-

ers without resorting to heavy computation.

2.1. Downstream Tasks T

Following the design principle of [66], we study di-

verse downstream tasks including Caltech101 [21], Flow-

ers102 [41], Sun397 [61], and Patch Camelyon [60]. These

tasks are representative of general object recognition, fine-

grained object recognition, scenery image classification,

and medical image classification, respectively. Table 1 in

Appendix A.1 provides more details of these tasks. A

common theme is that their training sets are all medium-

sized, making it especially beneficial to leverage pre-trained

checkpoints to avoid overfitting.
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Sun397Camelyon

Caltech101 Flowers102

Figure 1. Fine-tuning the checkpoints in Group I on four downstream tasks. We keep the best fine-tuning accuracy for each checkpoint-

task pair after hyper-parameter sweeping. For better visualization, the values are offset by their mean (cf. Table 4 in Appendix for the

absolute values). (Best viewed in color. Red: generative models. Black: From-Scratch. Green: self-supervised models. Blue: semi-

supervised models. Yellow, Pink, and Orange: supervised models trained on ImageNet, Inatualist, and Places365, respectively. Cyan: a

hybridly-supervised model.)

2.2. Neural Checkpoints C

Thanks to the broad use of DNNs, one may collect neural

checkpoints of various types from multiple sources. To sim-

ulate this situation, we construct a rich set of checkpoints

and separate them into three groups according to the pre-

training strategies and network architectures.

Group I: Checkpoints of mixed supervision. The first

group of checkpoints are pre-trained with mixed supervi-

sion till convergence, including supervised learning, self-

supervised learning, semi-supervised learning, and the dis-

criminators or encoders in deep generative models. It con-

sists of 16 ResNet-50s [27]. We borrow 14 models pre-

trained on ImageNet [13] from [66]. Among them, four are

pre-trained by self-supervised learning (Jigsaw [42], Rela-

tive Patch Location [14], Exemplar [16], and Rotation [22]),

six are the discriminators of generative models (WAE-

UKL [48], WAE-GAN, WAE-MMD [57], Cond-BigGAN,

Uncond-BigGAN [9], and VAE [33]), two are based on

semi-supervised learning (Semi-Rotation-10% and Semi-

Exemplar-10% [65]), one is by fully supervised learning

(Sup-100%-Img [27]), and one is trained with a hybrid

supervised loss (Sup-Exemplar-100% [65]). We also add

two supervised checkpoints pre-trained on iNaturalist (Sup-

100%-Inat) [59] and Places365 (Sup-100%-Pla) [67], re-

spectively. Using the evaluation procedure G(θi, t) (cf.

equation (1)), we obtain their final accuracies on the down-

stream tasks described in Section 2.1.

Figure 1 shows the best fine-tuning accuracies offset by

their mean for better visualization, and Table 4 (in Ap-

pendix) contains the absolute accuracy values. We in-

clude the training from scratch (From-Scratch) for compar-

ison. Most of the checkpoints yield significantly better fine-

tuning results than From-Scratch. Some of the discrimina-

tors in generative models, however, under-perform From-

Scratch. The highest-performance checkpoints change from

one downstream task to another.

Group II: Checkpoints at different pre-training

stages. This group comprises 12 ResNet-50s pre-trained

by fully supervised learning on ImageNet, iNaturalist, and

Places-365. We save a checkpoint right after each learning

rate decay, resulting in four checkpoints per dataset. Fig-

ure 2 and Table 5 in Appendix show the best fine-tuning

accuracies over the four downstream tasks, where Img-90k

refers to the checkpoint trained on ImageNet for 90k iter-

ations. Interestingly, the downstream tasks favor different

pre-training sources, indicating the necessity of studying

between-task transferabilities [66, 64]. However, the source

task information may be not known for all checkpoints.

Moreover, the converged model over a source task does

not always transfer the best to a downstream task (cf. Img-

270k vs. Img-300k on Camelyon, Inat-270k vs. Inet-300k

on Flowers102, etc.). We hence construct this NeuCRaB for

studying the ranking of neural checkpoints without access-

ing how one pre-trained the checkpoints over which dataset.

Group III: Checkpoints of heterogeneous architec-

tures. Kornblith et al. [34] show that better network ar-
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chitectures can learn better features that can be transferred

across vision-based tasks. Therefore, we construct the third

group of checkpoints by using different neural architec-

tures. Four of them belong to the Inception family [55], one

is Inception-ResNet-v2 [54], six come from the MobileNet

family [28], and two are from the ResNet-v1 family [27].

We train them on ImageNet till convergence. Figure 3 and

Table 6 in Appendix visualize their fine-tuning accuracies

on the four downstream tasks.

2.3. Evaluation MetricsM

We use multiple metrics (cf. M in eq. (3)) to evaluate

the checkpoint ranking measures.

Recall@k: A practitioner may have resources to test up to

k checkpoints for their task of interest. We consider it

a success if a measure ranks the highest-performance

checkpoint into the top k. A measure’s Recall@k is

the ratio between the number of downstream tasks on

which it succeeds and the total number of tasks. We

employ k = 1 and k = 3 in the experiments.

Top-k relative accuracy (Rel@k): Given a task, a ranking

measure returns an ordered list of the checkpoints. If

the measure selects a high-performing checkpoint to

the top k despite that it misses the highest-performance

one, we do not want to overly penalize it. This Rel@k
is the ratio between the best fine-tuning accuracy on

the downstream task with the top k checkpoints and the

the best fine-tuning accuracy with all the checkpoints.

Pearson correlation: We incorporate Pearson’s r [44] to

compute the linear correlation between a measure’

ranking scores Rt and the evaluation procedure’s final

accuracies Gt.

Kendall ranking correlation: We also include Kendall’s

τ [31] to measure the ordinal association between a

ranking measure R and the evaluation procedure G

for each task. After all, what matter is the order of the

checkpoints rather than the precise ranking scores.

3. Checkpoint Ranking Methods

In this section, we describe some intuitive neural check-

point ranking methods. These methods strive to achieve

high correlation with the checkpoint evaluation procedure

G at low computation cost.

3.1. Fine­tuning with Early Stopping

If there is no constraint over computing, the evalua-

tion procedure G itself becomes the gold ranking mea-

sure. Hence, a natural ranking method is the fine-tuning

with early stopping, by which the model is far from con-

vergence. The premature models’ test accuracies are the

ranking scores. Experiments reveal that it is hard to fore-

cast from the premature models.

3.2. Linear Classifiers

We derive the second ranking method also from the eval-

uation procedure G, which replaces a checkpoint’s output

layer by a linear classifier tailored for the downstream task.

We train the linear classifier while freezing the other layers.

The ranking score equals the classifier’s test accuracy. It is

worth mentioning that self-supervised learning [11, 25, 23]

often adopts this practice as well to evaluate the learned fea-

ture representations. We shall see that the linear separability

of the features extracted from a checkpoint is a strong indi-

cator of the performance of fine-tuning the full checkpoint.

3.3. Mutual Information

Suppose the extracted features’ quality well correlates

with a checkpoint’s final accuracy on a downstream task.

Besides the linear separability above, we can rank the

checkpoints by their mutual information between the high-

dimensional features and discrete labels of the downstream

task. We employ the state-of-the-art Iα mutual informa-

tion estimator [45], where α controls the trade-off between

variance and bias. It is a variational lower bound parameter-

ized by a neural network. Belghazi et al. [6] report that the

neural estimators generally outperform prior mutual infor-

mation estimations, especially when the variables are high-

dimensional. We use the code released by the authors to

calculate Iα [45].

3.4. LEEP for the Checkpoints with Classification
Heads

To rank the checkpoints pre-trained over classification

source tasks, the recently proposed LEEP [40] measure is

directly applicable despite that it was originally designed

for between-task transfer. Denote by Z the classification

space of a checkpoint θ. We can interpret θ(x)z , the z-th

(softmax) output element, as the probability of classifying

the input x into the class z ∈ Z . Given a downstream task

t ∼ T and its test set {(xj , yj)}
n
j=1

, the LEEP ranking score

for the checkpoint θ is calculated by

RLEEP(θ, t) :=
1

n

n∑

j=1

logP (yj |xj , θ, t)

P (y|x, θ, t) :=
∑

z∈Z

P̂ (y|z)θ(x)z (4)

where P̂ (y|z) is the empirical conditional distribution of the

downstream task’s label y given the source label z ∈ Z , and

P (y|x, θ, t) is a “dummy” classifier, which firstly draws a

label z from the checkpoint θ(x) and then draws a class y
from the conditional distribution P̂ (y|z).

Denote by {xj , yj}
ñ
j=1

, y ∈ Y , the downstream task’s

training set. LEEP computes the conditional distribution

P̂ (y|z) by “counting”. The joint distribution P̂ (y, z) due to
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the checkpoint θ is

P̂ (y, z) =
1

ñ

∑

j:yj=y

θ(xj)z, (5)

which gives rise to the conditional distribution P̂ (y|z) =
P̂ (y, z)/P̂ (z) = P̂ (y, z)/

∑
y∈Y

P̂ (y, z).
In the experiments, LEEP and the linear classifier are

the second best ranking methods for the checkpoints pre-

trained for classification. However, LEEP’s computation

cost is high when a checkpoint’s classification output is

high-dimensional (e.g., iNaturalist contains more than 8000

classes). Besides, its softmax estimation of the classifica-

tion probability θ(x)z is often poorly calibrated [24]. Fi-

nally, it does not apply to the checkpoints with no classifi-

cation heads.

3.5. NLEEP

We propose a variation to LEEP that applies to all types

of checkpoints including those obtained from unsupervised

learning and self-supervised learning. It can also avoids the

overly confident softmax.

Feeding the training data of a downstream task into a

checkpoint, we obtain their feature representations. The

representations are thousands of dimensions, depending on

the checkpoint’s neural architecture. We reduce their di-

mension by using the principal component analysis (PCA).

Denote by s the resultant low-dimensional representation of

the input x.

We then fit a Gaussian mixture model (GMM), P (s) =∑
v∈V

πvN (s|µv,Σv), to the training set {sj}
ñ
j=1

, where V
is a collection of all the Gaussian components, and πv, v ∈
V, are the mixture weights. It is convenient to compute the

posterior distribution:

P (v|x) = P (v|s) ∝ πvN (s|µv,Σv), (6)

which is arguably more reliable than the class assignment

probability θ(x)z output by the softmax classifier because

we fit GMM to the downstream task’s training data, whereas

the softmax classifier is learned from a different source task.

Hence, we arrive at an improved ranking measure,

namedNLEEP, by replacing θ(x)z , the probability of clas-

sifying an input x to the class z, in equations (4–5) by the

posterior distribution P (v|x).

4. Experiments on NeuCRaB

There are free parameters in each of the ranking meth-

ods. Before presenting the main results, we study how

the free parameters in NLEEP affect its checkpoint rank-

ing performance. Figure 2 illustratesNLEEP’s Kendall’s τ
values over Groups I and II with different PCA feature di-

mensions and the numbers of Gaussian components. Each

Kendall’s τ is averaged across all the downstream tasks;

the higher, the better. Along the vertical axes, we change

the feature dimensions by keeping different percentages of

the PCA energies; PCA50 means the percentage is 50%.

Along the horizontal axes, we adopt different numbers of

Gaussian components in GMM; 2× means the number is

twice the class number of the downstream task. Notably,

the Kendall’s τ values remain relatively stable. In the re-

maining experiments with NLEEP, we fix the PCA energy

to 80% and the number of Gaussian components five times

the class number of a downstream task.

4.1. Comparison Results

Tables 1, 2, and 3 show the checkpoint ranking methods’

performance on Groups I (checkpoints of mixed supervi-

sion), II (different pre-training stages), and III (heteroge-

neous architectures), respectively. We also union the three

groups and present the corresponding ranking performance

in Table 2 in Appendix. The numbers in the tables are the

average over all downstream tasks. In addition to the eval-

uation metrics detailed in Section 2.3, the GFLOPS column

measures the ranking methods’ computing performance; the

lower, the better.

We report multiple variations of the ranking methods in

the tables. Fine-tuning is computationally expensive, so we

stop it after one or five epochs. The linear classifiers are

less so as we save the feature representations of downstream

tasks’ after one forward pass to the checkpoints. We report

the linear classifiers’ ranking results after training them for

one epoch, five epochs, and convergence. We test α = 0.01
and α = 0.50 in the Iα mutual information estimator. Ad-

ditionally, we experiment with Iα after reducing the feature

dimensions by using PCA.

4.2. Main Findings

In each column of Tables 1, 2, 3, and Table 2 in Ap-

pendix, we highlight the best and second best by the bold

font and underscore, respectively.

The mutual information fails to rank high-performing

checkpoints to the top and even produces negative Pear-

son and Kendall correlations, probably because of the fea-

tures’ high dimensions. Reducing the feature dimensions by

PCA significantly improves the mutual information’s rank-

ing performance; MI w/ PCA (α=0.01) leads to the sec-

ond best Rel@1, Recall@3 and Rel@3 among the rank-

ing methods in Group III, the checkpoints of heterogeneous

neural architectures. Varying α in the Iα mutual informa-

tion estimator [45] can control the trade-off between vari-

ance and bias. MI w/ and w/o PCA (α=0.01) perform better

than MI w/ and w/o PCA (α=0.50), respectively. It indi-

cates that neural checkpoint ranking requires low-bias MI

estimator since smaller α means low-bias but high-variance

estimation.
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Group I Group II

Figure 2. NLEEP’ checkpoint ranking performance, evaluated by Kendall’s τ , on Groups I and II in NeuCRaB. We vary the PCA feature

dimension and the number of Gaussian components in GMM.

Fine-tuning up to some epochs turns out the worst rank-

ing methods because it leads to low correlation with the

groundtruth ranking and yet incurs heavy computation.

Similarly, training the linear classifier up to one or five

epochs does not perform well except in Group II. These re-

sults indicate that it is difficult to forecast the checkpoints’

final performance from premature models. Fine-tuning (5

epochs) and Linear (5 epochs) perform better than Fine-

tuning (1 epoch) and Linear (1 epoch) in terms of Person

and Kendall correlation, respectively. However, they all

fail to select the top checkpoint in Group I and Group III

since they produce lower Recall@1 and Recall@3 than oth-

ers. One possible reason is that the evaluation accuracies of

checkpoints in the early stage tend to have large variance.

Feature qualities before fine-tuning the checkpoints. If

we train the linear classifiers till convergence, they become

the best in Group II, and the second best checkpoint rank-

ing method in Groups I and III in terms of Pearson and

Kendall correlations. It can also produce better Recall@1

and Recall@3 than Linear (1 epoch) and Linear (5 epoch)

in Groups I, II and III since the evaluation accuracies of

converged models are more stable than models in the early

training stage. Note that the linear classifiers’ accuracies,

i.e., the ranking scores, imply the linear separability of the

features extracted by the checkpoints. Recall that the mu-

tual information with PCA feature dimension reduction is

among the second best (Rel@1, Recall@3 and Rel@3) in

Group III. Since both methods measure the feature repre-

sentations’ quality by the downstream tasks’ labels, we con-

jecture that the quality of the features is a strong indicator of

the checkpoints’ final fine-tuning performance on the down-

stream tasks. It would be interesting to study other feature

quality measures beyond the linear separability and mutual

information in future work.

NLEEP performs consistently well in all the groups of

checkpoints over all the evaluation metrics with the low-

est computation cost . In contrast, the original LEEP mea-

sure is not applicable to Group I, the checkpoints of mixed

supervision, because it requires that the checkpoints have

a classification output layer. Overall, LEEP is the second

best over all evaluation metrics among the ranking methods

in Groups II and III, whose checkpoints all have a classi-

fication output layer. Specifically, LEEP can produce the

second best Recall@1, Recall@3 and Rel@3 in Group II,

and the best Recall@3, the best Rel@3 and the second best

Kendall correlation in Group III. It is a more consistent indi-

cator than fine-tuning, linear classifier, or MI based ranking

methods. However, LEEP can not produce better results

thanNLEEP, and it requires slightly larger GFLOPS due to

the extra computation cost from the classification head.

We conjecture that NLEEP outperforms LEEP mainly

because GMMs calibrate the posterior probabilities better

than the checkpoints’ softmax classifiers. The checkpoint

ranking quality of LEEP score hinges on the performance

of the ‘dummy classifier’ – P (y|x, θ, t), and θ(x)z is the

key element to calculate it. However, θ(x) can be poorly

calibrated [40] and it can not represent a true probability. In

contrast, P (v|x) used in NLEEP is indeed the probability

that the sample belongs to one cluster from a mixture of

Gaussian distributions and it can remedy the poor-calibrated

problem in LEEP.

Computational costs. Moreover, we highlight the

GFLOPS column in the tables. NLEEP and LEEP exhibit a

clear advantage over the other checkpoint ranking methods

in terms of computing. The main reason is thatNLEEP and

LEEP can avoid intensive computation from neural network

training, and they only require one forward pass through the

training data.
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Table 1. Checkpoint ranking results on Group I, the checkpoints of mixed supervision (GFLOPS excludes a forward pass on training data,

which takes 3.04E5 GFLOPS shared by all methods)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS

Linear (1 epoch) 0.00 96.97 25.00 98.79 23.56 18.44 4.95E4

Linear (5 epoch) 25.00 98.79 50.00 98.94 49.77 32.33 4.97E4

Linear (converged) 50.00 99.63 75.00 99.65 68.97 53.43 5.33E4

Fine-tune (1 epoch) 25.00 97.45 25.00 97.66 30.25 22.15 6.51E5

Fine-tune (5 epoch) 0.00 91.09 25.00 98.61 48.19 36.78 4.28E6

MI (α=0.01) [45] 0.00 64.67 0.00 87.96 2.39 -0.31 1.62E5

MI (α=0.50) 0.00 66.71 25.00 90.31 -4.91 -13.05 1.62E5

MI w/ PCA (α=0.01) 0.00 89.45 50.00 99.27 16.16 20.67 5.58E4

MI w/ PCA (α=0.50) 0.00 86.49 25.00 94.28 -24.72 -16.06 5.58E4

LEEP [40] – – – – – – –

NLEEP 75.00 99.65 75.00 99.65 84.30 76.00 12.85

Table 2. Checkpoint ranking results on Group II, the checkpoints at different pre-training stages (GFLOPS excludes a forward pass on

training data, which takes 3.04E5 GFLOPS shared by all)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS

Linear (1 epoch) 0.00 96.46 25.00 98.79 27.01 24.24 4.95E4

Linear (5 epochs) 50.00 99.57 100.00 100.00 55.07 51.28 4.97E4

Linear (converged) 75.00 99.95 100.00 100.00 79.30 68.60 5.33E4

Fine-tune (1 epoch) 25.00 99.05 25.00 99.47 19.61 15.52 6.51E5

Fine-tune (5 epochs) 25.00 99.55 100.00 100.00 68.47 58.33 4.28E6

MI (α=0.01) [45] 0.00 94.84 25.00 97.43 -29.41 -17.81 1.62E5

MI (α=0.50) 0.00 96.66 0.00 97.03 -11.36 -10.21 1.62E5

MI w/ PCA (α=0.01) 50.00 99.60 75.00 99.85 52.14 51.34 5.58E4

MI w/ PCA (α=0.50) 0.00 96.68 50.00 99.52 23.73 17.09 5.58E4

LEEP [40] 75.00 99.44 75.00 99.90 50.36 55.49 378.31

NLEEP 100.00 100.00 100.00 100.00 72.84 67.49 12.95

Table 3. Checkpoint ranking results on Group III, the checkpoints of heterogeneous architectures (GFLOPS excludes a forward pass on

training data, which takes 2.73E5 GFLOPS shared by all)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS

Linear (1 epoch) 25.00 98.17 25.00 99.35 30.14 13.80 3.37E4

Linear (5 epoch) 25.00 98.98 25.00 99.63 33.45 18.95 3.38E4

Linear (converged) 25.00 99.66 25.00 99.72 63.55 36.91 3.62E4

Fine-tune (1 epoch) 0.00 98.28 25.00 99.80 17.61 11.59 4.43E5

Fine-tune (5 epoch) 25.00 98.62 25.00 99.68 25.72 15.72 2.91E6

MI (α=0.01) [45] 25.00 98.29 25.00 99.34 4.42 2.94 1.30E5

MI (α=0.50) 25.00 98.36 25.00 99.37 -9.79 -6.81 1.30E5

MI w/ PCA (α=0.01) 0.00 99.18 50.00 99.82 61.94 38.83 5.56E4

MI w/ PCA (α=0.50) 0.00 96.34 0.00 98.47 33.17 21.26 5.56E4

LEEP [40] 25.00 97.36 75.00 99.90 42.99 45.06 247.56

NLEEP 25.00 99.66 25.00 99.70 66.94 51.14 12.68

Comparing different groups of the checkpoints. Check-

point ranking on different groups of checkpoints varies in

degrees of difficulty. The most challenging group is Group

III, the checkpoints of heterogeneous neural architectures.

All the ranking methods produce lower correlations with

the groundtruth ranking, and they can barely select the top

checkpoints in this group. The main reason is that the neu-

ral architectures matter for transfer learning [34]. Besides,

heterogeneous neural architectures can demonstrate various

performance even if we train them from scratch on down-

stream tasks. Ranking neural checkpoints by the feature

representations of the last layer is not sufficient for those

checkpoints. We may explore more advanced ranking meth-

ods considering the structures of the deep neural networks

in the future.

Checkpoint ranking on Group II is easier than on Group

I since all the ranking methods can achieve relatively bet-

ter results over all evaluation metrics in Group II. The re-
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sults indicate that checkpoints with various training strate-

gies (Group I) can bring more complex knowledge from

source domains, comparing with checkpoints with different

early stopping stages (Group II). In addition, fine-tuning the

entire models and training linear classifiers up to one or five

epochs perform significantly better on Group II since those

ranking methods are based on early stopping as well.

Additional experiments in the supplementary materials.

To simulate a sufficiently large pool of checkpoints in the

real applications, we finally combine the checkpoints in

Group I, II, and III into one large group and conduct check-

point ranking experiments on it. We also add one more

group of checkpoints with ResNet-101s [27] to evaluate the

checkpoint ranking on deeper models. Please see more de-

tails in Appendix A.3 and A.4. We also take object detection

and instance segmentation as downstream tasks and conduct

preliminary experiments on VOC [20] and Cityscapes [12].

Please refer to Appendix A.6 to see detailed discussions.

Although the benchmark can be easily extended to many

downstream tasks in other modalities, e.g., voice, text, and

cross-modal modalities, we steer our attention into compar-

ing several intuitive ranking measures on the variants of

checkpoints, covering different training strategies, source

domains, and architectures at a range of early stopping

stages. We formalize the checkpoint ranking idea, demon-

strate the existence of an effective yet lightweight measure,

NLEEP, and hope it can shed light on more efficient rank-

ing methods and practical applications.

5. Related Work

Our work is broadly related to task transferability and

neural networks’ generalization gap.

Task transferability. A task usually refers to a joint dis-

tribution over input and label. Task transferability aims

to predict how well a deep neural network pre-trained on

a source task transfers to the target task. One may esti-

mate the task transferability by data similarities regardless

of models being used. Some work in this line includes con-

ditional entropy [58], data set distance as optimal trans-

port [2], F -relatedness [7], A-distance [32], and discrep-

ancy distance [37]. Besides, Poole et al. [45] derived in-

formation theoretic bounds. These methods are generally

hard to compute in practice and rely on the availability of

the source data. Some recent task transferability estima-

tors involve both data and the models. Taskonomy [64] is

a fully computation method, where task similarity scores

are obtained by transfer learning experiments. Dwivedi et

al. [17] analyzed the representation similarities to construct

a task taxonomy. Besides the models trained on source

tasks, all these methods also require a fine-tuned or inde-

pendently trained model from the target task. In contrast,

our work aims to find checkpoint ranking measures that

are lightweight in computing and requires no access to the

source tasks.

Recent works demonstrated that using pre-trained check-

points that have similar feature representations as the tar-

get task’s representations can improve transfer learning [17,

52, 53]. Song et al. [52, 53] employed attribution maps to

compare two models and then quantified transferabilities by

the similarity of two models. Those approaches all require

a converged model on target datasets, incurring intensive

computation. However, we want to design a lightweight

method for ranking checkpoints, ideally without any train-

ing procedures.

Predicting neural networks’ generation gap. The differ-

ence between a model’s performance on the training data

versus its performance on test data is known as the general-

ization gap. It is practically useful and theoretically impact-

ful to predict a neural network’s generalization gap. Most

recent work does so by finding a set of features that is pre-

dictive of the generalization, e.g., by estimating data mar-

gins [5, 19, 51]. Jiang et al. [29] and Yak et al. [62] demon-

strate how the margin signatures of a neural network can

predict the generalization gap with small errors. Besides,

the network complexity and noise stability are also useful

cues [39, 30, 5, 3]. Our problem substantially differs from

predicting the neural networks’ generalization gap, which

is concerned with the training and test data sets that share

the same underlying distribution. We instead care about the

results after fine-tuning a network’s checkpoint.

6. Conclusion

Deep learning has triumphed over many fields in both

research and real-world applications. There must exist hun-

dreds of thousands of DNNs trained and released by var-

ious groups. To this end, it is natural to select an exist-

ing, promising DNN checkpoint as a warm start to a train-

ing procedure when solving a new task. How to identify

useful checkpoints from a large pool for the target task?

Towards answering this question, we present NeuCRaB,

a thorough benchmark covering diverse downstream tasks

and pre-trained DNN checkpoints, along with NLEEP, a

lightweight, effective checkpoint ranking measure.

The experiments with linear classifiers and mutual infor-

mation (after PCA) reveal that the features extracted from

the checkpoints are good indicators of the checkpoints’

potential in transfer learning. It is worth exploring other

ways of evaluating the features’ quality in future work. It

is also interesting to investigate the checkpoints’ inherent

signatures, such as topology and stability to noise, which

might be informative of their transferabilities. Finally, some

learning-based methods in predicting networks’ generaliza-

tion gaps are also promising for the checkpoint ranking

problem.
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