
Searching for Fast Model Families on Datacenter Accelerators

Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V. Le, Norman P. Jouppi
Google

{lsheng,tanmingxing,rpang,andrewyli,liquncheng,qvl,jouppi}@google.com

Abstract

Neural Architecture Search (NAS), together with model

scaling, has shown remarkable progress in designing high

accuracy and fast convolutional architecture families. How-

ever, as neither NAS nor model scaling considers sufficient

hardware architecture details, they do not take full advan-

tage of the emerging datacenter (DC) accelerators. In this

paper, we search for fast and accurate CNN model families

for efficient inference on DC accelerators. We first analyze

DC accelerators and find that existing CNNs suffer from

insufficient operational intensity, parallelism, and execu-

tion efficiency and exhibit FLOPs-latency nonproportional-

ity. These insights let us create a DC-accelerator-optimized

search space, with space-to-depth, space-to-batch, hybrid

fused convolution structures with vanilla and depthwise con-

volutions, and block-wise activation functions. We further

propose a latency-aware compound scaling (LACS), the first

multi-objective compound scaling method optimizing both

accuracy and latency. Our LACS discovers that network

depth should grow much faster than image size and net-

work width, which is quite different from the observations

from previous compound scaling. With the new search space

and LACS, our search and scaling on datacenter acceler-

ators results in a new model series named EfficientNet-X.

EfficientNet-X is up to more than 2X faster than Efficient-

Net (a model series with state-of-the-art trade-off on FLOPs

and accuracy) on TPUv3 and GPUv100, with comparable

accuracy. EfficientNet-X is also up to 7X faster than re-

cent RegNet and ResNeSt on TPUv3 and GPUv100. Source

code is at https://github.com/tensorflow/tpu/tree/

master/models/official/efficientnet/tpu

1. Introduction

As Moore’s Law is slowing down, more specialized
datacenter (DC) accelerators such as GPUs [43, 14] and
TPUs [32, 20, 15, 42] have been developed to keep up with
the increasing demand of machine learning (ML) models.
With the increasing complexity of ML model architectures
and accelerator architectures, there is a fast-widening gap
between achieved performance and available performance.

Figure 1: Unified accelerator-optimized NAS and Latency-
aware Compound Scaling (LACS) to search model families
optimized for TPUs and GPUs. The same multi-objective
with both latency and accuracy is used for both NAS and
model scaling. For a given accelerator, a base model (m1)
is obtained via NAS with a new search space tailored to
DC accelerators. The new latency-aware compound scaling
(LACS) searches for scaling coefficients on m1 to form the
model family. Both processes are executed separately on
TPU and GPU, resulting in two families of final models.

Neural Architecture Search (NAS) [65, 9, 66, 11], a new
paradigm of assembling models automatically, has the poten-
tial to bridge the gap. Modern NAS usually aims at designing
a family of models for different accuracy-speed trade-offs
for different use cases. Because of the high cost associated
with searching for the entire family of models, model scaling
is commonly used to achieve this goal by scaling [25, 57]
up from a base model to form a model family. However, on
specialized DC accelerators the fast-widening gap remains
even with NAS and model scaling, because they do not have
sufficient visibility into hardware architecture details and
thus cannot design optimal model families for them.

In this paper, we aim at bridging this gap and design-
ing model families with high accuracy and inference speed,
by taking into consideration hardware architecture details
of TPUs and GPUs for both NAS and model scaling. We
first analyze DC accelerators to find performance bottle-
necks. Our analysis reveals the root cause of the recent
observed FLOPs-latency nonpropotionality [51]. We dis-
cover that SOTA CNNs suffer from low operational intensity

18085

and parallelism, which causes low computation rate (i.e.,
FLOPs/sec or Ops/sec1) and sub-optimal inference latency
and throughput on TPU/GPU accelerators. With these in-
sights, we augment state-of-the-art (SOTA) NAS with DC

accelerator optimized search space to improve CNN model
operational intensity and efficiency. Concretely, we create
a new search space with accelerator-friendly operations in-
cluding space-to-depth, space-to-batch, fused convolution
structures, and block-wise searchable activation as shown
in Figure 1. We propose latency-aware compound scaling

(LACS) that uses a multi-objective of both accuracy and infer-
ence speed to search for scaling factors to generate a model
family. LACS is the first compound scaling method with a
multi-objective including both latency and accuracy.

With the improved NAS and LACS, we search for high ac-
curacy CNNs for efficient inference on TPUv3 [20, 15, 42]
and GPUv100 [14]. Our search results in a new model
family named EfficientNet-X (with differences on TPU and
GPU) that achieve a better accuracy and latency trade-offs
than the state-of-the-art. EfficientNet-X models are up to
more than 2X faster on TPUv3 and GPUv100 respectively
than EfficientNet [57] with comparable accuracy. Moreover,
EfficientNet-X models achieve 30% more speedup compared
to EfficientNet when moving from TPUv2 to TPUv3, demon-
strating the generality of our search method across differ-
ent accelerator generations. EfficientNet-X is also faster
than other SOTA models, with on average (geo-mean) 82%
and 48% faster than RegNet and ResNeSt respectively on
GPUv100 and 7X and 48% faster than RegNet and ResNeSt
respectively on TPUv3.

In summary, this paper makes the following contributions:

1. We conduct quantitative analysis to reveal the root cause
of FLOPs-latency nonproportionality on DC accelera-
tors. Although recent work [51] has observed the similar
behavior, our roofline model and analysis is the first to
show the fundamental reasons for latency to be much less
correlated to FLOPs on GPUs and TPUs than on CPUs.
Moreover, our analysis also discovers the performance
bottlenecks of CNNs and inspires enhancements for both
NAS and compound model scaling.

2. We design a DC-accelerator-optimized search space, with
space-to-batch, space-to-depth, fused convolution struc-
tures, and block-wise activation functions, to compose
CNNs with higher operational intensity and efficiency for
better accuracy and speed trade-offs.

3. We propose latency-aware compound scaling (LACS),
the first compound scaling method with accuracy and
latency as the multi-objective. After taking latency into
account, our LACS discovers network depth should grow

1When operations are done in different data types such as bfloat16 [15],
float16 [14], and tf32 [43], the computation rate is usually denoted as OPS,
i.e., OPs/Second. Hereafter in this paper, we use FLOPs/sec and Ops/sec
interchangeably unless noted otherwise.

much faster than image size and network width, which is
quite different from previous compound model scaling
results [57].

4. Our unified NAS and LACS produce EfficientNet-X, with
up to 2X speedup over the EfficientNet and up to 7X
speedup over RegNet/ResNeSt on TPUs and GPUs.

2. Rethink model speed on DC accelerators:

Why FLOPs and latency do not correlate

Emerging datacenter accelerators, including TPUs [32,
15] and GPUs [14], have been using new hardware architec-
tures to keep up with the fast-increasing demand of comput-
ing power from ML models. In particular, because matrix-
multiplication is the core operation in neural networks, the
most special feature of these accelerators is the matrix-
multiply-and-accumulate units, called tensor cores [14] in
GPUs and matrix multiply units [32, 42] in TPUs. These new
hardware architectures have changed the way ML models ex-
ecute on the accelerators. For example, recent work [51] has
observed that FLOPs and latency do not correlate on these
accelerators. However, with these empirical observations,
there is yet no in-depth analysis to reveal the root cause.

In this section, we find the root cause of the FLOPs-
latency nonpropotionality and provide principles for design-
ing high speed ML models on DC accelerators. To rethink
the implications of the DC accelerators on model speed in-
cluding the FLOPs-latency nonpropotionality, we build a
generic performance model as shown in Equation 1.

Latency =
W

C
=

W

Cideal ⇥ E
, I =

W

Q

Cideal =

(

I ⇥ b if I < Ridge Point

Cmax else

(1)

where W (in FLOPs) is the amount of computation required
by an ML model, Q (in Bytes) is the memory traffic (bytes
of memory transfers) incurred during the execution, and I is
the operational intensity of the model (in FLOPs/Byte). C
(in FLOPs/sec) is the computation rate determined by the
ideal computation rate (Cideal) and the execution efficiency E,
where Cideal is determined by I , accelerator memory band-
width b, and accelerator peak computation rate Cmax. Note
that b and Cmax are accelerator hardware constants. Details
of I and C are shown in Figure 2. The execution efficiency
E is defined as the achieved C / Cideal. The end-to-end infer-
ence latency of a model is a nonlinear function of W , I , and
E, instead of only W— the FLOPs. This is the root cause

of FLOPs-latency nonproportionality.
To dive deeper into the operational intensity and effi-

ciency, we adapt the simple roofline analysis (as shown in
Figure 2) that originated from high-performance comput-
ing (HPC)[59] and has been used in ML [60, 32, 42]. The
roofline model reasonably assumes that applications are ei-
ther compute-bound or memory-(bandwidth)-bound as they

28086

Operational Intensity (Ops/Byte)

TO
PS

 (T
er

aO
ps

/S
ec

)

0

1

10

100

1 10 100 1000

Figure 2: Rooflines of TPUv3, Volta SMX2 GPU, and Xeon
Skylake CPU. TPU and GPU have overlapped rooflines because of
their similar peak computation rate and memory bandwidth.

don’t fit in on-chip memories. The Y-axis is computation
rate C in FLOPs/sec or Ops/sec, thus the peak computation
rate forms the saturation region of the roofline. The X-axis is
operational intensity I in FLOPs per memory byte accessed.
The memory bytes include weights, activations, and interme-
diate values. The slope of the linear part can be easily derived
to be memory bandwidth (Bytes/Sec). An ML model can
achieve peak FLOPs/sec on the accelerators only when its
operational intensity is sufficient to push it into the saturation
(i.e., compute-bound) region in the roofline. Otherwise, the
ML model is memory-bandwidth-bound. The ridge point is
the transition point from the memory-bandwidth-bound per-
formance region to the compute-bound performance region.
With the roofline analysis and understanding of datacenter
accelerator architectures, we can obtain a few key principles
for designing high speed ML models on DC accelerators:

• Compute is significantly cheaper on DC accelerators than
on previous systems because of the new matrix-multiply-
and-accumulate units, which results in the ∼35X higher
TeraOps/sec of GPUv100 and TPUv3 than typical of CPU
as shown as the saturation regions in Figure 2.

• ML models need have high operational intensity on TPUs
and GPUs to be in the compute-bound region to reach
close-to-peak performance. This is because, for TPUs
and GPUs, their peak computation rate (TeraOps/s) grows
much faster than memory bandwidth (Bytes/s). Thus,
TPUs and GPUs have ridge points farther to the right than
CPUs. However, as shown in Figure 2 EfficientNets’ oper-
ational intensity is an order of magnitude lower than that
of the TPU/GPU ridge point (and even ResNet), which is
too low to tap into the full potential of the DC accelerators
despite their significantly reduced FLOPs. Specifically, Ef-
ficientNet has∼10X FLOPs reduction compared to other
models such as ResNet at comparable accuracy.

• Parallelism is critical for high speed models. TPU/GPU
accelerators are optimized for throughput with the new ma-
trix/tensor units. These matrix/tensor units require large
parallelism to achieve high performance. For example,
a convolution operation needs to have adequately sized
depth, batch, and spatial dimensions to provide enough

parallelism to achieve high execution efficiency on matrix
units. Additionally, because many vector/element opera-
tions such as activation functions run on vector units (e.g.,
CUDA cores in GPUs and vector units in TPUs) instead
of matrix units, sufficient parallelism between matrix and
vector units is also important for ML models to achieve
high performance on GPUs and TPUs.

3. Optimize search space for DC accelerators

Based on the analysis and optimization principles in the
previous section, we optimize NAS to improve operational
intensity and parallelism to design fast models. NAS has
three pillars: the search algorithms governing the search pro-
cess, the objectives determining the trade-offs of the search
results, and the search space as the key link between model
architectures and accelerator architectures. Thus, specializ-
ing the search space for DC accelerators is crucial to give
NAS more visibility to DC accelerator details. Our opti-
mized search space includes three key new components:
accelerator-friendly space-to-depth/batch, fused convolution
structures, and block-wise activation functions.

3.1. Efficient space-to-depth and space-to-batch

As pointed out in Section 2, convolutions need high paral-
lelism in all dimensions (depth, batch, and spatial) to achieve
high speed on TPUs and GPUs. However, insufficient paral-
lelism because of the small depth and batch is the usual cause
of low utilization and low performance on matrix units. We
augment the search space with accelerator-friendly space-
to-depth and space-to-batch ops to increase depth and batch
dimensions while keeping the total tensor volume the same.

For space-to-depth ops, instead of using the memory-
copy-reshape based ops provided by frameworks such as Ten-
sorFlow [7] and Pytorch [45], we customize an n×n convo-
lution with stride-n to perform the space-to-depth operation,
reshaping an H×W ×C tensor to an H/n×W/n×C ∗n2

tensor. This approach has two advantages: 1) convolutions
are much preferred by TPUs and GPUs because of their high
operational intensity and execution efficiency; 2) in addition
to reshaping the input tensor to improve operational intensity
and efficiency, the n × n convolutions can also be trained
to contribute to the model’s capacity. For space-to-batch
ops, we have to use the memory-intensive copy-reshape ops
provided by common frameworks [7, 45].

3.2. Fused convolution structures

As they are the dominant operations in CNNs, it is impor-
tant to ensure that convolutions in the search space are opti-
mized for accelerator architectures. As the baseline search
space already includes a rich set of convolutions with differ-
ent types, sizes, and shapes, we augment the search space
with fused convolution macro structures. With 4-mode input

38087

tensor I and output tensor O of N ×C ×H ×W 2, the total
computation load W (in FLOPs) and operational intensity I
for convolution and depthwise convolution are in Equation 2.
From Equation 1 and 2, it is clear that although depthwise
convolutions have fewer FLOPs, they also have lower opera-
tional intensity to potentially hurt computation rate and thus
hurt latency.

W_Conv2 = N ⇥H ⇥W ⇥ C
2
⇥K

2
,

I_Conv2 =
N ⇥H ⇥W ⇥ C2 ⇥K2

2 ⇤N ⇥H ⇥W ⇥ C + C2 ⇥K2
,

W_DWConv = N ⇥H ⇥W ⇥ C ⇥ (C +K
2),

I_DWConv =
N ⇥H ⇥W ⇥ C ⇥ (C +K2)

(4 ⇤N ⇥H ⇥W ⇥ C + C ⇥K2 + C2)

(2)

This trade-off is more complicated in convolution macro
structures such as mobile inverted bottleneck conv (MB-
Conv) [53], an important convolution structure in the base-
line search space. MBConv is a macro block that includes
a expansion layer of 1x1 convolutions, a depthwise convo-
lution, and a projection layer of 1x1 convolutions, together
with activation, batch normalization, and skip-connections.
A fused variant of MBConv (fused MBConv) combines the
depthwise convolutions with the expansion or projection
layer as a vanilla convolution. These trade-offs involving
W , I , and E (as shown in Equation 1 and 2) are too compli-
cated for manual optimization but are well-suited for NAS to
explore. Concretely, fused MBConv has higher operational
intensity (good for speed) but higher FLOPs (bad for speed)
than MBConv. Thus, fused MBConv can possibly be either
faster or slower than MBConv, depending on the shape and
size of weights and activations of the macro op. Moreover,
the MBConv and fused MBConv contribute differently to the
final model accuracy. Thus, we added the fused MBConv
into the baseline factorized search space [57]. Although
recently NAS for mobile devices [22] also uses a similar
op, our work is the first to provide the in-depth analysis and
employ such ops into the DC accelerator search spaces.

3.3. Block-wise searchable activation functions

While activation functions have been studied thoroughly
for their impact on accuracy [48, 8], their impact on speed
is less well understood. With the high computing capacity
on TPUs and GPUs, the FLOPs difference among different
activation functions is negligible. However, because of the
low operational intensity of all activation functions and the
shape of rooflines (Figure 2) of TPU and GPU, all activation
functions are memory-bound [5] on TPUv3 and GPUv100.
These memory-bound activation functions can have large
negative performance impact to the end-to-end model speed,

2For simplicity, we assume that 1) input depth (Cin) is the same as
output depth (Cout), 2) input height and weight (Hin and Win) are the same
as output height and width (Hout and Wout), and 3) stride-1 square kernels
with size K ×K. N is the batch size.

because they can drag the overall model into the slope region
of the rooflines (where ML model performance is far away
from the TPU/GPU peak performance as shown in Figure 2.

The most important optimization for activation functions
is fusing [1, 5] an activation function with its associated
convolutions to avoid accessing memory just for computing
the activation function. Because activation functions (being
element-wise operations) usually run on vector units, their
execution can be in parallel with the execution of convolu-
tions when convolutions run on matrix unit. In theory, the
fused activation functions can be completely hidden by the
execution of convolutions. But, in practice, the software
stack plays an crucial role for such optimizations, which
manifests as important model accuracy and speed trade-offs.

Therefore, we enhance the baseline factorized search
space [57, 56] with searchable activation functions, includ-
ing ReLU and swish. To make the search space manageable,
we make the activation searchable at the block level in the fac-
torized search space, i.e., different blocks can have different
activation functions but all layers within the same block use
the same activation function. More details of the TPU/GPU-
optimized search space can be found in Appendix A.

4. Latency-aware compound scaling (LACS)

The optimized search space in previous section helps our
goal to compose CNN model families with optimal accuracy
and inference latency on different DC accelerators as shown
in Figure 1. Particularly, our goal can be defined generally
with Equation 3.

max
Shj

,mi,hj

O

⇣

Accuracy(mi,hj
),Latencyhj

(mi,hj
)
⌘

(3)

Given a set of k DC hardware accelerators h1, h2, . . . hk ∈

H of accelerators, we aim at searching for a family of mod-
els denoted as m1,hj

,m2,hj
, . . .mn,hj

∈ Mhj
. Models in

Mhj
specialize in different DC architectures in H and in-

crease in accuracy at the cost of latency to serve different use
cases. The search process is governed by the accuracy and la-
tency multi-objective O, evaluating all models in the family
of Mhj

on accelerator hj . The model family Mhj
is com-

posed with a model search space of Shj
tailored for a given

accelerator hj . In this work, the DC hardware accelerator
set H focuses on TPUs and GPUs.

Even with state-of-the-art NAS and our enhanced search
space as described in Section 3, it is too costly to search an
entire family of models. Therefore, model scaling is com-
monly used together with NAS. Model scaling has changed
from simple scaling [25, 63, 28] to more sophisticated com-
pound scaling [57]. Compound scaling [57] is essentially a
search algorithm as it searches for the best scaling factors
for depth, width, and resolution, under a given objective and
constraint. However, although the SOTA compound scaling
has demonstrated better results than simple scaling, by sys-
tematically scaling depth, width, and resolution of CNNs,

48088

there is still a major hurdle preventing it from harvesting
the full potential of hardware and working optimally with
NAS. Concretely, by using accuracy as the sole objective3

during searching for scaling factors, the existing SOTA com-
pound scaling method cannot consider the performance (e.g.,
inference latency) impact for the resulted model families.

As we seek to design end-to-end model family search as
described in Equation 3 and Figure 1, we propose latency-

aware compound scaling (LACS). Unlike existing compound
scaling that uses accuracy as the sole objective, LACS em-
ploys accuracy and latency as the multi-objective when
searching for scaling factors of depth, width, and resolution
of CNNs for better latency and accuracy trade-offs. Search-
ing for scaling factors with LACS amounts to approximating
the solution to the following optimization problem for each
accelerator hj :

dhj
, whj

, rhj

= argmax
d,w,r

O

⇣

Accuracy(mi,hj
),Latencyhj

(mi,hj
)
⌘

w.r.t. Latency(G(mi,hj
, d, w, r)) = Tmi+1,hj

(4)

where d, w, r are scaling coefficients for model’s depth,
width, and input resolution respectively while preserving
basic network architecture. Tmi+1,hj

is the target latency
for the (i + 1)th model of the family on hj . d, w, r are de-
termined by a compound coefficient φ to scale the network
uniformly:
d = αφ, w = βφ, r = γφ; s.t. α ≥ 1,β ≥ 1, γ ≥ 1 (5)

φ controls how many more resources are available for model
scaling. In the original compound scaling that uses accuracy
as the sole objective, φ means the extra FLOPs for model
scaling. Whereas, in our latency-aware compound scaling,
φ means the latency budget for model scaling, with α,β and
γ controlling how the latency budget is allocated to scale
depth, width, and resolution, respectively. α,β and γ can
be determined by a grid search. LACS is the first multi-
objective compound scaling, which enables streamlined in-
tegration with multi-objective NAS with the same unified
multi-objective reward including both model accuracy and
latency as shown in Figure 1.

5. Searching and scaling optimized model fam-

ilies on DC accelerators

This section describes our process of searching and scal-
ing to design model families on TPUs and GPUs with the
unified NAS and LACS. We first use NAS with the new
search space tailored for DC accelerators to search for the
base model. We then use LACS to find scaling factors to
compose model families on TPUs and GPUs.

3Although compound model scaling also uses FLOPs as the constraints
of the scaling factors, the model accuracy is the only objective when search-
ing for the compound scaling factors.

5.1. NAS for base models

We use a NAS infrastructure similar to [56, 57], where
we employ the same RNN-based controller. We build an
infrastructure to retrieve TPU and GPU hardware latency
directly during search and run NAS on TPUv3[20, 15] and
GPUv100 [14]. We used data parallelism for distributed
training and searching on both TPUs and GPUs.

To establish solid baseline for comparison, we first use the
original search space from EfficientNet [57] but replace total
computation load (FLOPs) with inference latency of TPUv3
and GPUv100 as the performance objective. Our search finds
no model better than EfficientNet-B0 with ReLU. Thus, in
the original EfficientNet search space without our TPU/GPU-
optimized operations such as space-to-depth/batch, fused
MBConv, and searchable activation functions, the FLOPs-
optimized models and latency-optimized models converge to
the same model architecture as EfficientNet-B0 with ReLU4.
This observation further necessitates the design of the new
search space customized for TPUs and GPUs.

We then performance NAS on our proposed new search
space as described in Section 3. We use the same multi-
objective reward mechanism as in [56] to ensure fair com-
parison, although different objective function forms, such
as additive forms [10], can potentially produce even better
results. The multi-objective reward combines accuracy and

latency as ACCURACY (m) ×
h

LATENCY (m)
Target

iw

to ap-

proximate the Pareto-optimal results on both accuracy and
latency. The factor w decides the weight of latency in the
reward. We re-calibrate the factor w to make the reward de-
sign suitable for TPUv3 and GPUv100. Particularly, we use
a larger weight factor w = −0.09 because model accuracy is
less sensitive to latency variations on TPUs and GPUs than
on mobile platforms (original w = −0.07 in [56]).

Our search produces EfficientNet-X-B0, a fast net-
work on TPUs and GPUs, as shown in Table 1. The
EfficientNet-X-B0 demonstrates the effectiveness of the
new accelerator-optimized search space, compared to the
baseline EfficientNet-B0 [57]. Firstly, a space-to-depth op
using convolution-2x2 with stride-2 is inserted before the
second stage, which can improve the channel depth of sub-
sequent layers to improve speed. Secondly, EfficientNet-
X-B0 uses hybrid MBConv, with fused-MBConv in stage
4 and 5 and non-fused MBConv in the rest of the stages.
Thirdly, EfficientNet-X-B0 employs different activation func-
tion strategy on TPUs and GPUs. On TPUs, EfficientNet-X-
B0 uses swish in stages with fused-MBConv but ReLU in
stages with MBConv. On GPUs, EfficientNet-X-B0 selects
ReLU for all stages. Lastly, NAS designs EfficientNet-X-B0

4Note that when searching on the original EfficientNet search space, we
always used ReLU because the original EfficientNet search space did not
support searching for activation functions. In the original EfficientNet [57],
EfficientNet-B0 was searched with ReLU and manually set to use swish for
all layers after the search was done

58089

Table 1: EfficientNet-X-B0 architecture. The architecture in-
cludes multiple stages, with each row representing a stage. Each
stage includes operators, number of repeated layers denoted as
#L, (input/hidden) resolution, output channel size denoted as #OC,
squeeze-and-excite (SE) ratio [30], and activation functions denoted
as AF. Activation functions differ on TPUs from GPUs.

Stage Operator Resolution #OC #L SE AF(TPU/GPU)

1 Conv3x3 224× 224 32 1 N/A swish/ReLU
2 Conv2x2 for reshaping† 112× 112 128 1 N/A ReLU/ReLU
3 MBConv1, k3x3 56× 56 64 1 1 ReLU/ReLU
4 Fused MBConv6, k3x3 56× 56 24 2 0.5 swish/ReLU
5 Fused MBConv6, k5x5 56× 56 40 2 0.25 swish/ReLU
6 MBConv6, k3x3 28× 28 80 3 0.25 ReLU/ReLU
7 MBConv6, k5x5 14× 14 112 3 0.25 ReLU/ReLU
8 MBConv6, k5x5 14× 14 192 4 0.25 ReLU/ReLU
9 MBConv6, k3x3 7× 7 320 1 0.25 ReLU/ReLU

10 Conv1x1 & Pooling & FC 7× 7 1280 1 N/A ReLU/ReLU

with bigger squeeze-and-excite layers than EfficientNet-B0.
All the new model architectures in EfficientNet-X-B0

show the effectiveness of the DC accelerator optimized
search space. We use the selection of the activation func-
tions as an example to shed more light. The usage of swish
and ReLU in EfficientNet-X-B0 is the opposite of that in
mobilenetv3 [27]. Swish has ∼4X more FLOPs than ReLU,
making it very expensive on mobile platforms. MobilenetV3
uses swish only in later layers, because the cost of applying
nonlinearity decreases in deeper layers of the network.

However, as describe in Section 3, because of the high
computing capacity of TPUs and GPUs, the FLOPs differ-
ences between swish and ReLU are negligible. Instead, acti-
vation functions are optimized with fusion and run on vector
units in parallel with convolutions that usually run on ma-
trix units. However, the software stack on GPUs only fuses
ReLU (but not swish) with associated convolutions, which
leads to significant slow down for GPU models with swish.
As a result, EfficientNet-X-B0 on GPU chooses ReLU for
all layers. In contrast, since TPU has swish fused with con-
volutions through XLA [1], EfficientNet-X-B0 uses swish
in many layers. Our profiling results with Cloud TPU Pro-
filer [6] reveal that depthwise convolutions on TPU run on
vector units5 instead of matrix units. Thus, severe contention
on vector units happens between depthwise convolutions
and swish, as swish has 4X more FLOPs than ReLU despite
its benefits in improving model accuracy. Therefore, when
searching on TPUs with our new search space, NAS auto-
matically pairs ReLU with stages containing depthwise con-
volutions to avoid competition on vector units. Appendix B
shows more ablation studies on EfficientNet-X-B0.

5.2. Scaling to form model families with LACS

With the searched base model EfficientNet-X-B0, we use
LACS to search for scaling factors to build the model family.
As described in Section 4, we perform Pareto frontier search
to find best α,β, and γ. We start with initial grid search

5Coincidentally, recent experiment [2] discovers the similar behavior on
GPU. Depthwise convolutions run in vector units, i.e., CUDA cores, instead
of the tensor cores on GPUs.

Table 2: Comparison of LACS scaling factors with existing SOTA
compound scaling using accuracy as the sole objective (i.e., Effi-
ciencNet’s scaling factors). α, β, and γ are the base term of the
exponential scaling for depth, width, and resolution respectively, as
shown in Equation 1.

Scaling Type α (depth) β (width) γ (resolution)

Accuracy-only 1.2 1.1 1.15
LACS on GPU 1.29 1.16 1.07
LACS on TPU 1.29 1.14 1.08

for coefficient triplets of α,β, and γ using the same multi-

objective (i.e., ACCURACY (m)×
h

LATENCY (m)
Target

iw

) as

used in NAS when searching for the base model. We search
on TPUv3 and GPUv100 and find different optimal scaling
coefficients as shown in Table 2.

LACS discovers network depth should grow much faster
than image resolution, which is quite different from the pre-
vious SOTA compound scaling results using accuracy as the
single objective. Faster increase on network depth than on
image resolutions can slow down the memory inflation due to
activation and intermediate tensors, which improves model
speed by making a model more compute bound than mem-
ory bound. As shown in Section 2, DC accelerators prefer
models to be compute-bound to achieve high performance.

We also perform direct search on TPUv3 and GPUv100
with the same latency target as EfficientNet-X-B1 and find
the same model architectures as obtained by LACS, which
confirms that LACS can find the same model as the direct
multi-objective NAS when given the same latency target, but
with much fewer accelerator resources. Appendix C shows
more ablation studies on LACS.

6. Experiments

We present the accuracy and performance results on the
new EfficientNet-X model family on TPUs and GPUs, to
demonstrate the effectiveness of the unified NAS and LACS
method. Table 3 shows the speed and accuracy on Ima-
geNet [52] of EfficientNet-X models and comparisons with
other SOTA CNN models, where a few key observations
can be made. First, EfficientNet-X models are the fastest
among each model group on TPUs and GPUs, with compa-
rable accuracy. Specifically, EfficientNet-X models are up
to more than 2X faster than EfficientNet. EfficientNet-X is
on average (geomean) 82% and 48% faster than RegNet and
ResNeSt respectively on GPUv100 and 7X; it is 48% faster
than RegNet and ResNeSt respectively on TPUv3. Second,
all models except for Efficient-X models in Table 3 are polar-
ized. On one extreme, the EfficientNet family has the fewest
FLOPs but the lowest operational intensity I . On the other
extreme, other models such as ResNet and Inception fami-
lies have the highest operational intensity but most FLOPs.
While lower FLOPs improves inference speed, lower op-
erational intensity hurts inference speed. In contrast, the

68090

Table 3: EfficientNet-X inference speed and accuracy results on ImageNet on TPUv3 and GPUv100. ConvNets with similar top-1 accuracy
are grouped together. ?Original reported model accuracies in papers are used in the comparisons. †Following common practices, #FLOPs
refer to #multiply-and-add operations. ‡E is the execution efficiency measured on TPUv3, w.r.t to roofline instead of peak hardware
FLOPs/sec as shown in Equation 1. Only in the compute-bound region as shown in Figure 2, the roofline and hardware peak hardware
FLOPs/sec are the same. §The inference latency are measured for inferencing 128 images on TPUv3 and GPUv100, with mini batch size
of 128. All the measured speed is verified to be the same or faster than the reported results in original papers with the same batch size to
ensure fair and correct measurements. Note that the results are to demonstrate the effectiveness of our unified search and scaling method on
different DC accelerators. And direct comparing TPU and GPU results is not meaningful and beyond the scope of this paper, because we
focus on evaluating the model architecture themselves on different DC accelerators and run models directly on both GPUs and TPUs without
extra offline model optimizations (e.g., TensorRT [3] and model tuning [50]).

Models Acc.?
#Params #FLOPs† I

E‡ Inference Latency§(ms)

(Million) (Billion) (Ops/Byte) (TPUv3 / GPUv100)

EfficientNet-X-B0 77.3% 7.6 0.91 63.8 57.3% 8.71 / 22.5

EfficientNet-B0 [57] 77.3% 5.3 0.39 19.7 52.4% 13.4 / 38.1
ResNet-50 [25] 76.0% 26 4.1 122.5 57.2% 35.1 / 35.6
RegNetY-800MF [47] 76.3% 6.3 0.8 12.7 30% 45.1 / 33.9

EfficientNet-X-B1 79.4% 10.4 1.58 65.5 59.2% 13.6 / 34.4

EfficientNet-B1 79.2% 7.8 0.70 21.4 51.3% 22.3 / 60.5
Inception-v3 [55] 78.8% 24 5.7 94.6 34.5% 104.8 /55.6
RegNetY-4.0GF [47] 79.4% 26 4.0 19.4 29.2% 109.5 / 75.1

EfficientNet-X-B2 80.0% 11.5 1.89 73.0 54.8% 15.7 / 45.5

EfficientNet-B2 80.3% 9.2 1.0 24.1 48.8% 29.8 / 77.2
Inception-v4 [54] 80.0% 48 13 148.5 35.3% 75.1 / 119.9
RegNetY-8.0GF [47] 79.9% 39.2 8.0 27.9 32.4% 190.5 / 122.1

EfficientNet-X-B3 81.4% 16 4.3 84.0 51.2% 31.9 / 66.6

EfficientNet-B3 81.7% 12 1.8 26.1 51.3% 48.1 / 128.8

EfficientNet-X-B4 83.0% 34 10.4 101.5 47.7% 64.9 / 149.2

EfficientNet-B4 83.0% 19 4.2 31.29 47.8% 102.6 / 310.7
NASNet-A [66] 82.7% 89 24 55.2 43.8% 269.5 / 481.2
ResNeSt-101 [63] 83.0% 48 13 71.7 28.1% 92.3 / 149.4

EfficientNet-X-B5 83.7% 60 22.2 126.1 47.8% 125.9 / 290.2

EfficientNet-B5 83.7% 30 9.9 39.7 46.8% 192.5 / 640.1
ResNeSt-200 [63] 83.9% 70 36.3 68.7 69.9% 244.3 / 415.6

EfficientNet-X-B6 84.4% 137 52 167.5 36.2% 258.1 / 467.2

EfficientNet-B6 84.4% 43 19 43.9 45.0% 334.2 / 1040.6

EfficientNet-X-B7 84.7% 199 93 194.3 39.4% 396.1 / 847.7

EfficientNet-B7 84.7% 66 37 48.3 43.4% 621.4 / 1471.3
ResNeSt-269 [63] 84.5% 111 77 72.9 70.2% 501.9 / 864.9

EfficientNet-X models strike a balance between computation
load and computation rate, having both FLOPs and oper-
ational intensity in the middle between the two extremes,
which makes EfficientNet-X to be the fastest in each group.

Figure 3 shows the speedup details due to our new search
and scaling method. Overall, EfficientNet-X achieves up to
2X+ speedup on TPUv3 and GPUv100 over EfficientNet,
with geometric mean speedup as 56% and 91% on TPUs
and GPUs respectively. Figure 3 also shows the ablation
study on the speedup breakdown due to NAS with the new
search space and LACS. EfficientNet-X-single-objective-
scaling composes the model family using EfficientNet-X-

B0 as the base model but the EfficientNet’s orginal scal-
ing factors that are obtained by single-objective compound
scaling with accuracy as the sole objective. Thus, the
speedup on EfficientNet-X-B0 over EfficientNet-B0 shows
the benefits of the NAS with new search space, and the rela-
tive speedup of EfficientNet-X over EfficientNet-X-single-
objective-scaling in Figure 3 indicates the benefits of LACS
over previous SOTA compound scaling with accuracy as the
only objective. Concretely, NAS with new search space gen-
erates ∼50% speedup on TPUv3 and GPUv100, respectively.
LACS further increases performance by 14% and 25% aver-
age (geometric mean) on TPUs and GPUs respectively, atop

78091

TPUv3 GPUv100

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5

B0 B1 B2 B3 B4 B5 B6 B7 GM B0 B1 B2 B3 B4 B5 B6 B7 GM

EfficientNet EfficientNet-X-single-objective-scaling
EfficientNet-X

Figure 3: Speedup of EfficientNet-X and EfficientNet-X-single-
objective-scaling over the baseline EfficientNet. EfficientNet-X-
single-objective-scaling forms the model family use EfficientNet-
X-B0 as the base model but uses original EfficientNet’s scaling
factors that are obtained by compound scaling with accuracy as the
sole objective. GM is geometric mean.

the speedup due to the new search space. The more detailed
ablation studies on search space and LACS can be found in
Appendix B and C respectively.

Moreover, the DC accelerator-friendliness of EfficientNet-
X generalizes well across accelerator generations. TPUv3
has 3X of the TPUv2’s peak performance. When migrating
from TPUv2 to TPUv3 as shown in Figure 4, EfficientNet-X
models achieve ∼1.9X average (geometric mean) speedup
while EfficientNet models only achieve ∼1.5X speedup.
In other words, EfficientNet-X materializes ∼30% better
speedup than EfficientNet when migrating from TPUv2 to
TPUv3, demonstrating good generality.

All these results demonstrate the effectiveness of our
method. Specifically, our method, including NAS with the
search space optimized for DC-accelerators and LACS, em-
phasizes on simultaneously optimizing total computation W ,
operational intensity I , and execution efficiency E.

We also perform search and model scaling on Xeon Plat-
inum 8180 CPUs that are representative server-class CPUs
in datacenters. The results on CPUs are similar to that on
DC accelerators when the vector units/instructions [4] are en-
abled on CPUs. However, when the vector units/instructions
are disabled, the results on CPUs are very different. The
detailed results on CPUs can be found in Appendix D.

7. Related work

Neural Architecture Search (NAS) attempts to automate
the design process of machine learning models with rein-
forcement learning [65, 66], evolutionary search [49], differ-
entiable search [37, 17], and other methods [40, 33]. Recent
work in NAS has also reduced search costs [46, 36, 64] and
improved inference efficiency [56, 61, 57, 41, 35]. When
designing fast models for inference with NAS, previous
work employed multi-objective search [56, 18, 13, 29, 64,
27, 12, 21, 39, 16] to consider accuracy together with per-
formance/efficiency. However, their methods only passively
use high level signals such as model size and latency.

S
pe

ed
up

 T
P

U
v3

 v
s

v2

0.0

0.5

1.0

1.5

2.0

2.5

B0 B1 B2 B3 B4 B5 B6 B7 GM

EfficientNet EfficientNet-X

Figure 4: Speedup of EfficientNet-X and EfficientNet when mi-
grating from TPUv2 to TPUv3 with 3X hardware peak performance.
GM is geometric mean.

Targeted ML optimizations are also used extensively to
improve model accuracy and efficiency trade-offs. These
targeted optimizations include automated approaches such as
model pruning and quantization [23, 26, 58, 44, 38, 34, 19,
31, 65] as well as manual optimizations on specific platforms
especially mobile devices [28, 53].

Initial model scaling involves taking a fixed architecture
and individually increasing depth [25] and width [62] in
separation or together [28, 63]. Further work in compound
scaling yielded model families varying in depth, width, and
resolution simultaneously and systematically [57]. Scaling
is also more recently used in constructing larger models in
conjunction with NAS [66, 57].

Specialized datacenter accelerators have been playing a
critical role in powering machine learning. These acceler-
ators, including TPUs [15, 32] and GPUs [14, 43], provide
the computing power for both training and inference at scale.

8. Conclusions

This work presents a new method to search for CNN
model families targeting datacenter accelerators for high ac-
curacy and efficient inference. We first provide analysis to
show the root cause of FLOPs-latency nonproportionality
and ways to improve CNN performance on DC accelerators.
Guided by the insights gained from our analysis, the new
search method incorporates a NAS search space tailored for
DC accelerators and a new scaling approach called latency-
aware compound scaling. Our new method provides the
search and scaling for model families with critical visibility
into accelerator details, and compose model families with
optimized FLOPs, operational intensity, and efficiency to
achieve better accuracy and speed. The resulted EfficientNet-
X model family achieves up to 2X+ faster speed and com-
parable accuracy to SOTA model families on TPUv3 and
GPUv100. EfficientNet-X also achieves 30% better speedup
when migrating from TPUv2 to TPUv3, demonstrating the
generality of our method across different accelerator gener-
ations. These results highlight the impressive possibilities
available through careful accelerator-aware optimizations
on NAS and compound scaling for increasingly demanding
computer vision models on emerging DC accelerators.

88092

References

[1] Accelerated linear algebra (xla): Optimizing compiler for
machine learning. https://www.tensorflow.org/xla/. 4, 6

[2] Depth-wise separable convolutions: Performance investiga-
tion. https://tlkh.dev/depsep-convs-perf-investigations/. 6

[3] Developer guide: Nvidia deep learning tensorrt.
https://docs.nvidia.com/deeplearning/tensorrt/developer-

guide/index.html. 7
[4] Intel R� Advanced Vector Extensions 512 (Intel R� AVX-

512). https://www.intel.com/content/www/us/en/architecture-

and-technology/avx-512-overview.html. 8, 14
[5] Nvidia deep learning performance: Activation.

https : / / docs . nvidia . com / deeplearning /

performance / dl - performance - memory -

limited/index.html. 4
[6] Using cloud tpu tools. https://cloud.google.com/tpu/docs/cloud-

tpu-tools. 6
[7] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 3

[8] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit
Mukherjee. Understanding deep neural networks with recti-
fied linear units. In ICLR, 2018. 4

[9] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In International Conference on Learning

Representations, 2017. 1
[10] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc Le. Can weight
sharing outperform random architecture search? an investiga-
tion with TuNAS. 2020. 5

[11] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun
Wang. Reinforcement learning for architecture search by
network transformation. AAAI, 2018. 1

[12] Han Cai, Chuang Gan, and Song Han. Once for all: Train
one network and specialize it for efficient deployment. arXiv

preprint arXiv:1908.09791, 2019. 8
[13] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,
2019. 8

[14] Jack Choquette, Olivier Giroux, and Denis Foley. Volta:
Performance and programmability. IEEE Micro, 2018. 1, 2,
5, 8

[15] Jeffrey Dean. The deep learning revolution and its implica-
tions for computer architecture and chip design, 2019. 1, 2, 5,
8

[16] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Ppp-net: Platform-aware progressive search for
pareto-optimal neural architectures. 2018. 8

[17] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In Proceedings of the IEEE

Conference on computer vision and pattern recognition, pages
1761–1770, 2019. 8

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Effi-
cient multi-objective neural architecture search via lamarckian
evolution. arXiv preprint arXiv:1804.09081, 2018. 8

[19] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design. ECV

Workshop at CVPR’18, 2018. 8
[20] Google. Cloud TPU. https://cloud.google.com/tpu. 1, 2, 5
[21] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560.
Springer, 2020. 8

[22] Suyog Gupta and Mingxing Tan. Efficientnet-edgetpu: Creat-
ing accelerator-optimized neural networks with automl. 2019.
4

[23] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-
ing both Weights and Connections for Efficient Neural Net-
works. In Proceedings of Advances in Neural Information

Processing Systems (NIPS), 2015. 8
[24] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D.

Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K.
Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X.
Wang. Applied machine learning at facebook: A datacenter
infrastructure perspective. In 2018 IEEE International Sympo-

sium on High Performance Computer Architecture (HPCA),
pages 620–629, 2018. 14

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR, pages
770–778, 2016. 1, 4, 7, 8

[26] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and acceler-
ation on mobile devices. ECCV, 2018. 8

[27] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. ICCV, 2019. 6, 8

[28] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 4, 8
[29] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan,

Yu-Ting Chen, Wei Wei, and Shih-Chieh Chang. MONAS:
Multi-objective neural architecture search using reinforce-
ment learning. arXiv preprint arXiv:1806.10332, 2018. 8

[30] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. CVPR, 2018. 6

[31] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016. 8

[32] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc

98093

Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, Richard C. Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le,
Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy
Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris
Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan
Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
datacenter performance analysis of a tensor processing unit.
In ISCA, 2017. 1, 2, 8

[33] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,
Barnabas Poczos, and Eric Xing. Neural architecture search
with bayesian optimisation and optimal transport. arXiv

preprint arXiv:1802.07191, 2018. 8
[34] Sheng Li, Jongsoo Park, and Ping Tak Peter Tang. En-

abling sparse winograd convolution by native pruning. CoRR,
abs/1702.08597, 2017. 8

[35] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial
order pruning: for best speed/accuracy trade-off in neural ar-
chitecture search. In Proceedings of the IEEE Conference on

computer vision and pattern recognition, pages 9145–9153,
2019. 8

[36] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy.
Progressive neural architecture search. ECCV, 2018. 8

[37] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 8
[38] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Effi-

cient sparse-winograd convolutional neural networks. ICLR,
2018. 8

[39] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
Nsga-net: neural architecture search using multi-objective
genetic algorithm. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, pages 419–427, 2019.
8

[40] Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. Neural
architecture optimization. arXiv preprint arXiv:1808.07233,
2018. 8

[41] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and
Yunxin Liu. Fast hardware-aware neural architecture search.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, pages 692–693,
2020. 8

[42] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng
Li, Nishant Patil, James Laudon, Cliff Young, and David
Patterson. A domain-specific supercomputer for training deep
neural networks. In Communications of the ACM, volume 67,
pages 67–78, 2020. 1, 2

[43] NVIDIA. Nvidia a100 tensor core gpu architecture. White

Paper, 2020. 1, 2, 8
[44] Jongsoo Park, Sheng Li, Wei Wen, Hai Li, Yiran Chen, and

Pradeep Dubey. Holistic sparsecnn: Forging the trident of
accuracy, speed, and size. ICLR, 2017. 8

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. 3

[46] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. ICML, 2018. 8

[47] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollár. Designing network design spaces.
CVPR, 2020. 7

[48] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching
for activation functions. arXiv preprint arXiv:1710.05941,
2018. 4

[49] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. AAAI, 2019. 8

[50] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-
ter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian
Anderson, Maximilien Breughe, Mark Charlebois, William
Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gard-
ner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao,
Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius
Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun
Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei
Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu,
Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. Mlperf inference
benchmark, 2020. 7

[51] Tal Ridnik, Hussam Lawen, Asaf Noy, Emanuel Ben Baruch,
Gilad Sharir, and Itamar Friedman. Tresnet: High perfor-
mance gpu-dedicated architecture, 2020. 1, 2

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 6
[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. CVPR, 2018. 4, 8

[54] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. AAAI, 4:12, 2017.
7

[55] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. CVPR, pages 2818–2826, 2016.
7

[56] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

108094

Mark Sandler, Andrew Howard, and Quoc V. Le. MnasNet:
Platform-aware neural architecture search for mobile. CVPR,
2019. 4, 5, 8

[57] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. ICML, 2019.
1, 2, 4, 5, 7, 8, 12, 13

[58] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li. Learning Structured Sparsity in Deep Neural Networks. In
Proceedings of Advances in Neural Information Processing

Systems (NIPS), 2016. 8
[59] Samuel Williams, Andrew Waterman, and David Patterson.

Roofline: An Insightful Visual Performance Model for Multi-
core Architectures. Communications of the ACM, 52(4):65–
76, Apr. 2009. 2

[60] Samuel Williams, Charlene Yang, and Yunsong Wang.
Roofline performance model for hpc and deep-learning ap-
plications. In GPU Technology Conference (GTC), 2020.
2

[61] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10734–10742, 2019. 8
[62] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. BMVC, 2016. 8
[63] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu,

Zhi Zhang, Haibin Lin, Yue Sun, Tong He, R. Manmatha
Jonas Mueller, Mu Li, and Alexander Smola. Resnest: Split-
attention networks. https://arxiv.org/abs/2004.08955, 2020.
4, 7, 8

[64] Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu,
Hairong Liu, and Greg Diamos. Resource-efficient neural
architect. arXiv preprint arXiv:1806.07912, 2018. 8

[65] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. ICLR, 2017. 1, 8

[66] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. CVPR, 2018. 1, 7, 8

118095

