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Abstract

Due to the scarcity of annotated scene flow data, self-

supervised scene flow learning in point clouds has attracted

increasing attention. In the self-supervised manner, estab-

lishing correspondences between two point clouds to ap-

proximate scene flow is an effective approach. Previous

methods often obtain correspondences by applying point-

wise matching that only takes the distance on 3D point co-

ordinates into account, introducing two critical issues: (1)

it overlooks other discriminative measures, such as color

and surface normal, which often bring fruitful clues for ac-

curate matching; and (2) it often generates sub-par perfor-

mance, as the matching is operated in an unconstrained

situation, where multiple points can be ended up with the

same corresponding point. To address the issues, we for-

mulate this matching task as an optimal transport problem.

The output optimal assignment matrix can be utilized to

guide the generation of pseudo ground truth. In this opti-

mal transport, we design the transport cost by considering

multiple descriptors and encourage one-to-one matching by

mass equality constraints. Also, constructing a graph on the

points, a random walk module is introduced to encourage

the local consistency of the pseudo labels. Comprehensive

experiments on FlyingThings3D and KITTI show that our

method achieves state-of-the-art performance among self-

supervised learning methods. Our self-supervised method

even performs on par with some supervised learning ap-

proaches, although we do not need any ground truth flow

for training.

1. Introduction

Scene flow estimation aims to obtain a 3D vector field

of points in dynamic scenes, and describes the motion state

of each point. Recently, with the popularity of 3D sensors
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Figure 1. Pseudo ground truth between two point clouds pro-

duced by different methods. The green line represents the correct

pseudo ground truth whose relative error is less than 10%. The

red line represents the wrong pseudo ground truth. (a) pseudo

ground truth produced by nearest neighbor search with only 3D

point coordinate as measure; (b) pseudo ground truth produced by

our optimal transport module; (c) pseudo ground truth produced

by our optimal transport module and then refined by our random

walk module; (d) ground truth.

and the great success of deep learning in 3D point cloud

tasks, directly estimating the scene flow from point clouds

by deep neural networks (DNNs) is an active research topic.

DNNs are data-driven, and the supervised training of DNNs

requires a large amount of training data with ground truth

labels. However, for the scene flow estimation task, no sen-

sor can capture optical flow ground truth in complex envi-

ronments [19], which makes real-world scene flow ground

truth hard to obtain. Due to the scarcity of the ground truth

data, recent deep learning based point cloud scene flow es-

timation methods [14, 7, 38, 23] turn to synthetic data, e.g.
the FlyingThings3D dataset [18], for supervised training.

However, the domain gap between synthetic data and real-

istic data is much likely to make the trained models perform

poorly in real-world scenes.
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To circumvent the dependence on expensive ground truth

data, we target self-supervised scene flow estimation from

point clouds. Mittal et al. [21] and Wu et al. [38] make the

first attempt. These methods search for the closest point in

the other point cloud as the corresponding point and use the

coordinate difference between each correspondence to ap-

proximate the ground truth scene flow. Although achieving

promising performance, two issues exist in these methods:

(1) searching for correspondences relies only on 3D point

coordinates but ignores other measures, such as color and

surface normal, which often bring fruitful clues for accu-

rate matching; and (2) the unconstrained search may lead to

a degenerated solution, where multiple points match with

the same point in the other point cloud, i.e. a many-to-one

problem. An example of nearest neighbor search is shown

in Fig. 1(a).

In this paper, we assume that an object’s geometric struc-

ture and appearance remain unchanged as it moves and the

correct corresponding points could be found in its neigh-

borhood. Thus, when searching for point correspondences,

we adopt 3D point coordinate, surface normal, and color

as measures and encourage each point to be matched with

a unique one in the next frame, i.e. one-to-one matching.

Naturally, the searching problem can be formulated as an

optimal transportation [22], where the transport cost is de-

fined on the three measures, the mass equality constraints

are built to encourage one-to-one matching, and the pro-

duced optimal assignment matrix indicates the optimal cor-

respondences between the two point clouds. Removing

some invalid correspondences with far distance, the coor-

dinate differences between valid correspondences can be

treated as the pseudo ground truth flow vectors for training.

Neighboring points in an object often share a similar

movement pattern. However, the optimal transport mod-

ule generates pseudo labels by point-wise matching without

considering the local relations among neighboring points,

resulting in conflicting pseudo labels in each local region,

as shown in Fig. 1(b). To address this issue, we introduce a

random walk module to refine the pseudo labels by encour-

aging local consistency. Viewing each point as a node, we

build a graph on the point cloud to propagate and smooth

pseudo labels. Specifically, we apply the random walk al-

gorithm [16] in the graph. Using distance on 3D point coor-

dinates as a measure, we build an affinity matrix to describe

the similarity between two nodes. In the affinity matrix,

closer nodes will be assigned a higher score to ensure local

consistency. Normalizing the affinity matrix, we acquire

the random walk transition matrix to guide the propagation

among the nodes. Through the propagation on the graph,

we obtain locally consistent pseudo scene flow labels for

scene flow learning.

Our main contributions can be summarized as follows:

• We propose a novel self-supervised scene flow learn-

ing method in point clouds (Self-Point-Flow) to gen-

erate pseudo labels by point matching and perform

pseudo label refinement by encouraging the local con-

sistency of the pseudo labels;

• Converting the pseudo label generation problem into

a point matching task, we propose an optimal trans-

port module for pseudo label generation by consid-

ering multiple clues (3D coordinates, colors and sur-

face normals) and explicitly encouraging one-to-one

matching;

• Neighboring points in an object often share a simi-

lar movement pattern. Building a graph on the point

cloud, we propose a random walk module to refine the

pseudo labels by encouraging local consistency.

• Our proposed Self-Point-Flow achieves state-of-the-

art performance among self-supervised learning meth-

ods. Our self-supervised method even performs on par

with some supervised learning approaches, although

we do not need any ground truth flow for training.

2. Related Work

Supervised scene flow from point clouds Scene flow is

first proposed in [31] to represent the 3D motion of points

in a scene. Many works [5, 29, 19, 17, 24, 8, 30, 33, 34, 35]

have been proposed to recover scene flow from multiple

types of data. Recently, directly estimating scene flow from

point cloud data using deep learning has become a new re-

search direction. Some approaches [38, 23, 7, 14, 1, 36]

learn scene flow in point clouds in a fully supervised man-

ner. Puy et al. [23] first introduce the optimal transport into

this field. Added into DNNs, this optimal transport module

uses learned features to regress scene flow under full su-

pervision. Different from [23], we focus on unsupervised

learning, and our optimal transport module leverages low-

level clues to match points for pseudo label generation.

Unsupervised scene flow from point clouds To cir-

cumvent the need for expensive ground truth, some ap-

proaches [38, 21] target self-supervised learning. Mit-

tal et al. [21] introduce a nearest neighbor loss and an an-

chored cycle loss. Wu et al. [38] use the Chamfer dis-

tance [6] as the main proxy loss. For both the nearest neigh-

bor loss and the Chamfer distance, the nearest neighbor

in the other point cloud is regarded as the corresponding

point to provide supervision signals. Unlike [21, 38], when

building correspondences, we utilize multiple descriptors as

clues and leverage global mass constraints to explicitly en-

courage one-to-one matching in optimal transport.

Unsupervised optical/scene flow from images Other rel-

ative topics are unsupervised optical flow from images [25,

39, 42, 13, 12] and unsupervised scene flow from im-

ages [9, 11, 37]. In these scopes, the photometric consis-
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tency is widely used as a proxy loss to train flow estimation

networks by penalizing the photometric differences. Dif-

ferent from these works that directly use the differences as

the supervision signal, our method produces pseudo ground

truth, which enables our self-supervised method to cooper-

ate with any point-wise loss function.

Optimal transport Optimal transport has been studied in

various fields, such as few-shot learning [41, 40], pose esti-

mation [26], semantic correspondence [15], and etc. Most

of them embed the optimal transport into DNNs to find cor-

respondences with learnable features. In this paper, we ap-

ply optimal transport to self-supervised scene flow learning.

Random walk Random walk is a widely known graph-

ical model [16], which has been used in image segmen-

tation [2] and person re-ID [27]. Bertasius et al. [2] use

pixel-to-pixel relations to regularize the pixel prediction re-

sults. Shen et al. [27] use inter-image relations to improve

image affinity ranking. In this paper, based on the local con-

sistency assumption, we focus on leveraging point-to-point

relations for pseudo label smoothness and generation.

3. Method

In this section, we first introduce the theory of opti-

mal transport, and then we discuss the relationship between

scene flow labels and point correspondences. Based on the

relationship, we solve the pseudo label generation problem

by finding point correspondences in an optimal transport

framework. Finally, we introduce the details of our pro-

posed pseudo label refinement module that produces dense

and locally consistent pseudo labels by the random walk

theory. The overview of our method is illustrated in Fig. 2.

3.1. Optimal Transport Revisited

Optimal transport problem [32] seeks a transport plan

that moves a source distribution µs to a target distribution

µt with a minimum transport cost. In the discrete versions

of this problem, µs and µt are defined as discrete empiri-

cal distributions in R
n. Adapting Kantorovich’s formula-

tion [10] to the discrete setting, the space of transport plans

is a polytope, and the discrete optimal transport problem

can be written as:

U∗ = argmin
U∈R

n×n

+

∑

ij

HijUij

s.t. U1n = µs, U
T
1n = µt,

(1)

where Hij ≥ 0 is the transport cost from sample i to sample

j, U∗ is the optimal assignment matrix and each element

U∗
ij describes the optimal amount of mass transported from

sample i to sample j.

3.2. Pseudo Label Generation by OT

Given two consecutive point clouds, P = {pi ∈ R
3}ni=1

at frame t and Q = {qi ∈ R
3}nj=1 at frame t+1, the task of

point cloud scene flow estimation aims to predict the scene

flow F = {fi ∈ R
3}ni=1 for point cloud P , where each

element fi represents the translation of point pi from frame

t to frame t+ 1.

Unlike fully supervised scene flow learning, where

scene flow labels are available, the self-supervised scene

flow learning should produce pseudo labels or design

self-supervised losses for training. In this paper, we study

how to generate effective pseudo labels for scene flow

learning.

Extracting pseudo labels via point matching Scene

flow describes the motion between two consecutive point

clouds. Ideally, if no viewpoint shift and occlusions exist,

following the ground truth scene flow labels D, the first

point cloud P can be projected into the next frame and fully

occupy the second point cloud Q:

P +D = π Q, (2)

where π ∈ {0, 1}n×n is a permutation matrix to indicate

the point correspondences between the two point clouds.

Therefore, for a pair of consecutive point clouds P and Q, if

we can accurately match points in the two point clouds, i.e.
accurately computing the permutation matrix π, the corre-

spondences derived from π can help us recover the ground

truth scene flow labels D. In other words, we can solve

the pseudo label generation problem by finding point corre-

spondences.

When building correspondences, a straightforward way

is to directly match the points from P to Q. However,

for the self-supervised scene flow estimation task, given

predicted scene flow F , we propose a pre-warping opera-

tion to warp the first point cloud P by the predicted scene

flow F , and then find correspondences by matching points

from the pre-warped first point cloud, denoted as P̂ , to the

second point cloud Q. Although the predicted scene flow is

inaccurate at the beginning of the training, the predictions

will be gradually improved as the training continues, which

makes the matching from P̂ to Q easier than the matching

from P to Q. In Sec. 4.3, we show that the matching

from P̂ to Q can make our self-supervised method achieve

better performance.

Building optimal transport problem Using 3D point co-

ordinate, color, and surface normal as measures to compute

the matching cost and formulating one-to-one matching as

the mass equality constraints, we build an optimal transport

problem from P̂ to Q,

T ∗ = argmin
T∈R

n×n

+

∑

ij

CijTij

s.t. T1n = µp̂, T
T
1n = µq.

(3)
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Figure 2. The pipeline of our proposed self-supervised scene flow learning method. Two parts constitute this method: a pseudo label

generation module to produce initial pseudo labels by point matching and a pseudo label refinement module to improve the quality of the

pseudo labels by encouraging local consistency.

T ∗ is the optimal assignment matrix from P̂ to Q. Cij is

the transport cost from the i-th point in P̂ to the j-th point
in Q. The transport cost Cij is obtained by computing the
pairwise difference between p̂i and qj in the three mea-

sures. The coordinate cost Cd
ij and the color cost Cc

ij are
defined on a Gaussian function:

C
d
ij = 1− exp(−

‖p̂i − qj‖
2

2θ2d
), (4)

C
c
ij = 1− exp(−

‖kc
p̂,i − kc

q,j‖
2

2θ2c
), (5)

where ‖ · ‖ denotes the L2 norm of a vector, θd and θc are
user defined parameters, p̂i and qj represent the coordinates
of the i-th point and the j-th point, kc

p̂,i and kc
q,j are the col-

ors of the two points. The surface normal cost is calculated
using the cosine similarity:

C
s
ij = 1−

‖(ks
p̂,i)

Tks
q,j‖

‖ks
p̂,i‖ · ‖k

s
q,j‖

, (6)

where ks
p̂,i and ks

q,j are the surface normals of the two

points. The final transport cost is the sum of the three in-
dividual costs:

Cij = C
d
ij +C

c
ij +C

s
ij . (7)

In order to encourage one-to-one matching, in the equal-

ity constraints of Eq. 3, we set µp̂ = 1
n
1n and µq = 1

n
1n.

In this case, the row sum and the column sum of assign-

ment matrix T are constrained to be a uniform distribution,

which will alleviate the many-to-one matching problem.

Efficiently solving with the Sinkhorn algorithm To effi-

ciently solve the optimal transport problem, we smooth the

above problem with an entropic regularization term:

T ∗ = argmin
T∈R

n×n

+

∑

ij

CijTij + εTij(logTij − 1)

s.t. T1n = µp̂, T
T
1n = µq.

(8)

ε is the regularization parameter. The Sinkhorn algo-

rithm [4] can be employed to solve this entropy-regularized

Algorithm 1 Optimal transport

Input: Transport cost matrix C; hyperparameter ε, itera-

tion number Lo;

Output: Optimal transport matrix T ∗ ;

Procedure:

1: K ← exp(−C/ε);
2: µp̂ ←

1
n
1n, µq ←

1
n
1n, a← 1

n
1n;

3: for l = 1, ..., Lo do

4: b← µq/(K
Ta);

5: a← µp̂/(Kb);
6: end for

7: T ∗ ← diag(a)K diag(b).

formulation. The details are presented in Algorithm 1.

Selecting hard correspondences and generating pseudo

labels from assignment matrix The optimal transport

plan T ∗ derived from Algorithm 1 is a soft assignment ma-

trix, where T ∗
ij ∈ [0, 1]. To obtain hard correspondences

from P̂ to Q, in each row of T ∗, we set the element with

the maximum value to 1 and the remaining elements to 0 so

that the point with the highest transport score is selected as

the unique corresponding point in this row. The produced

hard assignment matrix is donated as T ∗
π . According to the

Eq. 2, we have the pseudo scene flow labels D̃:

D̃ = T ∗
πQ− P . (9)

Removing some invalid pseudo scene flow labels with too

large displacements (larger than 3.5m), we obtain a set of

valid pseudo labels D̃M for the valid labeled points PM .

And the remaining points without valid pseudo labels are

denoted as PS .

3.3. Pseudo Label Refinement by Random Walk

The optimal transport module generates pseudo labels

by point-wise matching but lacks in capturing the local
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unlabeled point PS

labeled point PM  

undirected edge in G1

directed edge in G2

Figure 3. Illustration of the graph G. This graph consists of two

subgraphs: a fully-connected undirected subgraph for pseudo la-

bel smoothing on labeled points and a directed subgraph for new

pseudo label generation on unlabeled points.

relations among neighboring points, resulting in conflicting

pseudo labels in each local region. Moreover, after the

pseudo label generation module, there are still some points

without valid pseudo labels. To address the issues, we

propose a pseudo label refinement module to encourage the

local consistency of pseudo labels and infer new pseudo

labels for those unlabeled points.

Building graph on the point cloud Viewing each point

as a node, we build a graph G(V,E) on the first point

cloud P , shown in Fig. 3. According to the labeling

state of each point, the nodes are separated into two sets,

the labeled nodes associated with PM and the unlabeled

nodes associated with PS . Vm = {1, 2, ..., nm} and

Vs = {1, 2, ..., ns} represent the labeled node set and the

unlabeled node set, respectively. nm and ns are the number

of nodes in the two sets. Subsequently, the entire graph

G(V,E) can be divided into two suggraphs: 1) a fully-

connected undirected subgraph G1(Vm, Em) on labeled

nodes Vm to smooth the pseudo labels of the labeled points;

2) a directed subgraph G2(V,Es) from labeled nodes Vm

to unlabeled nodes Vs to generate new pseudo labels for the

unlabeled points. In this procedure, the pseudo labels of

the unlabeled points are entirely dependent on those of the

labeled points. Therefore, we can first propagate pseudo

labels on the undirected subgraph and then on the directed

subgraph. The propagation operation can be achieved by

the random walk algorithm [16].

Propagating on the undirected subgraph The fully-

connected undirected subgraph is constructed to improve

the local consistency of pseudo labels for the labeled point

set PM . The random walk operation on this subgraph

can be modeled with a nm × nm transition matrix A1.

A1
ij ∈ [0, 1] denotes the transition probability between

i-th and j-th nodes with constraints
∑

j A
1
ij = 1 for all j.

To encourage the local consistency, we use the nearness
among nodes as the measure to build the transition matrix
so that the closer nodes will be assigned a higher transition
probability. Firstly, we denote a symmetric nm×nm affinity
matrix W 1, where each element W 1

ij describes how near

the nodes i and j are,

W
1

ij = exp(−
‖pi − pj‖

2

2θ2r
), (10)

where θr is a hyperparameter, pi and pj are point coordi-
nates associated with nodes i and j. Then, we normalize
the affinity matrix W 1 to obtain the transition matrix A1,
where each element A1

ij is written as:

A
1

ij =
W 1

ij∑
j 6=i

W 1

ij

. (11)

The t-th iteration of random walk refinements on the

pseudo labels can be expressed as

D̃
(t)
M = αA1D̃

(t−1)
M + (1− α)D̃

(0)
M , (12)

where D̃
(0)
M are the initial pseudo labels derived from the

pseudo label generation module, D̃
(t−1)
M are the refined la-

bels after t − 1 random walk steps, and α is a parameter

[0, 1] to control the tradeoff between the random walk re-

finements and the initial values.

When applying the random walk procedure until conver-

gence, i.e. t = ∞, according to [2, 27], the final random

walk refinements can be written as

D̃
(∞)
M = (1− α)(I − αA1)−1D̃

(0)
M , (13)

where I is the identity matrix. After Lr random walk steps,

we treat the produced random walk refinements as the

refined pseudo labels of the labeled points, D̂M = D̃
(Lr)
M .

Propagating on the directed subgraph The undirected

subgraph is built to infer new pseudo labels for the unla-

beled point set PS based on the refined pseudo labels of the

labeled point set, D̂M . Similar to the propagation process

on the undirected subgraph, we first define a ns×nm affin-

ity matrix W 2 to describe the nearness between each point

in PS and each point in PS . Then we obtain a ns×nm tran-

sition matrix A2 by normalizing the affinity matrix W 2.

The calculation of W 2 and A2 is the same as that of W 1

and A1, shown in Eq. 10 and Eq. 11. Based on the transition

matrix A2 and the refined pseudo labels D̂M , we obtain the

new pseudo labels D̂S for the unlabeled points:

D̂S = A2D̂M . (14)

Training with pseudo labels Combining the refined

pseudo labels D̂M and the new pseudo labels D̂S , we ob-

tain the final refined pseudo labels D̂ for the entire point

cloud P in self-supervised learning. The training loss in

our self-supervised learning method can be computed by:

Loss = floss(D̂,F ), (15)

where floss is any per-point loss function, F is the predicted

scene flow. Specifically, we set floss to per-point L2-norm

loss function for scene flow learning in this paper.
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4. Experiments

We first compare our method with two state-of-the-art

self-supervised scene flow estimation methods in Sec. 4.1.

Then, we compare our self-supervised models with state-

of-the-art fully-supervised models in Sec. 4.2. Finally,

we conduct ablation studies to analyze the effectiveness

of each component in Sec. 4.3. In this section, we adopt

the FlowNet3D [14] as our default scene flow estimation

model with only point coordinates as input. Experiments

will be conducted on FlyingThings3D [18] and KITTI

2015 [19, 20] datasets. Point clouds are not directly pro-

vided in the two original datasets. Following [23], we de-

note the two processed point cloud datasets provided by [7]

as FT3Ds and KITTIs. And we denote the two processed

datasets provided by [14] as FT3Do and KITTIo.

Evaluation metrics. We adopt four evaluation metrics

used in [14], [7], [23]. Let Y denote the predicted scene

flow, and D be the ground truth scene flow. The evaluate

metrics are computed as follows. EPE(m): the main metric,

‖Y ∗−Ygt‖2 average over each point. AS(%): the percent-

age of points whose EPE < 0.05m or relative error < 5%.

AR(%): the percentage of points whose EPE < 0.1m or rel-

ative error < 10%. Out(%): the percentage of points whose

EPE > 0.3m or relative error > 10%.

4.1. Comparison with selfsupervised methods

Comparison with PointPWC-Net [38]. Wu et al. [38]

introduce Chamfer distance, smoothness constraint, and

Laplacian regularization for self-supervised learning. Fol-

lowing the experimental settings of [38], we first train

the FlowNet3D model with our self-supervised method on

FT3Ds and then evaluate on FT3Ds and KITTIs. During

training, we use the whole training set in FT3Ds for train-

ing. Besides, we also try to add the cycle-consistency reg-

ularization [14] into our training loss. The detailed experi-

mental setting could be found in supplementary.

The results are shown in Table 1. Our method outper-

forms self-supervised PointPWC-Net [38] on all metrics

and shows significantly better generalization ability

on KITTI, although the network capacity of our used

FlowNet3D is worse than that of their PointPWC-Net.

Adding the cycle-consistency regularization to the loss

function, our model gains a further improvement.

Comparison with JGF [21]. Mittal et al. [21] propose a

nearest neighbor loss and an anchored cycle loss for self-

supervised training. In [21], they split the KITTIo into

two sets, 100 pairs of point clouds for training, denoted as

KITTIv, and the remaining 50 pairs for testing, denoted as

KITTIt. Moreover, they also leverage an additional real-

world outdoor point cloud dataset, nuScenes [3], to augment

their training data. In [21], all networks are initialized with

a Flownet3D model [14] pre-trained on FlyingThing3D.

Table 1. Evaluation results on FlyingThings3D and KITTI

datasets using the process point cloud data provided by [7]. Full

means fully-supervised training, Self means self-supervised train-

ing. † means that we add a cycle-consistency regularization [14]

into the training loss. Without using ground truth flow, our

self-supervised method outperforms PointPWC-Net on the two

datasets and even performs on par with some supervised ap-

proaches.

Dataset Method Sup. EPE↓ AS↑ AR↑ Out↓

FT3Ds

PointPWC-Net [38] Self 0.1213 32.39 67.42 68.78

Ours Self 0.1208 36.68 70.22 65.35

Ours† Self 0.1009 42.31 77.47 60.58

SPLATFlowNet [28] Full 0.1205 41.97 71.80 61.87

original BCL [7] Full 0.1111 42.79 75.51 60.54

FlowNet3D [14] Full 0.0864 47.89 83.99 54.64

HPLFlowNet [7] Full 0.0804 61.44 85.55 42.87

PointPWC-Net [38] Full 0.0588 73.79 92.76 34.24

KITTIs

PointPWC-Net [38] Self 0.2549 23.79 49.57 68.63

Ours Self 0.1271 45.83 77.77 41.44

Ours† Self 0.1120 52.76 79.36 40.86

SPLATFlowNet [28] Full 0.1988 21.74 53.91 65.75

original BCL [7] Full 0.1729 25.16 60.11 62.15

FlowNet3D [14] Full 0.1064 50.65 80.11 40.03

HPLFlowNet [7] Full 0.1169 47.83 77.76 41.03

PointPWC-Net [38] Full 0.0694 72.81 88.84 26.48

In our experiment, we use the raw data from KITTI to

produce point clouds as our training data. Because the point

clouds in KITTIo belong to 29 scenes in KITTI, to avoid the

overlap of training data and test data, we produce training

point clouds from the remaining 33 scenes. Extracting a

pair of point clouds at every five frames, we build a self-

supervised training set containing 6,068 pairs, denoted as

KITTIr. For comparison, we test our model on the same

KITTIt with 50 test pairs. In each test pair, our model is

evaluated by processing 2,048 random points. The detailed

experimental setting is in supplementary.

The results are shown in Table 2. Our model trained on

KITTIr outperforms their model by 18.3% in EPE, which

is pre-trained on FT3D and then trained on KITTIv, al-

though training from scratch is much more challenging

than fine-tuning a pre-trained model for self-supervised

learning. After further fine-tuned on KITTIv, our model

achieves comparable performance to their model, which

is pre-trained on FT3D and then trained on nuScenes and

KITTIv. When using the parameters of self-supervised

models as initial weights and performing fully-supervised

training on KITTIv, our model outperforms theirs on all

metrics. Fig. 5 displays our produced pseudo ground truth

for some examples in KITTIv.

4.2. Comparison with fullysupervised methods

In Table 1, we compare our self-supervised model with

some fully-supervised methods, which are also trained on

FT3Ds and tested on FT3Ds and KITTIs. As shown in

Table 1, adding a cycle-consistency regularization, our
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Figure 4. Qualitative results on FlyingThings3D (top) and KITTI (bottom). Blue points are the first point cloud P . Green points are the

points warped by the correctly predicted scene flow. The predicted scene flow belonging to AR is regarded as a correct prediction. For the

points with incorrect predictions, we use the ground truth scene flow to warp them and the warped results are shown as red points.

Table 2. Evaluation results on KITTIt according to the test set-

tings of Mittal et al. [21]. ‡ means a fully-supervised fine-tuning

on KITTIv.
Method Pre-trained Training data EPE↓ AS↑ AR↑

[21] X FT3Do + KITTIv 0.1260 32.00 73.64

[21] X FT3Do + nuScenes + KITTIv 0.1053 46.48 79.42

Ours KITTIr 0.1029 35.68 68.55

Ours KITTIr + KITTIv 0.0895 41.74 75.01

[21] X FT3Do + nuScenes + KITTIv
‡ 0.0912 47.92 79.63

Ours KITTIr + KITTIv
‡ 0.0720 50.12 82.38

self-supervised method outperforms SPLATFlowNet [28]

on FT3Ds and generalizes better on KITTIs than SPLAT-

FlowNet [28], original BCL [7], and HPLFlowNet [7], al-

though we do not use any ground truth flow for training.

Qualitative results are shown in Fig. 4.

In Table 3, using KITTIo as test set, we compare our

self-supervised model trained on KITTIr with some fully-

supervised methods trained on FT3Do, following the test

procedure of FLOT [23]. Despite using the same scene flow

estimation model, our self-supervised FlowNet3D trained

on KITTIr outperforms supervised FlowNet3D [14] trained

on FT3Do by 39.3% in the metric of EPE. It demonstrates

that, for the FlowNet3D model, self-supervised learning on

KITTI with our method is much more effective than su-

pervised learning on FlyingThings3D in real-world scenes.

Furthermore, as shown in Table 3, our self-supervised

method has achieved a close performance to the state-of-

the-art supervised method, FLOT [23], on KITTIo dataset.

Fig. 4 provides some example results.

4.3. Ablation studies

In this section, we conduct ablation studies to analyze the

effectiveness of each component. All models are trained on

KITTIr and evaluated on KITTIo.

Ablation study for pseudo label generation module. In

this module, for good point matching, we adopt color and

surface normal as additional measures to build the trans-

Table 3. Evaluation results on KITTIo. Without using ground

truth flow, our self-supervised method outperforms supervised

FlowNet3D [14] and achieves comparable performance to the

state-of-the-art supervised method, FLOT [23].

Method Sup. Training data EPE↓ AS↑ AR↑ Out↓

FlowNet3D [14] Full FT3Do 0.173 27.6 60.9 64.9

FLOT [23] Full FT3Do 0.107 45.1 74.0 46.3

Ours Self KITTIr 0.105 41.7 72.5 50.1

port cost matrix and establish the global constraints to en-

force one-to-one marching. To verify the effectiveness of

our module, we design a baseline method, named greedy

search, which directly finds the point with the lowest trans-

port cost in another point cloud as the corresponding point

without any constraints.

Firstly, we analyze the impact of the color measure and

the surface normal measure. As shown in Table 4, for

both greedy search method and optimal transport method,

adding color and surface normal as measures can boost AS

by around 10 to 17 points. Compared with the original

optimal transport with only 3D point coordinate as a mea-

sure, our proposed pseudo label generation module brings

a 139% improvement on AS, which demonstrates the dis-

criminative ability of color and surface normal in finding

correspondences.

Secondly, we analyze the impact of the global con-

straints. As shown in Table 4, for all three kinds of measure

combinations, adding the global constraints can increase

AS by about 5 to 9 points, which means that addressing

the many-to-one problem in point matching can greatly im-

prove the quality of produced pseudo labels.

Thirdly, we compare different matching strategies

in our module. In our optimal transport, we search for

correspondences by matching from the pre-warped first

point cloud to the second point cloud, denoted as P̂ → Q,

and regard the point with the highest transport score as
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Table 4. Ablation study for color measure, surface normal mea-

sure and the matching constraints in our pseudo label generation

module (PLGM).

Method Coordinate Color Norm Constraint AS↑

Greedy search (Baseline) X 1.85

+ Color X X 11.25

+ Color + Norm X X X 18.89

Optimal Transport X X 10.19

+ Color X X X 21.51

+ (Color + Norm)/Our PLGM X X X X 24.36

Table 5. Ablation study for different matching strategies in our

pseudo label generation module (PLGM). P → Q: match from

the first point cloud to the second point cloud. P̂ → Q: match

from the pre-warped first point cloud to the second point cloud.

Soft matching: produce labels by soft correspondences. Hard

matching: produce labels by hard correspondences.

Method P → Q P̂ → Q Soft matching Hard matching AS↑

Baseline1 X X 12.52

Baseline2 X X 13.16

Our PLGM X X 24.36

the corresponding point, denoted as Hard matching. To

evaluate the effectiveness of our matching strategy, as

shown in Table 5, we design two baseline methods: 1)

baseline1 matches from the first point cloud to the second

one, denoted as P → Q, 2) baseline 2 produces a soft

corresponding point by using the transport score as the

weight to perform a weighted summation of all candidate

points. This process is denoted as Soft matching. As

shown in Table 5, our method outperforms baseline1 and

baseline2 by about 10 points on AS, which demonstrates

the effectiveness of our matching strategy.

Ablation study for pseudo label refinement module.

This module employs random walk operations to improve

the local consistency of pseudo labels. In this module, we

build two subgraphes: an undirected one for label smooth-

ness and a directed one for new label generation in unla-

beled points. To verify the effectiveness of our module, we

design a naive smoothing unit (NS) that finds neighboring

points by KNN search and outputs the average label of the

neighboring points as the refined label. As show in Table 6,

smoothing labels by random walk operation on the undi-

rected subgraph (UG) improves AS from 24.36 to 40.88.

And the improvement from UG is significantly greater than

that from the naive smoothing unit (NS). By further gener-

ating new labels for the unlabeled points via random walk

operation on the directed subgraph (DG), we achieve an-

other improvement on AS by 0.86. The great improvement

demonstrates the effectiveness of our pseudo label refine-

ment module. And the impact of different random walk

steps on our method is shown in Table 7.

Time consumption of our pseudo-label generation pro-

cess. To process a scene containing 2,048 points in

Figure 5. Pseudo ground truth of some examples. Blue points are

the first point cloud. Black points are the second point cloud.

Green line represents the correct pseudo ground truth measured

by AR. Red line represents the wrong pseudo ground truth.

Table 6. Ablation study for our pseudo label refinement module

(PLRM). NS: naive smoothing unit. UG: smooth labels by ran-

dom walk operation on the undirected subgraph. DG: generate

new labels by random walk operation on the directed subgraph.

Method NS UG DG AS↑

Our PLGM 24.36

+ NS X 27.53

+ UG X 40.88

+ (UG +UG)/Our PLRM X X 41.74

Table 7. The impact of the iteration number of the random walk

operation on our method.

Iteration number 1 5 10 20 ∞

AS ↑ 37.29 38.49 39.71 40.11 41.74

KITTIr, the pseudo label generation module takes about

3.2ms and the pseudo label refinement module takes about

75.6ms on a single 2080ti GPU. Thus, the total time con-

sumption for a scene is 78.8ms.

5. Conclusions

In this paper, we propose a novel self-supervised scene

flow learning method in point clouds to produce pseudo la-

bels via point matching and perform pseudo label refine-

ment by encouraging the local consistency. Comprehensive

experiments show that our method achieves state-of-the-art

performance among self-supervised learning methods. Our

self-supervised method even performs on par with some su-

pervised learning approaches, although we do not need any

ground truth flow for training.
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