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Abstract

Most existing unsupervised video hashing methods are

built on unidirectional models with less reliable training

objectives, which underuse the correlations among frames

and the similarity structure between videos. To enable effi-

cient scalable video retrieval, we propose a self-supervised

video Hashing method based on Bidirectional Transform-

ers (BTH). Based on the encoder-decoder structure of trans-

formers, we design a visual cloze task to fully exploit the

bidirectional correlations between frames. To unveil the

similarity structure between unlabeled video data, we fur-

ther develop a similarity reconstruction task by establish-

ing reliable and effective similarity connections in the video

space. Furthermore, we develop a cluster assignment task

to exploit the structural statistics of the whole dataset such

that more discriminative binary codes can be learned. Ex-

tensive experiments implemented on three public bench-

mark datasets, FCVID, ActivityNet and YFCC, demonstrate

the superiority of our proposed approach.

1. Introduction

Scalable video retrieval aims at automatically seeking

similar videos from a large database related to the con-

tent of a query video. Because of the ever-growing abun-

dance of videos from a variety of social media and search

engines, developing effective video retrieval technologies

has become an urgent need. In order to meet the expec-

tations of efficient scalable retrieval and low storage cost,

hashing methods have won lots of interests which trans-

forms high-dimensional data to compact binary codes while

preserving the similarity structure between data [3, 5–8, 13,

23, 25, 27, 28, 41, 43]. Among them, learning-based hash-

ing which leverages data properties or label supervision to

learn reliable hash functions has achieved promising perfor-

mance in image retrieval. Compared with images, however,

*Corresponding author

Figure 1: Basic idea of BTH. We design BTH model as

bidirectional transformers to better capture the correlations

among frames. Then we design a self-supervised learning

framework to learn discriminative binary codes.

structured data such as videos have not been adequately

studied in hashing field [9, 10, 18, 20, 34, 35, 47–49]. For

one thing, exploiting the correlations between video frames

adds difficulties to video hashing. For another, lack of large-

scale labeled dataset such as ImageNet [31] brings further

challenges to capture the similarity structure in video data.

Therefore, developing effective unsupervised video hashing

methods is urgently needed.

State-of-the-art unsupervised video hashing approaches

focus on exploiting the inherent visual information in each

video by using deep neural networks such as Recurrent

Neural Networks (RNNs) [1, 17, 19, 35, 35, 49]. Some of

them further equip the network with manually constructed

similarity guidance [19, 35]. However, most of these meth-

ods are built on unidirectional models which underuse the

bidirectional correlations among frames. Besides, they fail

to adequately exploit the similarity structure in the video

data due to suboptimal similarity matrix construction.

In this paper, we propose a self-supervised video hash-

ing method based on bidirectional transformers, which ad-
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equately exploits the correlations among frames within a

video and similarity structure between videos. Unlike most

existing video hashing methods which exploit unidirec-

tional correlations among frames, we build our hash model

on basis of masked language models to capture the bidi-

rectional correlations [4, 36]. To better unveil the similar-

ity structure among videos, we design a pairwise similarity

reconstruction objective. Specifically, we derive a way to

establish reliable and effective pairwise similarity connec-

tions in the video space. Moreover, we develop a pseudo

center set from the training dataset and enforce cluster as-

signment on the latent outputs of transformers to learn more

discriminative hash functions. Figure 1 depicts the basic

idea of BTH. We conduct extensive experiments on three

widely-used video datasets, FCVID [14], ActivityNet [12],

YFCC [38]. The experimental results demonstrate the ad-

vantage of BTH over state-of-the-art unsupervised video

hashing methods.

2. Related Work

The goal of learning-based video hashing is to learn data-

dependent hash functions that yield compact binary codes

to achieve good video retrieval accuracy [11]. In an early

phase, most works considered image frames within a video

separately and indexed videos by simply exploiting conven-

tional hashing methods such as iterative quantization [7]

and spectral hashing [43]. A representative method was

Multiple Feature based Hashing for video near-duplicate

detection (MFH) [34]. However, they failed to employ the

spacial structure information such as temporal consistency

in videos to design hash functions. Ye et al. [47] proposed

Video Hashing with both Discriminative commonality and

Temporal consistency (VHDT), which was the first work

taking the video structure into consideration. Chen et al. [2]

proposed nonlinear structural hashing by further exploiting

the nonlinear relationship between video samples.

In recent years, many deep learning-based hashing meth-

ods have been proposed for video retrieval thanks to the

great achievement of deep neural networks in extracting

high-level semantics. For example, Liong et al. [20] pro-

posed Deep Video Hashing (DVH) which passed successive

image frames to the convolutional and pooling layers to ob-

tain frame-wise binary representations. Qi et al. [37] pro-

posed 3DCNN-based hash, attempting to capture the mo-

tion information through multiple successive frames. A

major drawback of their method is that 3DCNN can only

cope with short video clips of 16 frames [39]. Recently,

RNN-based video hashing methods have achieved state-of-

the-art performance. For example, Zhang et al. [49] pro-

posed Self-Supervised Temporal Hashing (SSTH) based on

a binary LSTM autoencoder. Song et al. [35] designed a

neighborhood similarity loss on top of the hash layer to

exploit the neighborhood structure. Wu et al. [45] pro-

posed Unsupervised Deep Video Hashing (UDVH) which

balanced the variation of each dimension in a binary code.

A work similar to theirs [44] was then proposed which

replaced the baseline model with Temporal Segment Net-

works (TSNs) [42]. More recently, Li et al.proposed Neigh-

borhood Preserving Hashing (NPH) [19] which preferen-

tially encoded neighborhood-relevant visual content of a

video into a binary code referring to pre-extracted neighbor-

hood information. However, all these video hashing meth-

ods failed to adequately exploit the bidirectional correla-

tions among frames and similarity structure between videos.

3. Approach

3.1. Bidirectional Transformer Encoder

Given a dataset with N training videos, BTH aims to

learn a nonlinear mapping that encode each video to a com-

pact binary vector such that the similarity structure between

videos is well preserved. We use CNN features of M sam-

pled frames {vm
i }Mm=1 ∈ R

M×d to represent a video,

where d is the dimension of each frame feature and i is the

index of the video. For each video, we feed {vm
i }Mm=1 to a

bidirectional transformer based hash model to obtain binary

codes bi ∈ {−1, 1}k, where k is the code length.

We design our hash model as bidirectional transformer

layers with a hash layer on top of them.

Bidirectional transformer layer. Inspired by the great

success of self-attention in capturing correlations in a se-

quence [40], we adopt bidirectional transformers to cap-

ture the correlations among frames within a video. We

refer to the multi-layer bidirectional transformer architec-

ture introduced in [40] to build our model. We consider

frame features {vm
i }Mm=1 to be a sequence of input visual

words, which contain important visual details such that vi-

sual content can be captured in generated binary codes.

Since the module does not exploit the ordering information

in the input sequence, we further use positional encoding

to remedy the defect. We choose to use sine and cosine

functions of different frequencies to encode the position

of each frame: pm,2j = sin(m/100002j/d), pm,2j+1 =
cos(m/100002j/d), where m is the index of the frame and

j is the dimension. It yields a sequence of position em-

beddings, which have equal length and dimension with the

input visual sequence. We add these position embeddings

to frame features at the bottom of the encoder as input. We

present the input sequence in a matrix form Xi ∈ R
M×d to

detail the computation of the transformer block.

As in a standard transformer block [40], we project the

input matrix Xi to three matrices query Qi, key Ki and

value Vi via three learnable parameters W k, W q and W v .

We use Qi to perform a scaled dot-product attention over

Ki, then we put the generation through a softmax function

to determine attentional distributions over Vi. The resulting
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weight-averaged value matrix forms the intermediate output

of the transformer block:

X
update
i = softmax(

XiW
q(XiW

k)
T

√
dk

)XiW
v, (1)

where dk is a scaling factor. After being passed through

L transformer layers, these input tokens are mapped to a

sequence of l-D latent visual embeddings {hm
i }Mm=1. Each

of these embeddings contains not only the visual content

in corresponding frame, but also information flowing from

other frames in both direction within the video.

Hash layer. We design a hash layer on top of bidi-

rectional transformers to perform dimension reduction and

discretization to these latent latent visual embeddings

{hm
i }Mm=1. In detail, we project {hm

i }Mm=1 to a sequence of

real-valued vectors {tmi }Mm=1 via a Fully Connected (FC)

layer. The dimension of tmi is the same as the code length

k. Then we fuse {tmi }Mm=1 via mean pooling as a relaxed

binary vector t̄i. We also tried to concatenate {tmi }Mm=1

and map the concatenation to a relaxed binary vector via a

FC layer, but we empirically found that the mean pooling

achieved better performance. Finally, we discretize t̄i to a

binary vector bi. The resulting binary vector integrates in-

formation from all the latent outputs of transformers. We

formulate this process as follows:

{tmi }Mm=1 = FC({hm
i }Mm=1, k),

t̄i = tanh(
1

M

M
∑

m=1

tmi ), bi = sgn(t̄i),
(2)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.

FC(x1, x2) is to project a vector x1 to a x2-D vector.

3.2. Self-supervised Learning Tasks

In order to learn effective hash functions, we propose

these following unsupervised tasks.

Visual cloze task. Inspired by masked language model

which enables deep bidirectional representation learning [4,

36], we design a visual cloze task to capture bidirectional

correlations between frames. During training stage, we ran-

domly mask p percent of frame features {vm
i }Mm=1 from

each input video and aim to reconstruct the original frame

sequence. Compared with only predicting masked words as

previous works do [4, 36], reconstructing the entire frame

sequence encourages hash functions to capture more vi-

sual content in the video. Specifically, we replace the ran-

domly chosen visual word with (1) an all-zero vector 80%

of the time and (2) a randomly chosen frame feature from

the training database 10% of the time and (3) the origi-

nal one 10% of the time. We use [MASK] to denote the

masked token and present the input sequence for training as

v1
i , ..., [MASK], ...,vM

i . We use a FC layer to reconstruct

original frame features from {tmi }Mm=1 derived in (2). We

present the decoding process as:

{ṽm
i }Mm=1 = FC({tmi }Mm=1, d), (3)

where {ṽm
i }Mm=1 are reconstructed frame features. We use

Mean Square Error (MSE) to measure how well these train-

ing videos are reconstructed:

Lv =
1

dMN

N
∑

i=1

M
∑

m=1

||vm
i − ṽm

i ||22. (4)

Similarity reconstruction task. While the cloze task

can enforce binary codes to capture inherent visual content

in each video, it can not explicitly guarantee similarity pre-

serving in the data space. Therefore we further apply pair-

wise similarity constraint on generated binary codes to en-

hance similarity preserving.

First of all, we need to establish pairwise similarity con-

nections between videos to guide the similarity preserv-

ing training. Since building similarity connections by us-

ing all N training videos is time-consuming, we refer to

[19] which built an approximate similarity graph S based

on a small anchor set {uj}nj=1 (n ≪ N). Each entry

Spq ∈ {−1, 1} (p, q ∈ {1, 2, ..., N}) denotes the similarity

between the p-th and the q-th training video. We establish

the similarity graph in a preprocessing stage as follows.

We further train a model which has the same network as

BTH with only visual cloze task. We process each training

video via this model to obtain a series of vectors from la-

tent outputs {hm
i }Mm=1. Then we conduct mean pooling on

{hm
i }Mm=1 to gain a latent variable h̄i ∈ R

l. We consider

it as a video feature and we obtain a video feature set over

the training database {h̄i}Ni=1. We conduct K-means clus-

tering on {h̄i}Ni=1 to obtain a anchor set {uj}nj=1, where

each anchor is a clustering center. For each h̄i, we calcu-

late a nearest anchors ui1,ui2, ...,uia, which are denoted

as {ui∗} (i∗ ∈ [1, n]) for sake of brevity. Then we derive a

truncated similarity matrix Y ∈ R
N×n:

Yij =

⎧

⎨

⎩

exp(−Dist(h̄i,uj)/t)
∑

a

j′=1
exp(−Dist(h̄i,uij′ )/t)

, ∀uj ∈ {ui∗}
0, otherwise

(5)

where Dist() is a distance calculation function. As [30] in-

dicates that such embedding distance can be naturally mea-

sured in squared Euclidean space, we adopt l2-norm as the

specific form of Dist(). t is a bandwidth parameter. Then

an approximate adjacency matrix A ∈ R
N×N is calculated

as:

A = Y Λ
−1Y T , (6)

where Λ = diag(Y T
1) ∈ R

n×n. We set Spq = 1 if Apq >
0 and Spq = −1 otherwise.
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Figure 2: Schematic illustration of established similarity

structure. For a training video, we select positive samples in

blue area and negative samples in purple area. We leave out

samples in yellow areas. Our proposed similarity construc-

tion strategy in (b) is more reliable and effective compared

with (a). Here, blue/purple dots denotes samples that are

ground-truth similar/dissimilar.

We consider the distances between vectors as proxy in-

dicators of their semantic similarity as [15] did. We illus-

trate the established pairwise similarity given a query video

in Figure 2(a). As can be seen, such unsupervised similar-

ity construction method tends to make mistakes around the

boundary surface, which makes the similarity matrix less

reliable. Besides, while there are large amount of nega-

tive samples, those around the boundary surface are most

helpful for learning discriminative distance metric. In order

to derive more reliable and effective pairwise similarity, we

make the following adjustments. We set the number of near-

est anchor a as a1, a2, a3(a1 < a2 < a3) respectively, and

calculate three intermediate similarity matrices S1,S2,S3

accordingly. We calculate each entry of the final similarity

matrix S as:

Spq =

⎧

⎨

⎩

1, S1
pq = 1

−1, S2
pq = −1 and S3

pq = 1
0, otherwise

(7)

We show the final pairwise similarity structure in Fig-

ure 2(b). We only consider training pairs when Spq ∈
{1,−1}, which improves the reliability and effectiveness

of similarity learning. During training, 50% of the time

we randomly sample two videos which are considered to

be similar (Spq = 1), and 50% of the time we randomly

sample two videos which are considered to be dissimi-

lar (Spq = −1).

We compute the similarity between two binary vectors

as s(bp, bq) =
1
kb

T
p bq . We aim to approximate s(bp, bq) to

the established pairwise similarity. As the optimization is

intractable due to sgn function, we instead use the relaxed

binary vector t̄ in (2) and formulate the quantization error

as a penalty term. We design the similarity reconstruction

loss as:

Ls =
1

N

∑

(p,q)∼P

(Spq −
1

k
t̄Tp t̄q)

2 + ||bp − t̄q||22. (8)

where P denotes the video pair sampling strategy on the

training set.

Cluster alignment task. A major drawback of unsu-

pervised hash learning is that the intrinsic structure of the

whole sample space can be skewed within training batches

due to lack of label information [22, 24, 32]. To learn more

discriminative binary codes, we further exploit the struc-

tural statistics of the whole training dataset. We reuse the

anchor set {uj}nj=1 described in above section, where each

entry represents a pseudo clustering center in the training

set. Given the i-th video data point, we assign it with a

nearest clustering center ui1 according to the l2-norm dis-

tance between h̄i and each center. We consider {ui1} as

pseudo labels derived from the training data, where corre-

lations among these labels are reflected from the distances

between clustering centers. During training, we approxi-

mate h̄i to the corresponding center ui1. This procedure

intuitively endows the model with more informative latent

semantics. We expect to optimize the clustering loss:

Lc =
1

N

N
∑

i=1

||h̄i − ui1||22. (9)

Overall loss. The overall loss to optimise is given by:

L = α1Lv + α2Ls + α3Lc, (10)

where α1, α2, and α3 are hyper-parameters that balance

above-mentioned three losses. As we apply constrains on

real-valued vectors instead of binary codes and use quan-

tization error as a penalty term, we directly use back-

propagation to optimize the whole network.

3.3. Implementation Details

For sake of training efficiency, we only built the simi-

larity matrix S and pseudo centers {uj}nj=1 in the initial-

ization stage. We also tried to update them based on the

updating of video features {h̄i} during training, however,

we found it did not bring significant improvement on the

performance. As we adopted BTH to obtain {h̄i} in the

preprocessing stage, the amount of information contained

in {h̄i} heavily depended on the dimension of hash bot-

tleneck layer k. We found that when k is too small, these

video features could not capture enough visual information

to provide reliable training guidance. Therefore we set k as

a relatively large value, 128, in the preprocessing stage. We

fixed S and {uj}nj=1 during hash learning.

Similar to SSTH [49], for each video, we uniformly sam-

pled 25 frames. We used VGG-16 network [33] pre-trained
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(a) FCVID 16 bits (b) FCVID 32 bits (c) FCVID 64 bits

(d) ActivityNet 16 bits (e) ActivityNet 32 bits (f) ActivityNet 64 bits

(g) YFCC 16 bits (h) YFCC 32 bits (i) YFCC 64 bits

Figure 3: Retrieval performances among all hashing methods in terms of mAP@K over three datasets.

on ImageNet [31] to extract 4096-D frame features. For

FCVID and YFCC, we directly used the features which

were kindly provided by Zhang et al.1. We kept the in-

put frame features the same for all the compared state-of-

the-art methods for fair comparison. We used single layer

transformer with 256-D single attention head as our bidirec-

tional transformer encoder. We set the size of pseudo center

set as 2000 and we conducted 10 iterations for K-means

clustering to obtain it. We set the scaling factor dk as 256.

In the training phase, we empirically set the values of α1,

α2 and α3 as 0.9,0.1 and 0.8 respectively to achieve good

performance. We set the masking rate p as 15% as [26] did.

we set the batch size as 128 and the initial learning rate as

0.0005. We firstly trained our model with only visual cloze

task for 50 epochs and finetuned it with full loss for another

50 epochs. We optimized our model by using Adam opti-

1https://pan.baidu.com/s/1i65ccHv

mizer algorithm [16] with momentum 0.9. We implemented

our model by using Pytorch2. Our model is publicly avail-

able at https://github.com/Lily1994/BTH.

4. Experimental Results

4.1. Dataset and Evaluation Protocols

Dataset: We evaluated our proposed method on these

following three datasets: FCVID [14], ActivityNet [12] and

YFCC [38]. FCVID comprises 91,223 videos which are

manually annotated into 239 categories. The categories

cover a variety of topics such as activities, objects, events,

etc. Same as [49], we utilized 91,185 videos of them, with

45,585 videos for training and 45,600 videos as retrieval

database and queries. ActivityNet involves a wide range of

human activities in 200 categories. We used 9,722 videos

2http://pytorch.org/
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as training set and exploited validation set as our test set

since the test split was not publicly available. In each cat-

egory, we randomly selected 1,000 videos for queries and

3,760 videos for retrieval database. YFCC is a huge video

dataset which composes of 0.8M videos. We used 409,788

unlabeled data for training and 101,256 labeled data for out-

of-sample retrieval test. The labeled videos were collected

from the third level of MIT SUN scene hierarchy [46],

which involved 80 categories. Among videos with none-

zero labels, we randomly picked 1000 videos as queries and

the remaining ones as retrieval database.

Evaluation protocols: Following the same evaluation

protocol as [49], we utilized mean Average Precision at

top-K retrieved results (mAP@K) to evaluate the retrieval

performance [29]. Besides, we used Precision-Recall (PR)

curve as an additional evaluation metric. We sorted the re-

trieved results according to Hamming ranking. We evalu-

ated the performance with code lengths of 16, 32, and 64

bits.

4.2. Results and Analysis

Comparisons with state-of-the-arts: We compared

BTH with several state-of-the-art unsupervised hashing

methods to demonstrate the superior performance of it:

ITQ [7], DH [21], MFH [34], SSTH [49], JTAE [17],

SSVH [35] and NPH [19]. We extended the image hash-

ing methods ITQ and DH to video hashing by implement-

ing them on CNN frame features as [35] did. We reported

the mAP@K results on FCVID, ActivityNet and YFCC

datasets in Figure 3.

As shown in Figure 3(a)-(c), our proposed BTH out-

performs all these compared hashing methods except for

NPH on FCVID with all code lengths remarkably. As

can be seen, BTH outperforms the most competitive NPH

with code lengths of 32 bits and 64 bits. Compared with

NPH, the mAP@K(K=20,60,100) values of BTH are 2.3%,

2.2% and 1.9% higher respectively with 64 bits. We

owe this performance advantage to the bidirectional trans-

former module which effectively captures the bidirectional

correlations among frames and elaborately designed self-

supervised learning tasks. It is worth to mention that NPH

requires pre-established anchor set in retrieval stage while

our method does not have such requirement. This makes

our proposed method more efficient and practical for realis-

tic retrieval systems.

As shown in Figure 3(d)-(f), BTH significantly outper-

forms the other methods with all code lengths. For example,

it outperforms the most competitive NPH by 3.3% and 4.3%

with 32 bits and 64 bits respectively in terms of mAP@5.

As shown in Figure 3(g)-(i), BTH consistently outper-

forms the other methods with all code lengths, which shows

its superiority on this dataset. The performance advantage

over the strongest competitor NPH is most significant with

(a) FCVID 64 bits (b) ActivityNet 64 bits

Figure 4: PR curves of different video hashing methods.

code length of 16 bits on this dataset. In terms of mAP@5,

BTH outperforms NPH by 4.5% with 16 bits.

The PR curves of BTH, NPH, SSVH and SSTH with 64

bits on FCVID and ActivityNet are shown in Figure 4. As

can be seen, BTH achieves higher precision than all these

compared state-of-the-arts at the same rate of recall on both

datasets. When recall rate is allowed to be low, the precision

advantage of BTH becomes more significant.

Ablation study: Firstly, to show the superiority of the

bidirectional transformers, we substitute transformers with

LSTM, BiLSTM and CNN respectively and compare BTH

with these three baselines on FCVID in Table 1. It shows

that BTH outperforms these three baselines significantly

with 32 bits and 64 bits, which validates the advantage of

transformers over LSTM, BiLSTM and CNN. Here, trans-

formers form the attention between any two frames in the

video in parallel, which is beneficial to model correlations

between distant frames. This is the major advantage over

sequential models such as LSTM and BiLSTM, which can-

not well preserve long-term dependencies in the video. In

addition, limited receptive field makes CNN focus more on

local information, which cannot well capture correlations

between distant frames either.

Secondly, we evaluated the effectiveness of the visual

cloze task by comparing our method with these following

baselines. 1) BTH-Lv . We removed the visual reconstruc-

tion loss Lv during training. 2) BTH-mask1. We only re-

constructed the masked visual words instead of the whole

input sequence. 3) BTH-mask2. During training, we used

the original frame feature sequence instead of masked one

as input. As shown in Table 1, the absence of Lv will

heavily deteriorate the retrieval accuracy, which indicates

the importance of visual content reconstruction. Besides,

only predicting the masked words can not achieve good re-

trieval accuracy. This indicates that this training strategy

cannot make binary codes capture adequate visual content.

Furthermore, masking some of the input visual words can

further improve the performance, which indicates that the

masked model is beneficial to capture bidirectional correla-

tions among frames.

Then we evaluated the effectiveness of the similarity re-

construction task by comparing our method with these fol-
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Table 1: mAP@K results with different baseline models on FCVID with 32-bit codes and 64-bit codes.

Methods
32bits 64bits

K=20 K=40 K=60 K=80 K=100 K=20 K=40 K=60 K=80 K=100

CNN 0.242 0.197 0.172 0.155 0.140 0.287 0.233 0.202 0.180 0.164

LSTM 0.239 0.195 0.170 0.153 0.139 0.284 0.229 0.200 0.179 0.163

BiLSTM 0.245 0.200 0.174 0.158 0.142 0.291 0.235 0.205 0.182 0.166

BTH-Lv 0.218 0.174 0.152 0.136 0.124 0.276 0.228 0.203 0.185 0.172

BTH-mask1 0.228 0.184 0.163 0.142 0.133 0.287 0.239 0.213 0.195 0.181

BTH-mask2 0.240 0.196 0.174 0.148 0.146 0.298 0.252 0.226 0.208 0.194

BTH-Ls1 0.229 0.186 0.162 0.145 0.133 0.287 0.238 0.212 0.193 0.180

BTH-Ls2 0.238 0.194 0.171 0.155 0.142 0.296 0.248 0.222 0.204 0.190

BTH-Lc1 0.218 0.171 0.149 0.133 0.121 0.272 0.224 0.198 0.180 0.166

BTH-Lc2 0.230 0.183 0.161 0.145 0.133 0.284 0.236 0.210 0.191 0.178

BTH-Lc3 0.238 0.192 0.169 0.155 0.143 0.292 0.245 0.221 0.204 0.191

BTH 0.248 0.204 0.182 0.166 0.154 0.308 0.260 0.234 0.216 0.202

lowing baselines. 1) BTH-Ls1. We removed the similarity

reconstruction loss Ls during training. 2) BTH-Ls2. We

directly used the similarity matrix derived in [19] to guide

the training. As shown in Table 1, the retrieval performance

drops when Ls is missing, which indicates that capturing

the pairwise similarity is important to learn effective binary

codes. In addition, that BTH outperforms BTH-Ls2 indi-

cates that our proposed pairwise similarity connections are

beneficial to unveil the similarity structure between videos.

To evaluate the effectiveness of the cluster alignment

task, we compared our model with following proposed

baselines. 1) BTH-Lc1. We removed the clustering loss

Lc during training. 2) BTH-Lc2. We randomly built the

pseudo center set and the pseudo labels for each video were

obtained by nearest neighbor search from this set. 2) BTH-

Lc3. We set the dimension of BTH bottleneck layer as 64

(insetad of 128 which was used in this paper) and used {h̄i}
produced by it to establish the pseudo center set. As shown

in Table 1, the missing of Lc deteriorates the retrieval ac-

curacy, which indicates that exploiting the structural statis-

tics of the whole training dataset can lead to significant

performance improvement. Moreover, we can observe that

BTH-Lc2 outperforms BTH-Lc1 but fails to achieve equal

retrieval accuracy with BTH. This indicates that assigned

pseudo labels can help to capture the similarity structure in

the whole dataset even though the pseudo center set is ran-

domly built. Meanwhile, the quality of the pseudo center set

has great impact on the retrieval performance and the unsu-

pervised construction method adopted in this paper is ben-

eficial to learn more discriminative binary codes. Further-

more, that BTH outperforms BTH-Lc3 indicates that when

the dimension of the bottleneck layer is small, the obtained

video features cannot capture enough visual information to

construct reliable pseudo center set.

We also tried to update the pseudo center set based on

Figure 5: Update of mAP@5 and mAP@60 during training

on FCVID with 64 bits.

the updating of video features {h̄i} during training. We re-

port the update of mAP@5 and mAP@60 on FCVID with

64 bits in Figure 5. Here Stage1 denotes that the model

is trained with only cloze task. Stage2 denotes the model

is fine-tuned with full loss where the pseudo center set is

established in the initialization stage. Stage3 denotes the

model is further fine-tuned with the pseudo center set cal-

culated by updated {h̄i}. As can be seen, updating the

pseudo center set does not bring significant improvement to

mAP@60 and even slightly deteriorates mAP@5. There-

fore, we do not further update the pseudo center set during

training.

Cross-dataset evaluation comparisons: We investi-

gated how BTH generalizes to cross-dataset retrieval by

training various methods on FCVID and test on YFCC.

We compared the retrieval performance with single-dataset

case (both training and test on YFCC). TABLE 2 shows

mAP@20 results of various methods with 64 bits in cross-

dataset setting. While the performances of all these methods
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Table 2: Cross-dataset mAP@20 of various methods when

training on FCVID and test on YFCC with 64 bits. Red

number indicates the performance drop compared with

training and testing both on YFCC.

Method SSTH SSVH NPH BTH

mAP@20 0.155↓ 6.3 0.173↓ 7.8 0.180↓ 6.0 0.191↓ 5.7

Figure 6: Examples of top-5 retrieved results. The first

row are queries, below which the left columns are retrieved

videos by BTH and right ones are retrieved by SSVH. Green

borders denote correct and red borders denote incorrect.

decrease compared with single-dataset case, BTH still out-

performs the other methods. Besides, the performance drop

of BTH is less than the other methods, which indicates its

better generalization cross different datasets.

Qualitative results: We showed top-5 retrieved results

with 64 bits on FCVID and ActivityNet datasets by BTH

and SSVH in Figure 6. While both methods are able to pro-

vide relative candidates in top of the retrieved ones, BTH

consistently retrieves more correct videos. For example,

given a query video in category “Gorilla”, BTH returns five

correct videos while SSVH retrieves two incorrect videos

which describe other animals. Furthermore, as for the cate-

gory “Trimming Branches Or Hedges”, the retrieved videos

look very similar since the background is full of grass. It

is crucial to exploit the correlations among frames to better

understand the action in this case. It shows that BTH works

better under this circumstance.

Figure 7: t-SNE visualizations of BTH and NPH. Videos are

randomly sampled on FCVID database, and samples with

different labels are marked with different colors.

Table 3: Encoding time of various deep hash methods.

Methods SSTH SSVH NPH BTH

Encoding time 0.88ms 1.03ms 1.42ms 1.18ms

We showed the t-SNE visualizations of BTH and the

most competitive NPH on FCVID with 64 bits in Figure 7.

The target is to cluster the video points with the same label

and separate the video points with different labels. We can

observe that hash codes generated by BTH in different cat-

egories are better separated, which indicates that BTH can

generate more discriminative binary codes that NPH.

Encoding time: The time cost to generate binary codes

for query videos is crucial to evaluate the practical retrieval

system. We reported the encoding time, time to encode

frame features of a video to binary codes, of BTH, NPH,

SSTH and SSVH in Table 3. We kept the implementation

platforms the same. We can observe that BTH has nearly

the same time complexity with SSTH and SSVH, while it

outperforms these two methods significantly. This indicates

that BTH is practical for retrieval systems. Besides, BTH

has less time complexity while achieving higher accuracy

most of the cases than NPH.

5. Conclusion

In this work, we proposed a self-supervised hashing

method, BTH, for scalable video retrieval. BTH efficiently

captured correlations among frames via bidirectional trans-

formers to learn discriminative hash functions. Based on

the encoder-decoder structure of transformers, we designed

three self-supervised learning tasks to adequately capture

the similarity structure in video data: A visual cloze task

which reconstructed original input frame sequence based

on masked inputs; A similarity reconstruction task which

enforced the similarity of generated binary vector pair

consistent with the pre-established pairwise similarity; A

cluster alignment task that enforced the latent embedding

aligned with pseudo clustering centers. Experiments on

three widely-used benchmark datasets demonstrated the su-

periority of our proposed method over state-of-the-arts. In

the future, we can try different frame sampling strategies to

further improve the retrieval performance.
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