
Spatial Assembly Networks for Image Representation Learning

Yang Li1 Shichao Kan2 Jianhe Yuan1 Wenming Cao3 Zhihai He1*

1University of Missouri, MO, USA 2Beijing Jiaotong University, Beijing, China
3Shenzhen University, Shenzhen, China

yltb5@mail.missouri.edu 16112062@bjtu.edu.cn

{yuanjia, hezhi}@missouri.edu wmcao@szu.edu.cn

Abstract

It has been long recognized that deep neural networks

are sensitive to changes in spatial configurations or scene

structures. Image augmentations, such as random transla-

tion, cropping, and resizing, can be used to improve the ro-

bustness of deep neural networks under spatial transforms.

However, changes in object part configurations, spatial lay-

out of object, and scene structures of the images may still

result in major changes in the their feature representations

generated by the network, creating significant challenges

for various visual learning tasks, including representation

or metric learning, image classification and retrieval. In

this work, we introduce a new learnable module, called spa-

tial assembly network (SAN), to address this important is-

sue. This SAN module examines the input image and per-

forms a learned re-organization and assembly of feature

points from different spatial locations conditioned by fea-

ture maps from previous network layers so as to maximize

the discriminative power of the final feature representation.

This differentiable module can be flexibly incorporated into

existing network architectures, improving their capabilities

in handling spatial variations and structural changes of the

image scene. We demonstrate that the proposed SAN mod-

ule is able to significantly improve the performance of var-

ious metric / representation learning, image retrieval and

classification tasks, in both supervised and unsupervised

learning scenarios.

1. Introduction

A key challenge in computer vision and machine learn-

ing is to construct or learn discriminative representations

for the semantic content of images, which should be in-

variant to changes in camera positions, perspective trans-

forms, object scales, poses, part deformations, spatial dis-

placement, and scene configurations [8, 25]. Recently, deep

*Corresponding author: Zhihai He, e-mail: hezhi@missouri.edu.

Figure 1. Illustration of invariant image representation learning un-

der generic spatial variations.

neural networks have emerged as a powerful approach for

visual learning and representation. With its shared weights

for convolution across different spatial locations, average

or maximum pooling, coupled with sufficient training im-

age augmentations, they are able to generate relatively in-

variant features or decisions under small spatial variations

or transforms. However, researchers have recognized that

deep neural networks are still vulnerable to relatively large

geometric transformations and spatial variations [23]. This

limitation originates from the fixed geometric structures of

deep neural modules. For example, the convolution pro-

cesses the input image or feature images on a fixed grid

structure with a small reception field. The pooling layers

then process the outputs from the convolution layers with a

fixed spatial mapping or channel structures. There is lack

of internal mechanisms to handle the flexible spatial vari-

ations, including spatial transforms and changes in object

poses, spatial layout, and scene structures [22]. In their re-

cent study [17], Kayhan and Gemert even found out that

deep neural networks are exploiting the absolution spatial

locations and image boundary conditions for object recog-

nition and image classification, challenging the common as-

sumption that convolution layers in modern CNNs are trans-

lation invariant.

Learning invariant features and visual representation

with deep neural networks has become an important yet

13876

challenging research problem. Recent research has been fo-

cusing on developing various methods on transform-aware

data augmentations [4, 11], geometry adversarial training

[16], and transform-invariant network modules and struc-

tures [14, 33, 35] to improve the robustness of deep neural

networks under spatial transforms of images and objects,

such as affine or perspective transforms. In this work, we

aim to address the challenging problem of invariant fea-

ture representation learning under more generic spatial vari-

ations, include changes in object poses, part configurations,

and scene structures. For example, Figure 1 shows three

example images with different spatial configurations of ob-

jects due to object motion. Semantically, they should be

the same or belong to the same class. However, existing

deep neural networks will generate different features for

them. Our goal is to design a new spatial assembly net-

work (SAN), which is able to examine the input image and

perform a learned re-organization or optimized assembly of

feature points from different spatial locations so as to gen-

erate invariant features for these three images. This learned

spatial assembly is conditioned by feature maps of previous

network layers. This differentiable module can be flexibly

incorporated into existing network architectures, improving

their capabilities in handling spatial variations and struc-

tural changes of the image scene, and maximizing the dis-

criminative power of the final feature representation. We

will demonstrate that the proposed SAN module is able to

improve the performance of various metric / representation

learning, image retrieval and classification tasks, in both su-

pervised and unsupervised learning settings.

2. Related Work and Unique Contributions

Recently, a set of methods have been developed in the lit-

erature to improve the robustness of deep neural networks

under spatial transforms of images and objects. Analyt-

ically, [3] has studied the equivalence and invariance of

DNN representations to input image transformations. Lenc

and and Vedaldi [23] investigated the linear relationships

between representations of the original and transformed im-

ages. In [22], the training dataset is augmented with differ-

ent spatial transformations and used to train different net-

works. The weights are the shared between networks and

their generated features are then fused together using max-

imum pooling. To increase the robustness of deep neural

network under spatial transforms, a random transformation

module is developed in [33] to transform the feature maps

obtained from the neural network and suppress its sensi-

tivity to spatial transforms in the input image. The spa-

tial transformer network has been developed in [14] which

is able to locate and predict the spatial transforms of ob-

jects in the scene based on previous feature maps and re-

align the feature maps of objects based on these transforms.

This new spatial transformer layer can be inserted into ex-

isting network and used to improve the robustness of deep

neural network under spatial transforms. To handle object-

level spatial variations, an end-to-end network architecture

that perform joint detection, orientation estimation, and fea-

ture description has been explored in [49]. To achieve

adaptive part localization for objects with different shapes,

deformable convolution and pooling are developed in [5],

which adds 2D offsets to the grid sampling locations and

bin positions in the standard convolution and RoI (region of

Interest) pooling. Gens and Domingos [9] proposed a gen-

eralization of CNN that forms feature maps over arbitrary

symmetry groups based on the theory of symmetry groups

in [9], resulting in feature maps that were more invariant to

symmetry groups. Sohn and Lee [36] proposed a transform-

invariant restricted Boltzmann machine (RBM) which is

able to generate compact and invariant representation of the

input image using probabilistic max pooling. This frame-

work can also be extended to unsupervised learning. To

handle the orientation changes, Wang et al. [44] proposes to

transform the weighted region features into the final orien-

tation invariant feature vector by clustering key points into

four orientation-based region proposals. The feature vec-

tors from these four orientation regions are then fused by

the aggregation module that outputs an orientation-invariant

feature vector. A Laplacian pyramid network structure has

been developed in [7] to produce a set of feature maps with

different scales which then fused together to improve the

robustness of image features under scale changes.

This work is also related to spatial permutation. Per-

mutation optimization is a long standing problem arising

in operations research, graph matching, and other applica-

tions [1]. It is also referred to as the linear and quadratic

assignment problem [39]. Within the context of deep neu-

ral networks, channel shuffling has been explored in Shuf-

fleNet [50] to improve the network performance while min-

imizing its computational complexity. In [25], Lyu et al.

have developed a deep neural network approach to learn the

permutation for channel shuffling. They introduced Lips-

chitz continuous non-convex penalty so that it can be incor-

porated into the stochastic gradient descent to approximate

permutation. Exact permutations are then obtained by sim-

ple rounding at the end.

Compared to existing methods in the literature, our work

has the following unique novelties and contributions. (1)

Existing methods mainly focus on transform-invariant net-

works and image feature learning. The proposed spatial as-

sembly goes beyond spatial image transforms. It learns to

re-organize or re-assemble the feature maps across different

spatial locations with the potential to handle generic spatial

variations, including changes in poses, part configurations,

relative motion between objects, and scene structures. (2)

This work represents one of the first efforts to explore spa-

tial re-organization of feature maps for 2D images. The

13877

proposed spatial assembly represents a more generic fea-

ture operation than simple permutation. This differentiable

module can be directly incorporated into existing deep neu-

ral network for end-to-end training to increase network ro-

bustness under spatial variations and improve the discrimi-

native power of image features.

Figure 2. Spatial assembly of feature vectors across different spa-

tial locations to construct the output feature map.

3. Method

In this section, we describe the formulation of spatial

assembly and explain its backward error propagation and

gradient-based learning process.

3.1. Differentiable Spatial Assembly

It is a differentiable network module which learns the

spatial assembly weights from previous feature maps and

perform spatial assembly of the feature maps across differ-

ent spatial locations based on these assembly weights within

a single forward pass. The spatial assembly weights are

conditioned by the feature maps of the specific input image.

In other words, the spatial assembly will be different for dif-

ferent input images. As illustrated in Figure 2, let F (i, j, c)
be the feature map at network layer k, spatial location (i, j)
and channel c. It serves as the input to the spatial assem-

bly module. Let G(n,m, c) be the output feature map after

spatial assembly. The input and output feature maps share

the same dimension (Wk, Hk). The output feature map is

constructed using the following 2D spatial permutation op-

eration

G(n,m, c) = F (i′, j′, c), (i′, j′) = P(n,m), (1)

where (i′, j′) = P(n,m) is a 2D spatial permutation. The

2D spatial permutation can be converted into a 1-D spatial

permutation by introducing the location index u = i×Wk+
j and v = n × Wk + m. We have 0 ≤ u, v ≤ N where

N = Wk ×Hk. With this, (1) can be re-written as

G(v, c) = F (u, c), u = P(v). (2)

Let P = [w(u, v)]N×N be the permutation matrix, which

is a binary square matrix with ones at matrix locations

(P(v), v). It should be noted that the permutation matrix P

is discrete, which has exactly a single one in every row and

each column, and zeros everywhere else. These matrices

form discrete points in the Euclidean space, which makes

them not differentiable.

To make this spatial permutation module differentiable,

we extend this spatial permutation into spatial assembly

by relaxing the binary indicator w(u, v) into a continuous

weight between [0, 1] which satisfies the following condi-

tion

N
∑

u=1

w(u, v) = 1,
N
∑

v=1

w(u, v) = 1, w(u, v) > 0. (3)

In spatial assembly, the output feature map is constructed

by the following weighted summation

G(v, c) =

N−1
∑

u=0

w(u, v) · F (u, c), (4)

as illustrated in Figure 2. Here, every feature vector in the

output feature map G(v, c) is computed using the weighted

summation of the input feature vectors F (u, c) at all spatial

locations.

In order to achieve spatial re-organization of the fea-

ture map while maintaining the differentiable property of

the spatial assembly weight function w(u, v), we introduce

the following two constraints. The first one is the mini-

mum entropy constraint which aims to ensure locality of

the weighting function. From a spatial transform perspec-

tive, this will ensure that one object is being moved from

one location in the input feature map to another location in

the output feature map. Specifically, we define the follow-

ing entropy function which is the summation of entropies

for all rows and all columns of the spatial assembly weight

matrix:

E[w(u, v)] =
∑

v

∑

u

w̄c(u, v) · log2
1

w̄c(u, v)
,

+
∑

u

∑

v

w̄r(u, v) · log2
1

w̄r(u, v)
.

(5)

Note that when the entropy is 0, each row or each column

will have a single unit value with the rest entries to be 0.

During training, this minimum entropy constraint will be

used as a part of the loss function to increase the locality of

the spatial assembly operation.

The second one is the minimum correlation constraint:

during spatial assembly, different input feature vectors are

contributing to different output feature vectors. Otherwise,

if one input feature vector is contributing significantly to

multiple output features, it will result in significant output

13878

information redundancy, or equivalently input information

loss. From the spatial transform perspective, this constraint

will ensure that different objects are being re-organized to

different locations. To this end, we introduce the minimum

correlation constraint which aims to minimize the following

correlation within the spatial assembly weight map:

C[w(u, v)] =
∑

u1 6=u2

∑

v

w(u1, v) · w(u2, v)

+
∑

v1 6=v2

∑

u

w(u, v1) · w(u, v2).
(6)

3.2. Spatial Assembly with Local Coherence

The above formulation of spatial assembly aims to

achieve spatial re-assembly of the feature map in a differ-

entiable manner. It should be noted that this spatial re-

assembly operation is performed on feature vectors at in-

dividual spatial locations of the feature map, or individual

feature points. Although the spatial assembly is learned by

optimizing the target loss function, it is highly likely that

feature points from the same object may be dis-assembled

into different locations in the output feature map. To ad-

dress this issue, we propose introduce local coherence into

the spatial assembly operation. While it could be more ef-

fective to develop a separate network to predict if two fea-

ture points belong to the same object or not, we choose

to adopt a simple yet efficient measure to enforce the lo-

cal coherence. Specifically, we define the local coherence

α(i, j; i′, j′) as the correlation (cosine similarity) between

feature vector Fi,j = [F (i, j, 1), · · · , F (i, j, C)] and its

neighbor Fi′,j′ = [F (i′, j′, 1), · · · , F (i′, j′, C)], i.e.,

α(i, j; i′, j′) =

{

Fi,j ·Fi′,j′

||Fi,j ||·||Fi′,j′ ||
, (i′, j′) ∈ Ωi,j ,

0, elsewhere.
(7)

where Ωi,j is the set of 8 direct neighbor points of (i, j). To

address the computational complexity, the number of fea-

ture vectors can be limited. During coherent spatial assem-

bly, we expect that neighboring feature points with high lo-

cal coherence should be maintained together in the output

feature map. In otherwise words, they should have similar

spatial assemble weights. Motivated by this, we introduce

the following loss function

LLC =
∑

(i′,j′)∈Ωi,j

α(i, j; i′, j′) · ||Wi,j − Si,j
i′,j′ [Wi′,j′]||2,

(8)

where Wi,j represents the 2-D spatial assembly weight map

of size NH × NW for point (i, j). Si′,j′

i,j [·] performs a 2-D

shift of the whole weight map by one point such that point

(i′, j′) is aligned to point (i, j).

Figure 3. The spatial assembly networks being embedded into the

deep neural network.

3.3. Spatial Assembly Networks

Figure 3 shows the design of the spatial assembly net-

work and how it is embedded into existing deep neural net-

works for feature learning and image classification. The

spatial assembly module is integrated into an intermediate

layer of the network. The feature map F (i, j, c) generated

by network F is used as input to the spatial assembly net-

work Φ, which predicts the spatial assembly weight map

w(u, v), as defined in the above section. Using this weight

map, the input feature map F (i, j, c) is re-assembled into

a new feature map G(n,m, c), which will be further pro-

cessed by the upper network G. In the following, we use

the supervised metric learning as an example to explain the

loss function design and learning process. This learning

processing can be naturally extended to unsupervised fea-

ture learning, and image classification and will be evaluated

in our experiments.

In supervised metric or feature learning, the network

aims to generate discriminative features such that intra-class

image feature distance is minimized and the inter-class fea-

ture distance is maximized. As illustrated in Figure 1, the

proposed spatial assembly has the capability to handle spa-

tial variations caused by changes in object poses, part con-

figurations, spatial layout, and scene structures, and signif-

icantly reduce the intra-class feature variations. This can

be driven by the metric loss defined at the network output.

For example, in our experiments, our baseline system in-

cludes the multi-similarity (MS) loss [42]. The MS method

computes the similarity scores between image samples in

the current mini-batch. The similarity matrix between fea-

tures of the current mini-batch S. For each sample Ik, we

determine the set of positive pairs Pk and the set of hard

negative pairs Nk based on their similarity scores. Skp and

Skp are similarity scores of the positive and negative pairs.

We define the loss for all samples {Ik} in the mini-batch as

13879

follows

LFEN =
1

NB

NB
∑

k=1

{
1

λP

log[1 +
∑

p∈Pk

(e−λP (Skp−δ))]

+
1

λN

log[1 +
∑

q∈Nk

(eλN (Skq−δ))]},

(9)

where δ is a margin threshold, λP and λN are hyper-

parameters for positive and negative pairs. We follow [42]

for the setting of these hyper-parameters.

During training, the error gradients from metric loss will

back propagated through network G to the spatial assem-

bly layer, which will be further propagated to the spatial

assembly network and the bottom network F. According to

(4), the gradients of the output feature map G(n,m, c) with

respect to the input feature map F (i, j, c) and the spatial

assembly weights are given by

∂G(n,m, c)

∂F (i, j, c)
= w(i×N + j, n×N +m), (10)

and

∂G(n,m, c)

∂w(u, v)
= F (i, j, c),

u = i×N + j, v = n×N + j.

(11)

In addition to the error gradients back propagated from

the network output, we also use the minimum entropy,

minimum correlation constraints, and the local coherence

penalty to regulate the training of the spatial assembly

weight prediction network Φ through the following com-

bined loss

LΦ = λ1 · E[w(u, v)] + λ2 ·C[w(u, v)] + λ3 · LLC , (12)

as illustrated in Figure 3. λi are the weighting parameters.

Once successfully trained, the SAN module will analyze the

incoming feature map, predict the spatial assembly weight

map. Figure 4 shows two examples of predicted spatial as-

sembly weight map. In each example, we show the max-

imum weight of the first two rows from the weight map

w(u, v). It should be noted that we have re-organized 1-

D weights of each row into an 2-D vector. Each 2-D vector

represents the assembly weight vector for one output feature

point. We only mark the maximum weight point in each 2-

D vector by red for a better visualization. The whole weight

map is used to re-assembly the feature map to generate the

output feature map, which will be further analyzed by the

network to produce the feature or decision.

4. Experimental Results

In this section, we conduct experiments on three differ-

ent settings: (1) supervised metric learning, (2) unsuper-

vised metric learning, and (3) image classification to evalu-

ate the performance of the spatial assembly network.

Figure 4. Examples of the first two rows in the predicted spatial

assembly weight map.

4.1. Datasets

For supervised and unsupervised deep metric learning,

we use the following four benchmark datasets, following

the same procedure used by existing papers [30, 43, 46,

47]. (1) CUB-200-2011 (CUB) [40] is a fine-grained bird

dataset. It contains 11,788 images of birds from 200 cat-

egories. The first 100 classes are used for training, the

remaining 100 classes are used for testing. (2) Cars-

196 (Cars) [20] consists of 16,185 car model images (196

classes). We split the first 98 classes (8,054 images) for

training, and remaining 98 classes (8,131 images) for test-

ing. (3) Stanford Online Products (SOP) [28] consists of

120,053 online product images (22,634 classes) from Ebay.

The first 11,318 classes are used for training and the re-

maining 11,316 classes are used for testing. (4) In-Shop

Clothes Retrieval (In-Shop) [24] contains 54,642 images

with 11,735 clothing classes. We use the predefined 25,882

training images of 3,997 classes for training. The testing set

includes 14,218 query images of 3,985 classes and 12,612

gallery images of 3,985 classes.

To evaluate the performance of our method on classifi-

cation in the supervised setting, we use the following two

datasets: (5) CIFAR-10 [21] consists of 32×32 pixel RGB

images in 10 classes. It includes 50,000 training images

and 10,000 testing images. (6) CIFAR-100 [21] is an ex-

tension of CIFAR-10. It contains 50,000 training images

(100 classes) and 10,000 testing images.

4.2. Supervised Metric Learning

We follow the recent state-of-the-art methods [42, 51, 30,

43] and conduct the experiments on the fine-grained CUB ,

Cars, SOP, and In-Shop datasets which are challenging for

learning discriminative features. We utilize the GoogleNet

network [37] pre-trained on ImageNet [32] as the backbone

network with an one-layer embedding head to embed fea-

ture representation to the 512-dimensional feature space on

all datasets for the benchmark performance comparison. We

implement our algorithm with PyTorch. The Adam op-

timizer [19] is used in all experiments with 5e−4 weight

decay. In the following experiments, we use the standard

image retrieval performance metric (Recall@K), for perfor-

mance evaluations and comparisons. Note that the major

challenge here is that the training classes are totally differ-

13880

ent from the test classes.

The performance comparisons with existing state-of-the-

art supervised metric learning methods on the CUB, Cars,

and In-Shop datasets are summarized in Table 1. These

methods include: LiftedStruct Loss [28], Histogram Loss

[38], N-Pair Loss [35], Clustering [27], BIER (boosting in-

dependent embeddings robustly) [29], Angular Loss [41],

MS (Multi-Similarity) Loss [42], HDML (hardness-aware

deep metric learning) [51], ABIER [30] and XBM (Cross-

Batch Memory) [43]. We use the multi-similarity loss [42]

with momentum memory bank [10] as the baseline system.

The momentum memory bank has a contrastive-based loss

[15]. Our proposed method is the baseline system with SAN

module. From Table 1, we can see that our method out-

performs the state-of-the-art methods by up to 2.6% on the

Recall@1, 2, 4, and 8 rates on the CUB dataset. We evalu-

ate the performance of the In-Shop dataset in two settings.

One setting uses the whole testing set as the query set and

gallery set, the other setting splits the testing set into query

set (14,218 query images) and gallery set (12,612 gallery

images). The performance of the second setting shows in

the brackets.

4.3. Unsupervised Deep Metric Learning

In the following experiments, we evaluate the perfor-

mance of the spatial assembly network for unsupervised

metric learning where image labels are not available. We

compare the performance of our proposed methods with

the state-of-the-art unsupervised methods: MOM (mining

on manifolds) [13], AND (anchor neighborhood discovery)

[12], CBSwR (center-based softmax with reconstruction)

[26], PSLR (probabilistic structural latent representation)

[46], ISIF [48], and aISIF [47] (augmentation invariant and

spreading instance feature). For fair comparisons, the au-

thors of the aISIF paper [47] have implemented three other

state-of-the-art methods developed for feature learning and

adapted them to unsupervised deep metric learning tasks:

Examplar [6], NCE (Noise-Contrastive Estimation) [45],

and DeepCluster [2], which are included into our compar-

ison. We use the same baseline system in the supervised

metric learning.

We use the ImageNet [32] pre-trained GoogleNet [37]

as the backbone network and set the embedding feature di-

mension to 128 on CUB, Cars, and SOP datasets for per-

formance comparison. We use the k-means clustering to

cluster the embedding features of training samples and as-

sign pseudo labels to them. We set the cluster number K to

be 100 for the CUB and Cars datasets, and set K to 10,000

for the SOP dataset. From Table 2, we can see that our pro-

posed method outperforms the state-of-the-art unsupervised

methods by a large margin.

Following the recent state-of-the-art PSLR [46], ISIF

[48], and aISIF [47] methods, we also evaluate the perfor-

mance of our proposed method on Resnet-18 without pre-

trained parameters. In this experiment, we use the randomly

initialized Resnet-18 network with an one-layer embedding

head to verify the effectiveness of our proposed SAN mod-

ule. We set the feature embedding dimension to 128 and

conduct experiments on the large-scale SOP dataset. The

results in Table 3 show that our proposed method has im-

proved the Recall@1, Recall@10, and Recall@100 rates by

4.0%, 4.2%, and 4.5%, respectively.

4.4. Image Classification

To verify the generalization capability of our spatial as-

sembly network module in different tasks, we conduct ex-

periments on the image classification task. Specifically, in

this experiment, we train the VGG-19 network [34] with

the cross-entropy loss to perform the image classification

task on the CIFAR-10 and CIFAR-100 datasets [31]. Ta-

ble 4 shows the classification performance comparison on

the CIFAR-10 and CIFAR-100 dataset. We can see that the

SAN module is able to improve the classification accuracy

by 0.68% and 0.64% on the CIFAR-10 and CIFAR-100, re-

spectively. We notice that this improvement is small since

the space for performance improvement on these two well-

studied datasets is already very limited. In addition, when

applied to image classification, we used the SAN module di-

rectly without any modification for this classification task.

We observe that, unlike the metric loss, the image label does

not provide very efficient supervision on the spatial assem-

bly learning.

4.5. Ablation Studies

In the following, we perform ablation studies to further

understand the performance of the proposed spatial assem-

bly network.

(1) Performance contribution of the SAN module. In

this ablation study, we aim to identify the contribution of

our proposed SAN module on different datasets. Table 5

summarizes the performance results on the CUB and SOP

datasets with and without using the SAN module in both su-

pervised and unsupervised deep metric learning. The base-

line system is using the multi-similarity [42] with momen-

tum memory bank [10]. The momentum memory bank has

a contrastive-based loss [15]. We can see that our proposed

SAN module significantly improves the performance by a

large margin. Figure 5 shows the retrieval examples by the

baseline with and without our SAN module on the CUB,

Cars, SOP, and In-Shop datasets from supervised metric

learning. The top row shows the retrieval results by the

baseline, and the bottom row shows the results for the base-

line plus the SAN module. Samples highlighted with blue

and red boxes are query images and incorrect retrieval re-

sults. We can see that, using the SAN module, the number

of incorrect retrieval results have been significantly reduced

13881

Table 1. Recall@K (%) performance on the CUB and Cars, and In-Shop datasets with GoogleNet in comparison with other supervised

metric learning methods. Some papers did not report results on specific datasets, which are marked with -.

Methods
CUB Cars In-Shop

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@20 R@30

LiftedStruct [28] CVPR16 47.2 58.9 70.2 80.2 49.0 60.3 72.1 81.5 - - - -

Histogram Loss [38] NIPS16 50.3 61.9 72.6 82.4 - - - - - - - -

N-Pair Loss [35] NIPS16 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6 - - - -

Clustering [27] CVPR17 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8 - - - -

BIER [29] ICCV17 55.3 67.2 76.9 85.1 78.0 85.8 91.1 95.1 76.9 92.8 95.2 96.2

Angular Loss [41] ICCV17 54.7 66.3 76.0 83.9 71.4 81.4 87.5 92.1 - - - -

MS [42] CVPR19 58.2 69.8 79.9 87.3 75.7 84.6 90.1 94.4 85.1 96.7 97.8 98.3

HDML [51] CVPR19 53.7 65.7 76.7 85.7 79.1 87.1 92.1 95.5 - - - -

A-BIER [30] TPAMI18 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 83.1 95.1 96.9 97.5

XBM [43] CVPR20 61.9 72.9 81.2 88.6 80.3 87.1 91.9 95.1 89.1 97.3 98.1 98.4

Proposed 63.3 74.5 83.8 90.4 83.5 89.7 93.4 96.1 92.5(88.5) 98.9(97.5) 99.3(98.2) 99.5(98.6)

Gain +1.4 +1.6 +2.6 +1.8 +1.5 +0.7 +0.2 +0.0 +3.4(-) +1.6(0.2) +1.2(0.1) +1.1(0.2)

Table 2. Recall@K (%) performance on the CUB, Cars, and SOP datasets with GoogleNet in comparison with other unsupervised metric

learning methods.

Methods
CUB Cars SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Examplar [6] TPAMI16 38.2 50.3 62.8 75.0 36.5 48.1 59.2 71.0 45.0 60.3 75.2

NCE [45] CVPR18 39.2 51.4 63.7 75.8 37.5 48.7 59.8 71.5 46.6 62.3 76.8

DeepCluster [2] ECCV18 42.9 54.1 65.6 76.2 32.6 43.8 57.0 69.5 34.6 52.6 66.8

MOM [13] CVPR18 45.3 57.8 68.6 78.4 35.5 48.2 60.6 72.4 43.3 57.2 73.2

AND [12] ICML19 47.3 59.4 71.0 80.0 38.4 49.6 60.2 72.9 47.4 62.6 77.1

ISIF [48] CVPR19 46.2 59.0 70.1 80.2 41.3 52.3 63.6 74.9 48.9 64.0 78.0

aISIF [47] TPAMI20 47.7 59.9 71.2 81.4 41.2 52.6 63.8 75.1 49.7 65.4 79.5

CBSwR [26] BMVC20 47.5 59.6 70.6 80.5 42.6 54.4 65.4 76.0 - - -

PSLR [46] CVPR20 48.1 60.1 71.8 81.6 43.7 54.8 66.1 76.2 51.1 66.5 79.8

Proposed 55.9 68.0 78.6 86.8 44.2 55.5 66.8 76.9 58.7 73.1 84.6

Gain +7.8 +7.9 +6.2 +5.2 +0.5 +0.7 +0.7 +0.7 +7.6 +6.6 +4.8

Table 3. Recall@K (%) performance on the SOP dataset using

Resnet-18 network without pre-trained parameters.

Methods
SOP

R@1 R@10 R@100

Random 18.4 29.4 46.0

Examplar [6] TPAMI16 31.5 46.7 64.2

NCE [45] CVPR18 34.4 49.0 65.2

MOM [13] CVPR18 16.3 27.6 44.5

AND [12] ICML19 36.4 52.8 67.2

ISIF [48] CVPR19 39.7 54.9 71.0

aISIF [47] TPAMI20 40.7 55.9 72.2

PSLR [46] CVPR20 42.3 57.7 72.5

Proposed 46.3 61.9 77.0

Gain +4.0 +4.2 +4.5

because the learned feature is much more discriminative.

(2) Performance of SAN module with different metric

learning losses. In order to verify the generalization capa-

bility of our method, we conduct experiments to show the

Table 4. Classification accuracy (%) on the CIFAR-10 and CIFAR-

100 dataset using VGG-19 network with and without the SAN

module.

Methods CIFAR-10 CIFAR-100

VGG-19 93.23 % 72.13%

VGG-19 with SAN 93.91% 72.77%

performance of our proposed SAN module with different

metric learning losses and different backbone networks. It

should be noted that the momentum memory bank [10, 15]

in the baseline system is not included in this experiment.

We evaluate the MS loss [42] with SAN on GoogleNet

backbone and Proxy-Anchor [18] loss with SAN on BN-

inception backbone. From the Table 6, we can see that the

MS loss [42] with SAN has improved the Recall@1 rate by

1.5% and the Proxy-Anchor [18] with SAN has improved

the Recall@1 rate by 1.1%.

In the Supplementary Materials, we provide additional

experimental results, implementation details, and ablation

studies.

13882

Figure 5. Retrieval examples by the baseline with and without our SAN module on the CUB, Cars, SOP, and In-Shop datasets. The query

images and the incorrect retrieved images are highlighted with blue and red.

Table 5. The Recall@K performance of the baseline and baseline

with our proposed SAN module on the CUB and SOP datasets.

Supervised Metric Learning

Methods
CUB

R@1 R@2 R@4 R@8

Baseline 61.8 73.2 82.3 88.9

+ SAN 63.3 74.5 83.8 90.4

Gain +1.5 +1.3 +1.5 +1.5

Methods
SOP

R@1 R@10 R@100 R@1000

Baseline 73.7 87.9 95.0 98.4

+ SAN 75.8 89.2 95.5 98.6

Gain +2.1 +1.3 +0.5 +0.2

Unsupervised Metric Learning

Methods
CUB

R@1 R@2 R@4 R@8

Baseline 53.3 66.1 77.4 85.6

+ SAN 55.9 68.0 78.6 86.8

Gain +2.6 +1.9 +1.2 +1.2

Methods
SOP

R@1 R@10 R@100

Baseline 56.9 71.2 82.7

+ SAN 58.7 73.1 84.6

Gain +1.8 +1.9 +1.9

5. Conclusion

In this work, we have successfully developed a new

spatial assembly network to explore the spatial variations

caused by changes in object part configurations, spatial lay-

out of object, and scene structures of the images. This SAN

module examines the input image and perform a learned

re-organization and assembly of feature points from dif-

ferent spatial locations conditioned by feature maps from

previous network layers so as to maximize the discrimina-

tive power of the final feature representation. The proposed

spatial assembly goes beyond spatial image transforms. It

Table 6. Recall@K (%) performance on SAN with Multi-

Similarity (MS) loss and Proxy-Anchor loss on the CUB dataset.

’G’ denotess GoogleNet, ’BN’ denotes BN-inception.

Methods
CUB

R@1 R@2 R@4 R@8

MS [18] CVPR19 G 58.2 69.8 79.9 87.3

MS with SAN G 59.7 72.0 81.4 88.4

Gain +1.5 +2.2 +1.5 +1.1

Proxy-Anchor [18] CVPR20 BN 68.4 79.2 86.8 91.6

Proxy-Anchor with SAN BN 69.5 79.3 86.7 92.0

Gain +1.1 +0.1 - +0.4

learns to reorganize or re-assemble the feature maps across

different spatial locations. This work represents one of the

first efforts to explore spatial reorganization of feature maps

for 2D images. The proposed spatial assembly represents

a more generic feature operation than simple permutation.

This differentiable module can be directly incorporated into

existing deep neural network for end-to-end training to in-

crease network robustness under spatial variations and im-

prove the discriminative power of image features In our ex-

periments, we have demonstrated that the proposed SAN

module is able to significantly improve the performance of

various metric / representation learning, image retrieval and

classification tasks, in both supervised and unsupervised

learning scenarios.

Acknowledgement

This work was supported in part by National Science

Foundation under grants 1647213 and 1646065. Any opin-

ions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foun-

dation.

13883

References

[1] RE Burkard and E Cela. The quadratic assignment problem,

in “handbook of combinatorial optimization” vol. 3. edited

by dz du, pm pardalos, 1999. 2

[2] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 132–149, 2018. 6,

7

[3] Taco S Cohen and Max Welling. Transformation prop-

erties of learned visual representations. arXiv preprint

arXiv:1412.7659, 2014. 2

[4] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 113–123,

2019. 2

[5] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017. 2

[6] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-

berg, Martin Riedmiller, and Thomas Brox. Discriminative

unsupervised feature learning with exemplar convolutional

neural networks. IEEE transactions on pattern analysis and

machine intelligence, 38(9):1734–1747, 2015. 6, 7

[7] Clement Farabet, Camille Couprie, Laurent Najman, and

Yann LeCun. Learning hierarchical features for scene la-

beling. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1915–1929, 2012. 2

[8] Alhussein Fawzi and Pascal Frossard. Manitest: Are clas-

sifiers really invariant? arXiv preprint arXiv:1507.06535,

2015. 1

[9] Robert Gens and Pedro M Domingos. Deep symmetry net-

works. In Advances in neural information processing sys-

tems, pages 2537–2545, 2014. 2

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. arXiv preprint arXiv:1911.05722, 2019.

6, 7

[11] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter

Abbeel. Population based augmentation: Efficient learning

of augmentation policy schedules. In International Confer-

ence on Machine Learning, pages 2731–2741. PMLR, 2019.

2

[12] Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu.

Unsupervised deep learning by neighbourhood discovery.

In International Conference on Machine Learning, pages

2849–2858, 2019. 6, 7

[13] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej

Chum. Mining on manifolds: Metric learning without labels.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7642–7651, 2018. 6, 7

[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 2

[15] Shichao Kan, Yigang Cen, Yang Li, Mladenovic Vladimir, ,

and Zhihai He. Contrastive bayesian analysis for supervised

deep metric learning. In Github, 2020. 6, 7

[16] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal

Frossard. Geometric robustness of deep networks: analysis

and improvement. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4441–

4449, 2018. 2

[17] Osman Semih Kayhan and Jan C van Gemert. On translation

invariance in cnns: Convolutional layers can exploit abso-

lute spatial location. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

14274–14285, 2020. 1

[18] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.

Proxy anchor loss for deep metric learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3238–3247, 2020. 7, 8

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[20] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), Sydney, Australia, 2013. 5

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5

[22] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and

Marc Pollefeys. Ti-pooling: transformation-invariant pool-

ing for feature learning in convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 289–297, 2016. 1, 2

[23] Karel Lenc and Andrea Vedaldi. Understanding image repre-

sentations by measuring their equivariance and equivalence.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 991–999, 2015. 1, 2

[24] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition

and retrieval with rich annotations. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1096–1104, 2016. 5

[25] Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin.

Autoshufflenet: Learning permutation matrices via an ex-

act lipschitz continuous penalty in deep convolutional neural

networks. In Proceedings of the 26th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining,

pages 608–616, 2020. 1, 2

[26] Binh X Nguyen, Binh D Nguyen, Gustavo Carneiro, Er-

man Tjiputra, Quang D Tran, and Thanh-Toan Do. Deep

metric learning meets deep clustering: An novel unsu-

pervised approach for feature embedding. arXiv preprint

arXiv:2009.04091, 2020. 6, 7

[27] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep metric learning via facility location. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5382–5390, 2017. 6, 7

[28] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured fea-

ture embedding. In Proceedings of the IEEE conference on

13884

computer vision and pattern recognition, pages 4004–4012,

2016. 5, 6, 7

[29] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Bier-boosting independent embeddings robustly. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 5189–5198, 2017. 6, 7

[30] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Deep metric learning with bier: Boosting inde-

pendent embeddings robustly. IEEE transactions on pattern

analysis and machine intelligence, 2018. 5, 6, 7

[31] Sebastian Ruder. An overview of gradient descent optimiza-

tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 6

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015. 5, 6

[33] Xu Shen, Xinmei Tian, Anfeng He, Shaoyan Sun, and

Dacheng Tao. Transform-invariant convolutional neural net-

works for image classification and search. In Proceedings

of the 24th ACM international conference on Multimedia,

pages 1345–1354, 2016. 2

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[35] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In Advances in neural information

processing systems, pages 1857–1865, 2016. 2, 6, 7

[36] Kihyuk Sohn and Honglak Lee. Learning invariant rep-

resentations with local transformations. arXiv preprint

arXiv:1206.6418, 2012. 2

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

5, 6

[38] Evgeniya Ustinova and Victor Lempitsky. Learning deep

embeddings with histogram loss. In Advances in Neural In-

formation Processing Systems, pages 4170–4178, 2016. 6,

7

[39] Joshua T Vogelstein, John M Conroy, Vince Lyzinski,

Louis J Podrazik, Steven G Kratzer, Eric T Harley, Don-

niell E Fishkind, R Jacob Vogelstein, and Carey E Priebe.

Fast approximate quadratic programming for graph match-

ing. PLOS one, 10(4):e0121002, 2015. 2

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011. 5

[41] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing

Lin. Deep metric learning with angular loss. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2593–2601, 2017. 6, 7

[42] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5022–5030, 2019. 4, 5, 6, 7

[43] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R

Scott. Cross-batch memory for embedding learning. arXiv

preprint arXiv:1912.06798, 2019. 5, 6, 7

[44] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao,

Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hong-

sheng Li, and Xiaogang Wang. Orientation invariant feature

embedding and spatial temporal regularization for vehicle

re-identification. In Proceedings of the IEEE International

Conference on Computer Vision, pages 379–387, 2017. 2

[45] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3733–

3742, 2018. 6, 7

[46] Mang Ye and Jianbing Shen. Probabilistic structural latent

representation for unsupervised embedding. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 5457–5466, 2020. 5, 6, 7

[47] Mang Ye, Jianbing Shen, Xu Zhang, Pong C Yuen, and Shih-

Fu Chang. Augmentation invariant and instance spreading

feature for softmax embedding. IEEE transactions on pat-

tern analysis and machine intelligence, 2020. 5, 6, 7

[48] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Un-

supervised embedding learning via invariant and spreading

instance feature. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6210–

6219, 2019. 6, 7

[49] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal

Fua. Lift: Learned invariant feature transform. In European

Conference on Computer Vision, pages 467–483. Springer,

2016. 2

[50] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

6848–6856, 2018. 2

[51] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou.

Hardness-aware deep metric learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 72–81, 2019. 5, 6, 7

13885

