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Abstract

Modern one-stage video instance segmentation networks

suffer from two limitations. First, convolutional features

are neither aligned with anchor boxes nor with ground-

truth bounding boxes, reducing the mask sensitivity to spa-

tial location. Second, a video is directly divided into in-

dividual frames for frame-level instance segmentation, ig-

noring the temporal correlation between adjacent frames.

To address these issues, we propose a simple yet effective

one-stage video instance segmentation framework by spa-

tial calibration and temporal fusion, namely STMask. To

ensure spatial feature calibration with ground-truth bound-

ing boxes, we first predict regressed bounding boxes around

ground-truth bounding boxes, and extract features from

them for frame-level instance segmentation. To further ex-

plore temporal correlation among video frames, we aggre-

gate a temporal fusion module to infer instance masks from

each frame to its adjacent frames, which helps our frame-

work to handle challenging videos such as motion blur,

partial occlusion and unusual object-to-camera poses. Ex-

periments on the YouTube-VIS valid set show that the pro-

posed STMask with ResNet-50/-101 backbone obtains 33.5

% / 36.8 % mask AP, while achieving 28.6 / 23.4 FPS on

video instance segmentation. The code is released online

https://github.com/MinghanLi/STMask.

1. Introduction

Video instance segmentation aims to obtain the pixel-

level segmentation mask for individual instances of all

classes over the entire frames of a video, which heavily

depends on spatial position-sensitive features to localize

frame-level objects and redundant temporal information to

track instances across frames. Following object detection

and image instance segmentation works, modern video in-

stance segmentation approaches usually adopt the top-down

∗Corresponding author.This work is supported by the Hong Kong RGC

RIF grant (R5001-18).

(a) Original anchors and features (b) Calibrated anchors and features

(c) Adaptive features (d) Aligned features

Figure 1. Spatial calibration for anchor boxes and bounding

boxes. (a) and (b) display anchors and features in original and cal-

ibrated one-stage networks respectively. (c) and (d) demonstrate

adaptive and aligned features extracted from predicted bounding

boxes. Purple, blue and green rectangles denote anchors, predicted

and ground-truth bounding boxes respectively, where coloured ar-

eas indicate the receptive filed of their convolutional features.

framework of first detecting and segmenting objects frame

by frame and then linking instance masks across frames.

Top-down video instance segmentation approaches can

be divided into two-stage and one-stage methods. By

adding a tracking branch to Mask R-CNN [18], two-stage

video instance segmentation methods [43, 2, 16] first pre-

dict region-of-interests (RoIs) around ground-truth bound-

ing boxes, and then feed aligned features via RoIPool-

ing [32] or RoIAlign [18] to segment frame-level object

masks and to track cross-frame instances. To obtain better

location-sensitive features for mask predictor, many spatial

feature calibration strategies for RoIs have been continu-

ously proposed in recent years like Deformable RoI [12]

and Hybrid Task Cascade [8]. For temporal information

exploration, recently proposed MaskProp [2] utilizes tem-

poral features propagated from all frames of a video clip

for clip-level instance tracking. Obviously, two-stage meth-

ods have recognized the importance of spatial feature lo-

calisation and temporal feature tracking for video instance
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segmentation. One-stage instance segmentation networks

[11, 42, 5, 35, 6, 24, 25], which focus more on real-time

speed, usually employ a fully convolutional network struc-

ture to directly predict the final mask for instances. Without

RoIs of two-stage methods for localisation, early one-stage

methods have to introduce extra position-sensitive infor-

mation to improve segmentation performance like position-

sensitive score maps [11] or semantic features [9]. In image

domain, recently proposed anchor-based one-stage meth-

ods like Yolact [5] and CondInst [35] decompose instance

segmentation as the linear combination between instance-

specific mask coefficients and instance-independent proto-

types. Furthermore, SipMask [6], introducing a tracking

branch in Yolact[5], achieves real-time speed but inferior

performance in video instance segmentation task.

Analysing these anchor-based one-stage instance seg-

mentation methods, we observe that, as shown in Fig.1 (a),

multiple anchors of different shapes at each spatial position

(purple rectangles) share same convolutional features (yel-

low area), which are neither aligned with pre-defined anchor

boxes nor with ground-truth bounding boxes. This fact does

violate that instances segmentation is a spatial location-

sensitive task. On the other hand, one-stage video instance

segmentation methods directly divide a video into separate

frames to perform image instance segmentation frame by

frame and then track them across frames, which completely

ignores high temporal correlation between adjacent frames.

This may fail to handle those challenging videos with mo-

tion blur, partial occlusion, or unconventional object-to-

camera poses. In other words, modern one-stage video in-

stance segmentation methods achieve real-time speed at the

cost of discarding spatial feature calibration and temporal

feature correlation.

To address the issues, we propose a simple yet effective

one-stage video instance segmentation framework, named

STMask. Firstly, we design a feature calibration strategy

for anchor boxes and ground-truth bounding boxes to ob-

tain more precise spatial features. Specifically, as shown

in Fig.1 (b), to enable each anchor box can extract its own

specific features, we first design multiple convolutional ker-

nels at each spatial position, and then generate anchors ac-

cording to the receptive field of these convolutional ker-

nels. To improve feature presentation for objects segmen-

tation and tracking, we first predict regressed bounding

boxes around ground-truth bounding boxes by regression

branch, and then extract features from them to segment and

track instances. As shown in Fig.1 (c) and (d), we pro-

vide two strategies to extract features from regressed bound-

ing boxes, including adaptive features by a single 1 × 1
convolutional layer and aligned features by mathematical

derivation. Finally, we explore temporal correlation be-

tween video frames by adding a temporal fusion module to

infer instance masks from adjacent frames, thereby improv-

ing the performance of objects detection, segmentation and

tracking for those challenging videos.

2. Related Work

Video instance segmentation directly benefits from ad-

vances in image instance segmentation and video object de-

tection field. Thus this section consists of three parts.

Image Instance Segmentation. Existing image instance

segmentation methods either follow bottom-up or top-down

paradigms. The bottom-up methods [9, 36] widely em-

ploy multiple stages to first perform semantic segmenta-

tion and then identify the specific location of each instance

by boundary detection [20], pixel clustering [25], or pix-

els embedding loss [30, 22, 31], position-sensitive pooling

[11, 24]. The top-down instance segmentation approaches

first predict bounding boxes by object detectors and then

perform mask segmentation within the predicted boxes.

Mask R-CNN [18] extends Faster R-CNN [32] by adding

a mask segmentation branch on each Region of Interest

(RoI), where RoIAlign operator is introduced to obtain ‘re-

pool’ features of each proposal for better mask prediction.

Follow-up works try to improve its accuracy by aligning

spatial features [12], enriching the FPN features [28] or ad-

dressing the incompatibility between a mask’s confidence

score and its localization accuracy [19]. One-stage instance

segmentation approaches [42, 34, 7, 45, 38, 5, 40, 21] re-

cently are proposed to keep the trade-off between speed

and performance. Yolact-based methods [5, 35, 6] break up

instance segmentation into two parallel subtasks: generat-

ing a set of instance-independent prototypes and predicting

instance-specific mask coefficients.

Video Object Detection. For handling challenging

videos such as motion blur and occlusion, optical flow

[46, 39], correlation operation [15], deformable convolu-

tional networks [3, 41] and relation networks [14, 10] are

the popular technologies to propagate or align features

across frames. In addition, methods like[13, 33] try to

utilise semantic similarity between frames to assist object

detection in videos.

Video Instance Segmentation. To jointly perform the

detection, segmentation and tracking tasks simultaneously,

most of video instance segmentation methods extend Mask

R-CNN [18] by adding a new branch for tracking. For ex-

ample, MaskTrack R-CNN [43] predicts an extra embed-

ding vector for each instance and use an external memory

to store them for tracking across frames. MaskProp [2]

introduces a mask propagation branch to propagate frame-

level instance masks from each video frame to all the other

frames in a video clip and then match clip-level instance

masks for tracking, providing state-of-the-art instance seg-

mentation performance and quite limited speed. Besides,

[26] proposes a modified variation autoencoder (VAE) ar-

chitecture built on the top of Mask R-CNN [18]. Recently,
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Figure 2. An overview architecture of STMask, including frame-level instance segmentation (blue area) and cross-frame instance seg-

mentation (yellow area). Specifically, we first use Yolact with spatial calibration to obtain frame-level instance masks in time t − 1 and t

respectively, then feed FPN features of two adjacent frames and the output of correlation operation to TemporalNet to infer the displacement

of instances from time t− 1 to t, and finally merge frame-level and cross-frame instance masks to obtain final instance masks.

SipMask [6] also introduces a tracking branch (same as

[43]) in the one-stage image instance segmentation net-

work Yolact [5] to obtain inferior performance but real-

time speed. Besides, inspired by Guided Anchor [38, 23],

SipMask further aligns feature with regressed bounding

boxes to improve feature representation for classification

and mask coefficients generation. Existing spatial feature

calibration for one-stage approaches only focus on the mis-

alignment between features and regressed bounding boxes.

3. STMask

The overall architecture of STMask shown in the Fig. 2

consists of frame-level instance segmentation with spatial

calibration and cross-frame instance segmentation by tem-

poral fusion module.

3.1. Spatial Calibration

Our goal is to align features with anchors and ground-

truth bounding boxes respectively for one-stage instance

segmentation methods. For spatial feature calibration on

anchors, multiple convolutional kernels shown in Fig. 3 are

introduced to alleviate the misalignment between features

and anchors. For spatial feature calibration on bounding

boxes, shown in the pink rectangle of Fig. 2, we first indi-

vidually predict regressed bounding boxes around ground-

truth bounding boxes, and then extract features from those

regressed bounding boxes to classify, segment and track in-

stances.

3.1.1 Feature Calibration for Anchors (FCA)

One-stage anchor-based object detectors usually sample a

large number of regions in the input image, determine

whether these regions contain objects of interest, and adjust

the edges of the regions so as to more accurately predict

the ground-truth bounding boxes of the targets. In general,

the sliding-window fashion to generate anchors is the most

popular method, which generates multiple boxes with dif-

ferent scales and aspect ratios while centring on each pixel.

As shown in Fig. 1(a), for multiple anchors with differ-

ent shapes, one-stage detectors directly employ a 3 × 3
convolution on the central point of anchors to extract fea-

tures. In practice, the receptive field of convolution should

be positively related to the size of anchor boxes. For exam-

ple, those larger anchor boxes should have larger receptive

fields, while those smaller boxes should have smaller ones.

To address this issue, thus, we adopt multiple convolution

kernels with different aspect ratios on each FPN layer. For

example, we replace the single 3× 3 convolution with three

new aspect ratios of convolutions, 3×3, 3×5, 5×3 respec-

tively. The FCA architecture implemented on the bounding

box regression branch is shown in Fig. 3. To further ensure

the calibration between convolutional features and anchors,

we keep the scales unchanged while changing the anchor as-

pect ratios from [1, 1/2, 2] to [1, 3/5, 5/3], which are same

as the aspect ratios of convolutions. The simple feature cal-

ibration for anchors maintains position sensitivity for object

detection and segmentation.
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Figure 3. Bounding Box Regression Architecture. Taking the

regression branch as example, we design multiple convolutions for

calibrating features with pre-defined anchor boxes, where a=3 is

the number of anchors.

3.1.2 Feature Calibration for Bounding Boxes (FCB)

After the feature calibration with anchors in last part, fea-

tures for classification, mask coefficients and embedding

vectors of tracking branch still fail to align with the re-

gressed bounding boxes. To further address the issue,

we adopt the prediction architecture of first predicting re-

gressed bounding boxes and then extracting features from

the regressed bounding boxes to segment and track objects.

Let {(Pi, Gi)}i=1,...,N denote the pairs of anchor boxes

and ground-truth bounding boxes. Note that subscript i is

only added when necessary. P = (Px, Py, Pw, Ph) spec-

ifies the pixel coordinates of the centre and the width and

height of the anchor box. The same goes for ground-truth

bounding box G = (Gx, Gy, Gw, Gh). The bounding-box

regression aims to learn a transformation d that maps an an-

chor box to its ground-truth bounding box:

d = [dx, dy, dw, dh]. (1)

After that, its regressed bounding box Bi can be calculated

by applying the transformation[17]

Bx = Pwdx + Px, By = Phdy + Py;

Bw = Pw exp(dw), Bh = Ph exp(dh). (2)

Based on the transformation between anchor boxes and pre-

dicted bounding boxes, we can introduce a 2D deformable

convolution to calibrate convolutional features from anchor

boxes to predicted bounding boxes. For easier understand-

ing, we take a 3×3 convolution with dilation 1 as an exam-

ple to explicate the process of spatial feature calibartion for

bounding boxes. For each location p0 on the output map g,

the 2D deformable convolution can be formulated as

g(p0) =
∑

pn∈R

w(pn) · f(p0 + pn +∆pn), (3)

(a) Scale-invariant Translation (b) Scale Transformation

Figure 4. Illustration of aligned features from anchor boxes to

predicted bounding boxes.

where ∆pn is the offsets on the position pn ∈ R, which is

a point of the grid

R =







(−1,−1) (−1, 0) (−1, 1)
( 0,−1) ( 0, 0) ( 0, 1)
( 1,−1) ( 1, 0) ( 1, 1)







, (4)

To extract convolutional features from predicted bounding

boxes, the offsets O should be dominated by the transforam-

tion d. Thus, this paper provides two strategies to obtain off-

sets: adding a single 1× 1 convolution layer to predict adp-

tive offsets, or directly deriving the aligned offsets through

mathematical geometric knowledge.

Adaptive Features on Bounding Boxes. Inspired by

the anchor-guided feature adaption module [38], we also

transform the feature at each individual location based on

the underlying anchor transformation:

O = NO(d), (5)

where NO is a 1 × 1 convolutional layer to predict offsets

according to the bounding-box regression transformation d.

When the predicted offsets O ∈ R2×3×3 is fed into a de-

formable convolutional layer to produce adaptive features

shown in blue points in Fig. 1(c). For such regression-

dependent offsets, each regressed bounding box can learn

its own adaptive features to perform further objects classifi-

cation, segmentation and tracking.

Aligned Features on Bounding Boxes. For the regres-

sion transformation d in terms of four functions in Eq. 1, the

first two specify a scale-invariant translation of the centre of

anchor box, while the second two specify log-space trans-

lations of the width and height of anchor box. According to

the four parameters of transformation d, the derivation pro-

cess of generating the offsets can also be divided into two

steps: scale-invariant translation and scale transformation,

shown in Fig. 4 (a) and (b) respectively. On one hand, Fig.

4 (a) demonstrates that all sampling points on the grid R of

the anchor box have the same scale-invariant translation as

the centre point. On the other hand, Fig. 4 (b) shows that the

absolute scale transformation of the width and height on the

grid R is related to their own coordinate position. Overall,

the derived offsets for all points on the grid should be

O = (∆y,∆x)I + (∆h,∆w)R. (6)
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where I is a matrix with all elements as 1, ∆x,∆y,∆h and

∆w are listed below:

∆x = kwdx, ∆w = exp(dw)− 1, (7)

∆y = khdy, ∆h = exp(dh)− 1. (8)

where k = (kw, kh) is the kernel size on the width and

the height. Due to the limit of space, the detailed formula

derivation process is provided in the supplementary mate-

rials. In fact, the mathematical derivation for the offset in

this part is equivalent to a special case of RoIAlign opera-

tion in two-stage networks, where each bin only takes the

central point as its output value.

3.2. Temporal Fusion Module

Compared with image instance detection and segmen-

tation, video instance segmentation task faces more chal-

lenges such as partial occlusion, unusual view, motion blur.

To address the issue, thus, we further set up a temporal

fusion module for cross-frame bounding boxes regression

and mask segmentation. The yellow area of Fig. 2 shows

the schematic diagram of temporal fusion module between

two adjacent frames, which concatenate features of FPN

between two adjacent frames to infer the displacement of

instances from the previous frame to the current frame,

thereby obtaining cross-frame instance masks from the pre-

vious frame to the current frame. Afterthat, we only need to

merge frame-level detected instance masks and cross-frame

tracked instance masks to get the final instances masks.

Such a double guarantee architecture does improve the ac-

curacy of detection and segmentation in video domain.

Frame-level Instance Segmentation. Same as Yolact

[5], STMask decomposes instance segmentation into the

linear combination between instance-independent proto-

types P ∈ RH′
×W ′

×k and instance-specific mask coeffi-

cients C ∈ Rk×n. Essentially, the process of learning pro-

totypes P is equivalent to learn the online basis set, also

called dictionary [29], when each instance i can find a linear

combination Ci ∈ Rk×1 of a ’few’ atoms from prototypes

that is ‘close’ to the ground-truth mask Mi ∈ RH′
×W ′

. The

each instance segmentation can be implemented efficiently

using a single matrix multiplication and the activation func-

tion (sigmoid function σ):

Mi = Crop(σ(PCi), Bi). (9)

where the final masks Mi is also cropped by the predicted

bounding box Bi.

Cross-frame Instance Segmentation. Given a pair of

frames It−1, It from a video V ∈ RH×W×V , the goal of

proposed temporal fusion module is to track those object

masks from time t− 1 to t, noted as M t−1,t. Since the

prototypes are instance-independent, according to Eq. (9),

the temporal fusion module intuitively needs to predict the

Figure 5. Temporal Network Architecture.

mask coefficients Ct−1,t and bounding boxes Bt−1,t of in-

stances from time t−1to t.

Inspired by RoI tracking process in video object de-

tection task [15], the temporal fusion module of STMask

should include a bounding boxes regressor and a mask co-

efficient predictor. To be specific, as shown in the yellow

area of Fig. 2, we first adopt a correlation operation on FPN

features of xt−1 ∈ RH′
×W ′

×f and xt ∈ RH′
×W ′

×f to

embed motion information of instances, noted as xt−1,t
corr ∈

RH′
×W ′

×d2

, where d is the side length of local square.

Then the concatenation of features {xt−1, xt, xt−1,t
corr } is

transported to the temporal network, shown in Fig. 5, to

infer the displacement of bounding boxes dt−1,t and mask

coefficients ∆Ct−1,t of instances from time t−1 to t, where

dt−1,t = {dt−1,t
x , dt−1,t

y , dt−1,t
w , d

t−1,t
h }. (10)

Thus, the cross-frame bounding boxes Bt−1,t from time t−1
to t can be formulated as

Bt−1,t
x =Bt−1

w dt−1,tx +Bt−1

x , Bt−1,t
y =Bt−1

h dt−1,ty +Bt−1

y ,

(11)

Bt−1,t
w =Bt−1

w exp(dt−1,tw ), Bt−1,t
h =Bt−1

h exp(dt−1,th ). (12)

where the predicted bounding box coordinates Bt−1 acts as

an anchor. On the other hand, due to the similarity of the

prototypes between adjacent frames, the mask coefficients

of each instance on different frames should also be ’close’

to each other. Based on the mask coefficients Ct−1 in the t−
1 frame, the cross-frame mask coefficients Ct−1,t inferred

from time t−1 to t can be obtained by

Ct−1,t = Ct−1 +∆Ct−1,t. (13)

Finally, the instance masks M t−1,t inferred from time t−1
to t can be conducted by

M t−1,t = Crop(σ(P tCt−1,t), Bt−1,t). (14)

Merge Frame-level and Cross-frame Instance Seg-

mentation. We denote the set of video-level instance IDs

as Y , which is incrementally built, and Nt is the number

of instances predicted by frame-level instance segmenta-

tion of Eq. (9) at time t. At the beginning, we assign IDs
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Y = {1, . . . , N1} for all frame-level object segmentations

in the first frame of a video. For following video frames, we

first perform frame-level instance segmentations of Eq. (9)

to predict frame-level instance masks M t, and then execute

the temporal fusion module of Eq. (14) to infer cross-frame

instance masks M t−1,t from time t − 1 to t. Obviously,

the cross-frame instance masks M t−1,t are naturally given

the same embedding vectors Et−1 and the same instance

IDs as M t−1. Thus, the matching scores between frame-

level masks M t and cross-frame masks M t−1,t consist of

two components: the cosine similarity of embedding vec-

tors and mask IoU:

stij = α
Et

i · E
t−1

j

‖ Et
i ‖‖ Et−1

j ‖
+ β MIoU(M t

i ,M
t−1,t
j ) (15)

where i ∈ {1, . . . Nt}, j ∈ Y , and α, β are hyperparame-

ters to balance the effect of different components. For each

frame-level instance mask M t
i , let sti = maxj∈Y stij be the

maximum score among all instances IDs j ∈ Y . If sti is

greater than a certain threshold ǫ, the frame-level instance

mask M t
i will be assigned the instance ID with the highest

score. Otherwise, it will be considered as a new one and will

be assigned an instance ID |Y|+1. Overall, the frame-level

instance masks M t
i will be assigned instance IDs by:

yti =

{

argmaxj∈Y stij , if si > ǫ,

|Y|+ 1, otherwise.
(16)

We denote Yt = {yti |i ∈ {1, . . . Nt}} as the set including

all frame-level instance IDs at time t. If there are instance

IDs that do not appear in the set of frame-level instance IDs

Yt but appear in the set of cross-frame instance IDs Y , in

other words,

Y − Y ∩ Yt 6= ∅,

these cross-frame instance masks M
t−1,t

Y−Y∩Yt will be supple-

mented as the missing instances in the t frame. Finally, the

merged masks of all instances in the t-th frame should be

M̄ t = M t ∪M
t−1,t

Y−Y∩Yt . (17)

4. Experimental Results

Training. We conduct video instance segmentation ex-

periments on YouTube-VIS [43] dataset using the standard

metrics. In training, the YouTube-VIS train set is split as

two subsets: train-sub and valid-sub set. One is used for

training and the other is used as the valid set during training.

We train all models on pairs of frames, where the second

frame in a pair is randomly selected with a time gap δ ∈ [-

5, 5] relative to the first frame, using pre-trained models on

MS COCO dataset [27]. Similar as MaskTrack R-CNN[43],

we use the input size 360 × 640 for training. All model is

trained with batch size 16 for 160k iterations and divide the

learning rate at 66K and 133K. Training takes 1-2 days on

four NVIDIA 2080Ti.

Inference. Given an input image, we forward it through

the frame-level network to obtain the outputs including

classification scores, bounding box, embedding vectors,

mask coefficients and the prototypes. Box-based Non-

maximum suppression (NMS) with the threshold being 0.5

is used to remove duplicated detections and then the top 100

bounding-boxes are used to compute frame-level masks.

After that, we forward the features of the previous frame

and the current frames through temporal fusion module to

first infer masks from the previous frame to current frame,

then assig IDs for frame-level masks of the current frame

and supplement the missing masks. We take the hyperpa-

rameters as α = 1, β = 1 in temporal fusion module.

4.1. Design Choices

In this section, we discuss the design choices of spatial

calibration and temporal fusion module for our proposed

one-stage video instance segmentation framework STMask.

Similar as MaskTrack R-CNN [43], we extend Yolact [5]

by adding a tracking branch to predict embedding vectors

for tracking. For this part, we adopt ResNet101 with de-

formable convolution layers (interval=3 ) as the backbone

of Yolact [5]. Note that all experiments do not include other

improvements in Yolact++ [4] such as more anchors and

semantic segmentation loss.

Design Choices of FCA. Our baseline Yolact [5] has

three anchors with aspect ratios [1, 1/2, 2] and a 3 × 3
convolution in prediction head. As shown in Table 1 (1st

row), it achieves 28.9% in mask AP. After adding FCA

strategy, the setting of aspect ratios with smaller convolu-

tions {3× 3, 3× 2, 2× 3} still brings the gain of 1% mask

AP, and the setting with larger convolutions of aspect ratios

{3 × 3, 3 × 5, 5 × 3} brings a significant improvement of

1.9 % mask AP. Note that, for fair comparison, we set the

kernel size to nearly 3 × 3 to ensure that the performance

gain does come from feature calibration on anchors rather

than a larger receptive field. For all experiments below, we

choose the latter setting by default.

Design choices of FCB. To analyse the impact of the

feature calibration for regression bounding boxes (FCB) on

classification, mask coefficients and embedding vectors of

tracking branch, we discuss some possible combinations

among them on the prediction head. As shown in Table

2, our baseline with FCA (1st row) achieves 30.8% mask

AP. Overall, all experiments adding FCB with adaptive and

aligned features strategy on all possible combination among

branches of the prediction head obtain significantly im-

proved results on all metrics, around 1-3 %. Besides, all

experiments with aligned features calibration is relatively

lower than that of adaptive features, because the latter may

be more adaptable than the former. By default, FCB (ada)
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Table 1. Design choices for FCA on YouTube-VIS valid set.

Aspect ratios AP AP50 AP75 APS APM APL

{3:3, 3:3, 3:3} 28.9 45.8 30.1 9.8 26.9 40.3

{3:3, 3:2, 2:3} 29.9 48.9 31.2 8.0 27.8 40.3

{3:3, 3:5, 5:3} 30.8 49.8 31.0 11.8 29.7 44.6

Table 2. Design choices for FCB with adaptive and aligned fea-

tures on YouTube-VIS valid set.

Baseline+FCA +Class +Mask +Track AP(ada) AP(ali)

X 30.8 30.8

X X X X 33.7 31.7

X X X 34.4 31.7

X X X 34.3 32.4

X X X 32.5 33.1

Table 3. Design choices for temporal fusion module.

Layers d AP AP50 AP75 AR1 AR10

P3 13 33.8 51.3 35.8 32.1 39.6

P4 11 35.0 53.0 38.7 32.8 40.1

and FCB (ali) denote FCB with adaptive features on all

three branches, and that with aligned features on mask co-

efficient and tracking branches, respectively.

Design Choices of Temporal Fusion Module. We first

conduct experiments on different FPN layers and the side

length of local square for the correlation operation. As

shown in Table 3, the P4 FPN layer with the side length 11
obtains the better performance for temporal fusion module.

4.2. Ablation Study

We conduct the ablation study on YouTube-VIS valid

set using Yolact with ResNet101-DCN backbone[4] as our

basline. For fair comparison, the baseline of all experiments

adopts three anchors and does not include semantic segmen-

tation loss. Table 4 shows the impact of progressively inte-

grating our different components: feature calibration with

anchor boxes (FCA), adaptive / aligned feature calibration

with anchor boxes (FCB), and temporal fusion module (TF)

to the baseline. The four components progressively increase

segmentation performance to 36.8 % mask AP. Besides, to

better explore the individual improvements for mask seg-

mentation brought by each single component, we also con-

duct the experiments adding the different components in-

dividually to the baseline shown in Table 5, where FCA,

FCB(ada), FCB(ali) and TF component respectively con-

tribute to the gains of 1.9 % , 2.3 % , 2.4 % and 5.2 % mask

AP. Among these components, the FCB(ada) and TF pro-

vide the most improvement in accuracy over the baseline.

These results suggest that each of our components individ-

ually contributes towards improving the final performance.

We also perform more ablation study for STMask on

COCO dataset to verify the effectiveness of spatial feature

Table 4. Ablation study on YouTube-VIS valid: progressively

integrating different components into the baseline.

Baseline +FCA +FCB +TF AP AP50 AP75 FPS

(ada / ali)

X 28.9 45.8 30.1 31.2

X X 30.8 49.8 31.0 29.5

X X X / 34.4 53.0 34.6 28.3

X X / X 33.1 51.4 35.2 26.7

X X X / X 36.8 56.8 38.0 23.4

X X / X X 36.3 55.2 39.9 22.1

Table 5. Ablation study on YouTube-VIS valid: individually inte-

grating different components into the baseline.

Methods Impro. AP AP50 AP75 APS APM APL

Baseline - 28.9 45.8 30.1 9.8 26.9 40.3

+ FCA +1.9 30.8 49.8 31.0 11.8 29.7 44.6

+ FCB(ada) +2.3 31.2 52.1 31.2 11.1 32.8 43.6

+ FCB(ali) +2.4 31.3 50.0 32.8 10.3 31.7 43.3

+ TF +5.2 34.1 51.9 36.0 11.4 30.3 46.5

calibration on image instance segmentation task, which are

provided in the supplementary material.

4.3. Mask Results

We compare the proposed STMask with state-of-the-arts

on YouTube-VIS valid set. The results are shown in Table 6.

The ResNet50 backbone is used by the competing methods.

The speed is computed on a single 2080Ti GPU.

From Table 6, we can see that among existing fast

video object segmentation (VOS) methods, OSMN [44]

with ‘track-by-detect’ and FEELVOS [37] achieve rela-

tively lower mask AP scores. The bottle-up method STEm-

Seg with ResNet 50 and ResNet 101 backbone reaches 30.6

% and 34.6 % mask AP respectively. The recently in-

troduced two-stage methods MaskTrack R-CNN [43] and

MaskProp [2] obtain mask AP scores of 30.3 % and 40.0

%, respectively. However, MaskProp requires a video clip

(more than 13 frames) to process an image, resulting in

very slow speed. For the one-stage method using ResNet50

Backbone, SipMask [6] and our proposed STMask obtain

32.5 % and 33.5 % mask AP with a speed of 30.0 and 28.6

FPS respectively. In addition, STMask with ResNet101-

DCN backbone achieves 36.8 % and 36.3 % mask AP on

adaptive and aligned FCB settings, respectively, without

any other extra tricks. Although STMask has relatively

lower mask AP than MaskProp, it does achieve a better

trade-off between accuracy and speed.

Figs. 6 and 7 visualise the instance segmentation masks

of our STMask on challenging videos with small objects,

occlusion and uncommon camera-to-object view. We can

see that the temporal fusion module can indeed reduce the

missed detection across frames, compared with frame-level

instance segmentation.
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Table 6. Quantitative performance comparison on YouTube-VIS valid set, where a, b, c, and d respectively refer to semantic segmentation,

high-solution mask refinement, temporal information, and multi-scale training.

Type Methods Backbone Frames Anchors Others FPS AP AP50 AP75 AR1 AR10

VOS
baseline

OSMN [44] R50-FPN 3 3 - - 27.5 45.1 29.1 28.6 33.1

FEELVOS [37] R50-FPN 3 3 - - 26.9 42.0 29.7 29.9 33.4

STEm-Seg [1] R50-FPN - - - - 30.6 50.7 33.5 31.6 37.1

STEm-Seg [1] R101-FPN - - - 2.1 34.6 55.8 37.9 34.4 41.6

Two-stage

methods

MaskTrack [43] R50-FPN 2 3 - 18.4 30.3 51.1 32.6 31.0 35.5

MaskProp [2] R50-FPN 13 3 b,c,d - 40.0 - 42.9 - -

MaskProp [2] R101-FPN 13 3 b,c,d - 42.5 - 45.6 - -

One-stage

methods

SipMask++ [6] R50-DCN 2 - - 30.0 32.5 53.0 33.3 33.5 38.9

SipMask++ [6] R101-DCN 2 - - 27.8 35.0 56.1 35.2 36.0 41.2

STMask (ada) R50-DCN 2 9 c 28.6 33.5 52.1 36.9 31.1 39.2

STMask (ada) R101-DCN 2 3 c 23.4 36.8 56.8 38.0 34.8 41.8

STMask (ali) R101-DCN 2 3 c 22.1 36.3 55.2 39.9 33.7 42.0

Figure 6. Segmentation visual comparison on two videos with small objects and occlusion. The first two rows show the original frames

and the instance masks produced by MaskTrack R-CNN [43] respectively, while the last two rows are the results obtained by our STMask

with only spatial calibration and with both spatial calibration and temporal fusion module, respectively.

Figure 7. Segmentation visual comparison on a video with un-

common camera-to-object view.

5. Conclusion

We observe that one-stage instance segmentation ap-

proaches underestimate the importance of spatial feature

calibration and temporal redundancy information between

video frames for video instance segmentation. To address

the issue, we first propose a simple spatial feature calibra-

tion to detect and segment object masks frame-by-frame,

and further introduce a temporal fusion module to track in-

stance across video frames to effectively reduce missed in-

stances on challenging videos like motion blur, partial oc-

clusion and unusual object-to-camera poses. Overall, on

YouTube-VIS valid set, our proposed STMask with ResNet-

50/-101 backbone obtains 33.5% / 36.8 % mask AP, while

achieving 28.6 / 23.4 FPS on video instance segmentation,

which does keep the trade-off between accuracy and speed.
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