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Abstract

An emerging line of research has found that spherical

spaces better match the underlying geometry of facial im-

ages, as evidenced by the state-of-the-art facial recognition

methods which benefit empirically from spherical represen-

tations. Yet, these approaches rely on deterministic embed-

dings and hence suffer from the feature ambiguity dilemma,

whereby ambiguous or noisy images are mapped into poorly

learned regions of representation space, leading to inaccu-

racies. Probabilistic Face Embeddings (PFE) [17] is the

first attempt to address this dilemma. However, we theo-

retically and empirically identify two main failures of PFE

when it is applied to spherical deterministic embeddings

aforementioned. To address these issues, in this paper, we

propose a novel framework for face confidence learning in

spherical space. Mathematically, we extend the von Mises

Fisher density to its r-radius counterpart and derive a new

optimization objective in closed form. Theoretically, the

proposed probabilistic framework provably allows for bet-

ter interpretability, leading to principled feature compari-

son and pooling. Extensive experimental results on multiple

challenging benchmarks confirm our hypothesis and theory,

and showcase the advantages of our framework over prior

probabilistic methods and spherical deterministic embed-

dings in various face recognition tasks.

1. Introduction

A plethora of research has demonstrated the advantage

of spherical latent space over Euclidean space in modelling

certain types of data [4, 14, 22]. Face images are one of

these types: as indicated by an emerging line of research,

state-of-the-art face recognition methods empirically ben-

efit from Deep Convolutional Neural Networks (DCNNs)

that map a face image from input space into spherical space.

This important idea has been explored in a number of re-
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cent works: NormFace pioneered this idea by introducing a

normalization operation on both features and weights [18];

SphereFace imposed angular discriminative constraints on

hypersphere [12]; CosFace pushed the boundary by adding

cosine margin penalty to target logits [19]; and ArcFace

further improved the discriminative power of face recogni-

tion models by proposing additive angular margin penalty,

which is equivalent to minimizing the geodesic distance

margin on a hypersphere [3].

However, while achieving clear successes in face recog-

nition, all these approaches aim at learning deterministic

mappings from input space to feature space, and thus e

pur si muove, are unable to capture data uncertainty that

is ubiquitous in face recognition in the wild. An ambiguous

face, for instance, will be mapped into poorly learned re-

gions of the latent space, thus causing a large bias to the

facial features of its subject if applied in a deterministic

way. First pointed out by Probabilistic Face Embeddings

(PFE) [17], this issue was referred to as the Feature Ambi-

guity Dilemma, where ambiguous faces are mapped into a

‘dark space’ in which the distance metric is distorted, result-

ing in unwanted effects. Such deterministic mappings act as

a bottleneck to further improvement of face recognition per-

formance, especially in unconstrained environments.

Probabilistic face representation learning presents a

promising avenue to addressing this problem. Far from be-

ing a novel idea, probabilistic face modelling has been ex-

plored abundantly in the literature [1, 16, 7, 11]. Of greatest

relevance is PFE [17], which assumes that latent codes obey

a multivariate independent Gaussian distribution that is in-

herently defined in Euclidean space. While improvements

have been made, we identify two main failures when PFE

is applied to spherical embeddings. On one hand, theoreti-

cally, the independent Gaussian assumption inevitably fails

in the case of spherical embeddings. On the other, further

empirical studies suggest that the PFE framework leads to

unstable training when instantiated with spherical densities,

e.g. r-radius von Mises Fisher as proposed. This further

limits PFE’s applicability to the state-of-the-art determinis-
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tic embeddings whose ranges are strictly sphere.

To address the issues of existing approaches, in this pa-

per, we propose a novel framework, Sphere Confidence

Face (SCF), for face confidence learning in an r-radius

spherical space. Unlike PFE defined in Euclidean space,

SCF captures the most likely feature representation and its

local concentration value on spheres. We theoretically show

that the concentration value can be interpreted as a measure

of confidence, which allows for principled feature compar-

ison and pooling, dispensing with the independent Gaus-

sian assumption and pairwise training undesired. Com-

pared to PFE that maximizes the expectation of the mu-

tual likelihood score, our proposed framework minimizes

KL divergence between spherical Dirac delta and r-radius

vMF, which proves to be superior for face uncertainty learn-

ing through extensive experiments. Code is available at

http://github.com/MathsShen/SCF/.

2. Background: Dilemmas of PFE

We identify failures of PFE from a theoretical perspec-

tive before delving into our proposed framework. Due to

space limitations, we refer readers to [17] for details. Re-

call that the optimization objective of PFE is to minimize

the expectation of negative mutual likelihood score,

minE[−s(xi,xj)]

= −E

[

log

∫∫

Rd×Rd

p(zi|xi)p(zj |xj)δ(zi − zj)dzidzj
]

(1)

where {xi,xj} is a genuine pair. For prediction, PFE as-

sumes that a distributional estimate z of the appearance of

a person’s face x follows a multivariate independent Gaus-

sian distribution p(z|x) = N (z;µx,Λx), where Λx is a

diagonal matrix, assigning uncertainty to each dimension

independently. This implies that given x, each latent dimen-

sion zl (l = 1, ..., d) is independent of one another. How-

ever, this independence assumption fails when PFE is ap-

plied to the state-of-the-art deterministic embeddings whose

ranges are a sphere of radius r (i.e. z21 + ... + z2d = r2

in d-dimensional Euclidean space). One might argue that

a full covariance matrix can be learned instead to obviate

this issue. However, this inevitably leads to inefficiency

and difficulty in fitting many more parameters (e.g. at least

d(d + 1)/2 in d-dimensional space) while preserving the

positive semidefiniteness of the covariance matrix.

Second, the minimization of negative mutual likelihood

score is problematic for spherical embeddings. As shown

in Figure 1 (c) and (d), we find that simply changing Gaus-

sian into a spherical density (r-radius vMF) does not re-

solve the issue. Detailed discussions are presented in Sec-

tion 3.3. Instead of modeling uncertainty, we do the oppo-

(a) Optimization of

(d) Optimization of

(built on CosFace)

(built on ArcFace)

(b) Optimization of

(built on CosFace)

(c) Optimization of

(built on ArcFace)

“nan” shown

in Tensorboard

down to
down to

“nan” shown

in Tensorboard

Figure 1. Empirical comparisons of training dynamics between the

optimization objectives of two frameworks. Our proposed frame-

work (a)(b) gives rise to a stable training process whereas that of

PFE (c) (built on ArcFace) suffers from instability when it is in-

stantiated with r-radius vMF; so does PFE (d) (built on CosFace).

The culprit for such instability is discussed in Appendix B. Here,

s(·, ·) denotes mutual likelihood score, of which the explicit form

is given by Equation (13).

site, proposing a new framework suitable for spherical con-

fidence learning which circumvents these two dilemmas.

3. Proposed Method

3.1. rRadius von Mises Fisher Distribution

Recent advancement on face recognition (e.g. ArcFace

and CosFace) suggests that spherical space is better-suited

for facial feature representation than is Euclidean space. We

adopt this idea and further extend it to probabilistic confi-

dence modelling. Specifically, given a face image x from

input space X , the conditional latent distribution is mod-

elled as a von Mises-Fisher (vMF) distribution [4] defined

on a d-dimensional unit sphere S
d−1 ⊂ R

d,

p(z′|x) = Cd(κx) exp

(

κxµ
T
x
z′
)

, (2)

Cd(κx) =
κ
d/2−1
x

(2π)d/2Id/2−1(κx)
, (3)

where z′,µx ∈ S
d−1, κx ≥ 0 (subscripts indicate statisti-

cal dependencies on x) and Iα denotes the modified Bessel

function of the first kind at order α:

Iα(x) =
∞∑

m=0

1

m!Γ(m+ α+ 1)

(
x

2

)2m+α

. (4)

The parameters µx and κx are called the mean direction

and concentration parameter, respectively. The greater the
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value of κx, the higher the concentration around the mean

direction µx. The distribution is unimodal for κx > 0, and

degenerates to uniform on the sphere for κx = 0.

We further extend it to r-radius vMF that is defined over

the support of an r-radius sphere rSd−1. Formally, for any

z ∈ rSd−1, there exists a one-to-one correspondence be-

tween z′ and z such that z = rz′. Then, the r-radius vMF

density (denoted as r-vMF(µx, κx)) can be obtained by ap-

plying the change-of-variable formula:

p(z|x) = p(z′|x)
∣
∣
∣
∣
det

(
∂z′

∂z

)∣
∣
∣
∣
=

Cd(κx)

rd
exp

(
κx

r
µ

T
x
z

)

(5)

3.2. Sphere Confidence Face (SCF)

State-of-the-art deterministic embeddings, such as Ar-

cFace and CosFace, that are defined in spherical spaces,

are essentially Dirac delta p(z|x) = δ(z − f(x)), where

f : X 7→ rSd−1 is a deterministic mapping. Here we for-

mally extend Dirac delta into spherical space:

Definition 1 (Spherical Dirac delta). A probability density

p(z) on the support of an r-radius sphere rSd−1 is spherical

Dirac delta δ(z − z0) (for some fixed z0 ∈ rSd−1) if and

only if the following three conditions hold:

δ(z− z0) =

{

0 z 6= z0

∞ z = z0
;

∫

rSd−1

δ(z− z0)dz = 1;

∫

rSd−1

δ(z− z0)φ(z)dz = φ(z0).

To address the dilemma encountered in the existing frame-

work, we propose a new training objective by leveraging

this extended definition.

As a common practice, deep face recognition classifiers

map the spherical feature space rSd−1 to a label space L

via a linear mapping parametrized by a matrix W ∈ R
n×d,

where n is the number of face identities. Let wx∈c denote

the classifier weight given a face image x belonging to class

c, which can be readily obtained from any given pretrained

model by extracting the cth row of W. Our key observation

is that, by virtue of these classifier weights, a conventional

deterministic embedding as spherical Dirac delta can act as

a desired latent prior over the sphere, to which regulariza-

tion can be performed. To this end, we propose minimizing

the KL divergence between the spherical Dirac delta and the

model distribution p(z|x).
Specifically, the optimization objective is to minimize

Ex[DKL(q(z|x)||p(z|x))], where q(z|x) = δ(z − wx∈c)
and p(z|x) is modelled as r-radius vMF parameterized by

µ(x) and κ(x) (||µ(x)||2 = 1 and κ(x) > 0; here depen-

dencies on x are shown in functional forms in place of sub-

OSCF

learning to assign low

confidence

…

…

…

mislabeled sample

Characters in the drama “Breaking Bad”. In MS1MV2, 

Walter White is mislabeled as Hank Schrader.

Figure 2. A 2D toy example of training SCF. SCF learns a map-

ping from the input space X to an r-radius spherical space,

rS1 ⊂ R
2. The latent code of each image is assumed to obey

a conditional distribution, i.e. z|x ∼ r-vMF (µ
x
, κx), where

µ
x

and κx are parameterized by neural networks. Each iden-

tity has a class template wx∈c that induces a spherical Dirac

delta, for c = 1, 2, 3. Optimization proceeds by minimizing

DKL

(

δ
(

z−wx∈c

)

‖r-vMF (µ
x
, κx)

)

. Experiments are carried

out using a subset of MS1MV2 containing three identities. We

find that there are mislabeled samples for the third identity which

hamper training otherwise. SCF learns to assign low confidence to

such samples in an adaptive manner.

scripts). Then, we expand the objective as

min
p

Ex

[
DKL(q(z|x)||p(z|x))

]

= Ex

[

−
(∫

rSd−1

q(z|x) log p(z|x)dz
)

−Hq(z|x)(z)

]

(6)

Note that minimizing Equation (6) with regard to p is equiv-

alent to minimizing the cross-entropy between q and p with

regard to µ and κ conditional on x. Therefore, it is sufficient

to minimize Ex[L(µ(x), κ(x))] over all µ and κ, where

L(µ(x), κ(x)) = −
∫

rSd−1

q(z|x) log p(z|x)dz

= −κ(x)

r
µ(x)Twx∈c −

(
d

2
− 1

)

log κ(x)

+ log(Id/2−1(κ(x))) +
d

2
log 2πr2.

(7)

Figure 2 showcases a 2D toy example of training SCF. De-

tailed explanations can be found in the figure caption.

3.3. Theoretical Perspective

Remark 1. Unlike PFE which maximizes the expectation

of mutual likelihood score of genuine pairs, our proposed

framework, by virtue of classifier weights, minimizes the

KL divergence between spherical Dirac delta and r-radius

vMF. This is a reasonable choice and can be theoretically

justified by Theorem 1 and Corollary 1. Intuitively, regular-

ization to the spherical Dirac delta δ encourages the latents
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that are closer to their corresponding classifier weights to

have larger concentration values (thus higher confidence);

and vice versa (see Theorem 2).

Theorem 1. An r-radius vMF density r-vMF(µ, κ) tends

to a spherical Dirac delta δ(z− rµ), as κ → ∞.

Corollary 1. DKL(δ(z − rµx)||r-vMF(µx, κx)) → 0 as

κx → ∞.

Proof Sketch. By leveraging the asymptotic expansion of

the modified Bessel function of the first kind (developed by

Hermann Hankel): for any complex number z with large |z|
and | arg z| < π/2,

Iα(z) ∼
ez√
2πz

(

1 +

∞∑

N=1

(−1)N

N !(8z)N

N∏

n=1

(
4α2 − (2n− 1)2

)

)

(8)

we have Id/2−1(κ) ∼ eκ/
√
2πκ as κ → ∞. Then, these

theoretical results (Theorem 1 and Corollary 1) can be read-

ily shown with this fact given. Full proofs can be found in

Appendix A.

Theorem 2. The quantity cos 〈µ(x),wx∈c〉 is a strictly

increasing function of κ∗ in the interval (0,+∞), where

κ∗ = argminκ L(µ, κ).

Proof. Taking partial derivative of the loss function L(µ, κ)
with regard to κ and setting it to zero yields the equality

∂L
∂κ

:= 0 =⇒ cos 〈µ(x),wx∈c〉 =
Id/2(κ∗)

Id/2−1(κ∗)
(9)

where κ∗ = argminκ L(µ, κ). Then, for any u > v ≥ 0
and κ > 0, define Fuv(κ) := Iu(κ)/Iv(κ). According to

[9], we obtain the following properties of Fuv(κ),

lim
κ→0

Fuv(κ) = 0, lim
κ→∞

Fuv(κ) = 1 (10)

Furthermore, 0 < Fuv(κ) < 1 and its derivative is always

positive in the interval (0,+∞), i.e. F ′
uv(κ) > 0, which

concludes the proof.

Remark 2 (Interpretation of κ). Theorem 2 suggests

that the closer µ gets to wx∈c the higher the value of κ∗. For

models trained with softmax-based loss (ArcFace, CosFace,

etc.), the smaller the angle between µ and its class center

wx∈c, the more confidence we have for prediction. Given

one face image alone during the testing phase, predicting its

class center for the unknown subject is an ill-posed prob-

lem. Our framework bypasses this difficulty by predicting

its confidence κ that mathematically measures how close

the test face image gets to its unknown class center.

Remark 3 (A mathematical failure of SCF-G). We con-

sider a model variant of SCF, referred to as SCF-G, which

operates in Euclidean space, minimizing KL divergence

between Euclidean Dirac delta and independent Gaussian

N (µx,Λx). Here, Λx is a diagonal covariance matrix.

Following the similar derivation of (7), the loss function of

SCF-G can be written into (up to a constant, log
√
2π)

LG =
1

2
(µx −wx∈c)

TΛ−1
x

(µx −wx∈c)+
1

2
log | detΛx|

(11)

A mathematical failure of SCF-G can be seen through find-

ing the optimal diagonal matrix Λ∗
x

:

∇Λx
LG := O =⇒ Λ∗

x
= (µx −wx∈c)(µx −wx∈c)

T

(12)

Equality (12) does not hold true in the case of spherical

space, as the off-diagonal entries of the matrix on the right

hand side can be non-zeros. This mathematical failure ex-

ists due to the independence assumption undesired.

Remark 4. Empirical studies further suggest that our pro-

posed framework for spherical face confidence learning ex-

hibits empirical advantages over PFE even when PFE is in-

stantiated with r-radius vMF. As shown in Figure 1, when

built on the state-of-the-art spherical embeddings, the op-

timization objective proposed in PFE (mutual likelihood

score maximization) for uncertainty learning in spherical

space is empirically difficult to attain, suffering from train-

ing instability (the ‘nan’ loss value), whereas our proposed

objective (6) gives rise to a stable training process (see Ap-

pendix B for detailed analyses).

We argue that this stems from two reasons. First, the op-

timization objective of PFE [17] has to be carried out in a

pairwise manner. Selecting pairs in the early training stage

requires a tricky and heuristic strategy; training tends to be-

come unstable otherwise. Second, our proposed objective

(6) resorts to additional information, wx∈c’s, which can be

regarded as class templates for each subject. By leverag-

ing class templates, the spherical Dirac delta acts as a de-

sired prior to which the variational latent distribution can be

regularised. Intuitively, the PFE optimization objective can

be construed as an alternative to maximizing the likelihood

p(z|x): if the latent distributions of all possible genuine

pairs have a large overlap, then the latent target z should

have a large likelihood p(z|x) for any corresponding x [17].

However, maximizing the likelihood p(z|x) without regu-

larization to q(z|x) := δ(z −wx∈c) loses the holistic con-

trol of the latent distribution, inviting unwanted effects. The

resultant latent representations tend to bear undesired mani-

festations confirmed in our empirical studies. Our treatment

obviates the need of pairwise training and relaxes the inde-

pendent Gaussian assumption while better modelling confi-

dence in spherical space.
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Table 1. Averaged results from six seeded models on IJB-B. The

evaluation metric is the verification TAR@FAR at 1e-4 and 1e-5,

respectively. STDs ≤ 0.08@1e-5 and STDs ≤0.04@1e-4.

ResNet34 ResNet100

TAR@FAR 1e-5 1e-4 1e-5 1e-4

CosFace 84.14 91.31 89.81 94.59
+ PFE-G 84.36 91.42 89.96 94.64
+ PFE-v N/A N/A N/A N/A

+ SCF-G 84.45 91.40 89.97 94.56
+ SCF 86.55 92.16 91.02 94.95

ArcFace 83.96 91.43 89.33 94.20
+ PFE-G 83.95 91.58 89.55 94.30
+ PFE-v N/A N/A N/A N/A

+ SCF-G 84.38 91.61 89.52 94.24
+ SCF 86.46 92.21 90.68 94.74

3.4. Feature Comparison

We adopt mutual likelihood score proposed in [17] to

measure feature similarity. The mutual likelihood score

of two face images, xi and xj , is defined as s(xi,xj) =
log p(zi = zj). We show that a closed-form mutual likeli-

hood score can be obtained for r-radius spherical latents:

s(xi,xj)

= log

∫∫

rSd−1×rSd−1

p(zi|xi)p(zj |xj)δ(zi − zj)dzidzj

= log
Cd(κi)Cd(κj)

r2d

∫

rSd−1

exp

(
1

r
(κi

µ
i + κj

µ
j)T z

)

dz

= log
Cd(κi)Cd(κj)

rdCd(κ̃)

∫

rSd−1

Cd(κ̃)
rd

exp

(
κ̃

r
µ̃

T z

)

dz

︸ ︷︷ ︸

=1

= log Cd(κi) + log Cd(κj)− log Cd(κ̃)− d log r

(13)

where κ̃ = ||p||2, p = (κi
µ

i + κj
µ

j), µ̃ = p/||p||2.

3.5. Feature Pooling with Confidence

In the cases where one subject has multiple face images

(observations), it is desirable to obtain one single compact

representation from multiple ones before performing face

verification using cosine distance.

Given two subjects A and B, each with multiple images

{x·
(m)} (“·” can be either A or B), the proposed model pre-

dicts their statistics µ
·
(m) and κ

·
(m). Theorem 2 suggests

that the proposed framework allows for a natural interpreta-

tion of κ∗ as a measure of confidence (the inverse of uncer-

tainty). This leads to a principled feature pooling:

zA =

∑

m κA
(m)µ

A
(m)

∑

m κA
(m)

, zB =

∑

m κB
(m)µ

B
(m)

∑

m κB
(m)

(14)

Table 2. Averaged results from six seeded models on IJB-C. The

evaluation metric is the verification TAR@FAR at 1e-4 and 1e-5,

respectively. STDs ≤ 0.08@1e-5 and STD ≤0.04@1e-4.

ResNet34 ResNet100

TAR@FAR 1e-5 1e-4 1e-5 1e-4

CosFace 88.72 93.07 93.86 95.95
+ PFE-G 89.13 93.45 94.09 96.04
+ PFE-v N/A N/A N/A N/A

+ SCF-G 89.04 93.25 94.15 96.02
+ SCF 90.82 93.90 94.78 96.22

ArcFace 88.95 93.26 93.15 95.60
+ PFE-G 89.19 93.16 92.95 95.32
+ PFE-v N/A N/A N/A N/A

+ SCF-G 88.94 93.19 93.85 95.33
+ SCF 90.75 94.07 94.04 96.09

where zA and zB are pooled features for A and B, respec-

tively. Then, cosine distance are utilized to measure the sim-

ilarity, i.e. cos〈zA, zB〉.

4. Experiments

4.1. Datasets

We employ MS1MV2 [3] as our training data to con-

duct fair comparison with state-of-the-art deterministic face

embeddings including ArcFace [3], CosFace [19] and their

PFE counterparts [17]. PFE counterparts include PFE with

Gaussian (PFE-G) and PFE with r-vMF (PFE-v). Note

that the deterministic embeddings are all in spherical space

where independent Gaussian assumption of PFE-G fails and

that PFE-v suffers from training issues in various settings.

We also implement SCF-G which replaces r-vMF with in-

dependent Gaussian to empirically validate the mathemat-

ical flaw of SCF-G as analysed in Remark 3. Models are

evaluated on eight challenging benchmarks, including LFW

[8], CFP-FP [15], AgeDB [13], CALFW [24], CPLFW

[23], MegaFace [10], IJB-B and IJB-C [21].

4.2. Implementation Details

To conduct fair comparisons, all experimental settings

including data preprocessing, network architectures and hy-

perparameters are kept identical. In particular, data pre-

processing is performed by generating normalized face

crops (112 × 112) with five facial points. ResNet100

and ResNet34 [6] are employed as deterministic embed-

ding backbones. Following ArcFace and CosFace, we

set the hypersphere radius r to 64 and choose the angu-

lar margin 0.5 for ArcFace and 0.35 for CosFace. The

mean direction module µ(·) is initialized by deterministic

embeddings and fixed throughout the training. The con-

centration module κ(·) is parameterized by a regular per-

ceptron: FC-BN-ReLU-FC-BN-exp, where FC denotes
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Figure 3. Left: the function plot of the inverse of Equation (9).

Bottom right: the empirical correlation between cosine value

cos 〈µ(x),wx∈c〉 and concentration value κ. Top right: marginal-

ized empirical densities of cosine value on two backbones.

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80

Filter Out Rate

IJB-A

IJB-B

IJB-C

Figure 4. Risk-controlled face recognition on IJB-A, IJB-B and IJB-C.

fully-connected layers, BN refers to batch normalization

layers, and exp denotes exponent nonlinearity that ensures

the positivity of concentration values. Note that PFE-G or

SCF-G uses the same architecture for dimension-wise un-

certainty estimation. Models are trained using an ADAM

optimizer with a momentum of 0.9. The batch size is set to

1024. The learning rate starts at 3×10−5 and is dropped by

0.5 every two epochs with the weight decay 0.0005. Exper-

iments are performed using 16 Tesla V100 32GB GPUs.

4.3. RiskControlled Face Recognition

In real-world scenarios, one may expect a face recog-

nition system to be able to reject input images with low

confidence of being faces, as those highly undermine the

recognition performance. Such images may exhibit large

pose variations, poor image quality and severe or partial

occlusion. Conventional deterministic embeddings includ-

Table 3. Averaged comparison results from six seeded models on

MegaFace. “Ver.” refers to face verification TAR(@FAR=1e-6).

“Id.” denotes rank-1 identification accuracy. STDs ≤ 0.10.

ResNet34 ResNet100

Metric Id. Ver. Id. Ver.

CosFace 77.52 92.61 80.56 96.56
+ PFE-G 77.35 92.42 80.44 96.49
+ PFE-v N/A N/A N/A N/A

+ SCF-G 77.64 92.69 80.57 96.61
+ SCF 77.98 93.12 80.93 96.90

ArcFace 77.48 92.51 81.03 96.98
+ PFE-G 77.24 92.35 80.53 96.43
+ PFE-v N/A N/A N/A N/A

+ SCF-G 77.52 92.60 81.23 97.11
+ SCF 78.00 92.99 81.40 97.15

ing ArcFace and CosFace are unable to handle such cases

whereas probabilistic models, such as PFE and the proposed

SCF, provide natural solutions for this task. In particular,

by performing image-level face verification on IJB datasets,

we demonstrate the advantage of SCF over PFE and SCF-

G in spherical space. Setting aside the original protocols,

we take all images from a data set and rank them by confi-

dence scores of probabilistic models (concentration values

for SCF; the inverse of the variance mean for PFE-G and

SCF-G or the detection score of MTCNN [20]). Then the

system is able to filter out a proportion of all images accord-

ing to the rankings in order to achieve better verification per-

formance. For fairness, all methods employ original deter-

ministic embeddings and cosine similarity for matching. To

avoid saturated results, all models are trained on MS1MV2

with ResNet34 using the CosFace loss. As shown in Fig-

ure 4, SCF outperforms PFE-G and SCF-G, indicating that

our proposed framework is better-suited for face confidence

learning in spherical space. Note that PFE-v fails in all

cases due to the training convergence issue. We provide

a detailed theoretical analysis in Appendix C, showing that

uncertainty scores given by PFE-G and SCF-G lead to esti-

mation errors in the case of feature pooling.

4.4. Comparison with StateofTheArt

The confidence module of SCF, κ(·), can be plugged

into any spherical embedding given by backbones of dif-

ferent depths. To demonstrate the applicability of the pro-

posed framework, we train two backbones, ResNet34 (a

shallower backbone) and ResNet100 (a deeper backbone),

with a regular ArcFace or CosFace classifier using the train-

ing set—MS1MV2. Then, confidence modules are further

trained on top of these backbones. For the sake of statisti-

cal relevance, we train six different seeded models for each

model variant in question (SCF, SCF-G, PFE), and report

the averaged results with standard deviations (STDs).
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Table 4. Averaged comparison results from six seeded models on LFW, CFP-FP, AgeDB, CALFW and CPLFW with STDs quoted1.

Models Training Set Backbone LFW CFP-FP AgeDB CALFW CPLFW

ArcFace MS1MV2 ResNet34 99.68 94.04 96.60 95.00 89.30

+ PFE-G MS1MV2 ResNet34 99.71 94.19 96.70 95.49 89.90

+ PFE-v MS1MV2 ResNet34 N/A N/A N/A N/A N/A

+ SCF-G MS1MV2 ResNet34 99.69 94.25 96.73 95.57 89.92

+ SCF MS1MV2 ResNet34 99.73 94.87 97.16 95.79 90.62

CosFace MS1MV2 ResNet34 99.65 94.17 96.50 94.80 89.50

+ PFE-G MS1MV2 ResNet34 99.71 94.38 96.76 95.33 89.80

+ PFE-v MS1MV2 ResNet34 N/A N/A N/A N/A N/A

+ SCF-G MS1MV2 ResNet34 99.70 94.44 96.75 95.02 89.75

+ SCF MS1MV2 ResNet34 99.73 95.19 97.08 95.76 90.68

ArcFace MS1MV2 ResNet100 99.77 98.27 98.28 96.07 92.70

+ PFE-G MS1MV2 ResNet100 99.78 98.33 98.21 96.08 92.82

+ PFE-v MS1MV2 ResNet100 N/A N/A N/A N/A N/A

+ SCF-G MS1MV2 ResNet100 99.79 98.31 98.23 96.09 93.10

+ SCF MS1MV2 ResNet100 99.82 98.40 98.30 96.12 93.16

CosFace MS1MV2 ResNet100 99.78 98.45 98.03 96.03 92.75

+ PFE-G MS1MV2 ResNet100 99.80 98.56 98.15 96.10 92.82

+ PFE-v MS1MV2 ResNet100 N/A N/A N/A N/A N/A

+ SCF-G MS1MV2 ResNet100 99.79 98.54 98.14 96.11 92.98

+ SCF MS1MV2 ResNet100 99.80 98.59 98.26 96.18 93.26

1
STDs ≤ 0.22% with ResNet34; STDs ≤ 0.10% with ResNet100.

Results on IJB-B and IJB-C. Models are evaluated by

using the verification TAR@FAR protocol on IJB-B and

IJB-C. In IJB benchmarks, one subject has multiple face

images. Feature pooling is carried out for verification. As

shown in Table 1 and 2, SCF outperforms PFE and SCF-G

by clear margins (∼ 2% improvement with shallower back-

bones and ∼ 0.5% improvement with deeper backbones) at

different FARs (1e-4 and 1e-5). This benefits from the theo-

retical correctness of SCF as compared to PFE; for PFE and

SCF-G, improper feature fusion accumulates representation

error, leading to suboptimal recognition performance.

Results on LFW, CFP-FP, AgeDB, CALFW, CPLFW.

As shown in Table 4, our proposed framework yields

promising performance on LFW, CFP-FP, AgeDB, CALFW

and CPLFW when built upon ArcFace and CosFace with

various deep backbones, marginally surpassing the perfor-

mance of prior probabilistic frameworks in various cases.

Results on MegaFace. Table 3 demonstrates the compar-

ison results on MegaFace in terms of face identification and

face verification. SCF achieves competitive performance

when implemented with backbones of different depths.

These marginal improvements suggest the limitation of

SCF deployed in one-on-one settings (including LFW, CFP-

FP, AgeDB, CALFW, CPLFW and MegaFace): SCF may

give a biased estimate of κ given one single face image. In

set-to-set settings (e.g. IJB), however, SCF performs better

thanks to the theoretical guarantee that κ serves as a natu-

ral weight for feature pooling, leading to faithful compact

representation aggregated from multiple face images. No-

ticeably, SCF exhibits clearer advantages over other vari-

ants with a shallower backbone than with a deeper one (cf.

a detailed analysis in the next section).

4.5. Quantitative Analysis

Equation (9) shows the mathematical relation between

the optimal κ∗ and the cosine value. Note that Fd/2,d/2−1

is a strictly increasing function of κ∗ and thus has its in-

verse (implicit though). We plot the inverse form shown

in Figure 3 (left), i.e. κ∗ = F−1
d/2,d/2−1(cos 〈µ(x),wx∈c〉).

We also demonstrate the latent manifold empirically learned

by our framework SCF. As illustrated in Figure 3 (right),

there is a strong correlation between the cosine value

cos 〈µ(x),wx∈c〉 and the concentration parameter κ The

closer the angular distance between µ(x) and wx∈c, the

higher the concentration value (confidence) becomes. This

Figure 5. Identity versus concentration value (confidence). Each

row corresponds to one single identity sorted from left to right

with concentration values decreasing.
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Figure 6. False negative examples made by PFE or SCF-G while being true positive by SCF, where cos θ is the cosine distance of a verification pair x1,x2,

s(·, ·) is mutual likelihood score and κ1, κ2 are the corresponding concentration values. Thresholds are set to −1279.157, −1384.872 and −1375.155
for PFE-G (accuracy: 89.90), SCF-G (accuracy: 89.83) and SCF (accuracy: 90.80), respectively, on the CPLFW benchmark.

Figure 7. False positive examples made by PFE or SCF-G while being true positive by SCF, where cos θ is the cosine distance of a verification pair x1,x2,

s(·, ·) is mutual likelihood score and κ1, κ2 are the corresponding concentration values. Thresholds are set to −1279.157, −1384.872 and −1375.155
for PFE-G (accuracy: 89.90), SCF-G (accuracy: 89.83) and SCF (accuracy: 90.80), respectively, on the CPLFW benchmark.

corroborates Theorem 1, indicating that our model indeed

learns the latent distribution that is unimodal vMF for each

single class and forms a mixture of vMFs overall, which

confirms our hypothesis. Visualization shown in Figure 5

further confirms Theorem 2, suggesting that higher concen-

tration values correspond to more facial clues for recogni-

tion with high confidence whereas lower ones correspond to

those with large pose variations, low quality and partial oc-

clusion, or even mislabeled examples that might undermine

recognition performance.

Noticeably, as shown in Table 1, 2, 3 and 4, the improve-

ments of the proposed confidence learning framework using

the shallower backbone ResNet34 are consistently higher

than that using the deeper backbone ResNet100. The em-

pirical density of cosine value marginalized from the joint

density in Figure 3 also sheds lights on why this is the

case: a deeper deterministic backbone itself leads to latent

embeddings more concentrated around the mean direction

than otherwise. Such deeper deterministic embeddings al-

ready exhibit high separability in latent spherical space with

fewer ambiguous samples lying on the classifier boundaries,

which acts as a bottleneck to further improvement. A shal-

lower deterministic backbone, on the other hand, gives rise

to spherical embeddings more scattered around the mean

direction, whereby the confidence module shows its clearer

advantage in assigning proper concentrating values (confi-

dence), thereby making more correct predictions.

4.6. Qualitative Analysis

We conduct qualitative analysis of the advantage of the

proposed framework over that of PFE, SCF-G and other

model variants. As shown in Figure 6 and Figure 7, Cos-

Face and PFE both fail to make correct predictions due to

the large pose variations and low-quality images whereas

SCF is able to assign proper concentration values (confi-

dence) to face images under different conditions, thereby

making correct predictions. More detailed analyses are rel-

egated to Appendix D.

5. Concluding Remarks

A plethora of research has demonstrated the advantage

of spherical latent space in modelling certain types of data

[4, 14, 22]. Yet, modelling uncertainty in spherical space re-

mains unexplored. Our work bridges this gap by proposing

a probabilistic framework for confidence learning in spheri-

cal space. Towards going beyond face recognition, e.g. text

modeling [5] and link prediction [2], we believe that the pre-

sented research sheds light on a promising direction towards

confidence learning with general data whose manifold is not

trivially Euclidean.

From the theoretical and empirical views, we have iden-

tified two main failures of the existing framework for uncer-

tainty learning when it is applied to spherical embeddings.

To address these issues, we have proposed a novel frame-

work for spherical face confidence learning, which empir-

ically proves to be superior to prior probabilistic methods

on multiple challenging benchmarks. Future work includes

theoretical comparison and analyses of these two frame-

works in the context of general probabilistic modelling.
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