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Figure 1. Our Surrogate Gradient Field (SGF) can edit images with diverse modalities of control by manipulating the latent codes

of GANs. In the first row, we adjust the facial attributes of a person’s photo. In the second row, we use natural language sentences to alter

the color and the shape of a generated flower. In the last row, we edit keypoints of a generated anime character to modify head poses. We

use StyleGAN2 [20] to generate the images above.

Abstract

Generative adversarial networks (GANs) can generate

high-quality images from sampled latent codes. Recent

works attempt to edit an image by manipulating its under-

lying latent code, but rarely go beyond the basic task of at-

tribute adjustment. We propose the first method that enables

manipulation with multidimensional condition such as key-

points and captions. Specifically, we design an algorithm

that searches for a new latent code that satisfies the target

condition based on the Surrogate Gradient Field (SGF) in-

duced by an auxiliary mapping network. For quantitative

comparison, we propose a metric to evaluate the disentan-

glement of manipulation methods. Thorough experimental

*Equal contribution.

analysis on the facial attribute adjustment task shows that

our method outperforms state-of-the-art methods in disen-

tanglement. We further apply our method to tasks of var-

ious condition modalities to demonstrate that our method

can alter complex image properties such as keypoints and

captions.

1. Introduction

Generative Adversarial Networks [9], or GANs, are one

of the most popular and effective methods for generating

high fidelity images. In the simplest form, the generator

model creates a random image from a latent code sampled

from the latent space. To create an image that matches some

target properties, however, we need a method to condition
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the generated image on such properties. In other words, the

method should be able to incorporate a piece of information,

such as attributes, keypoints, or even an interpretation of the

image in a natural language, into the generation of the im-

age. Intuitively, to condition the image, we can instead con-

dition its latent code on the same information, in an attempt

to generate an image that satisfies the target properties.

As an increasingly popular approach to image modifica-

tion [1] and GAN interpretation [31], latent space manipu-

lation is a type of approach that bases on varying the latent

codes of images. The generator maps manipulated latent

codes to images that hopefully match target properties. To

be specific, InterFaceGAN [31] and GANSpace [11] find

meaningful directions in latent space, and vary latent codes

along these directions to adjust the attributes of images.

Although existing methods explore the potential applica-

tion of latent space manipulation, these methods still suffer

from the following limitations. To begin with, the disen-

tanglement of manipulation can be limited. Adjustment of

one attribute of an image is occasionally accompanied by

some undesirable shifts in other attributes. Moreover, exist-

ing methods are restricted to one-dimensional conditioning.

In other words, these methods excel in adjusting attributes

such as smiling or not, female or male, each of which can be

parameterized by a scalar condition. However, these meth-

ods do not provide a general solution to complex modifica-

tions that condition on multidimensional information (e.g.

the pose of a human or the caption of an image).

We suggest that there is another line of latent space ma-

nipulation based on optimization. Using a generator and an

image classifier, we can optimize the latent code for mini-

mizing the difference between the properties of the current

image and the target properties. Empirically, this simple

approach does not work as expected because both the clas-

sifier and the generator are highly non-convex deep neural

networks. As a result, the gradient field in the latent space

may be misleading, and thus the optimization of a latent

vector is often trapped in a local optimum.

To overcome the difficulty of the optimization-based ap-

proach, we propose a novel method for latent space ma-

nipulation. In our method, we train an auxiliary mapping

network that induces a Surrogate Gradient Field (SGF). We

design an algorithm that uses SGF in search of a new latent

code that satisfies a target condition. For comparison with

existing works, we design a metric that evaluates the disen-

tanglement of a manipulation method. Based on the metric,

we conduct thorough quantitative experiments and a user

study to demonstrate that our method outperforms state-of-

the-art methods in the disentanglement of manipulation. As

the first work towards multidimensional conditioning with

latent space manipulation, our method successfully modi-

fies images utilizing keypoints and captions, illustrated with

qualitative results.

To summarize our main contributions,

• We propose the first latent space manipulation method

of GANs that supports multidimensional conditioning.

• We conduct quantitative experiments and a user study

on the task of facial attribute adjustment to demon-

strate that our method outperforms state-of-the-art

methods in disentanglement.

• We apply our method to latent space manipulation us-

ing keypoints and captions, justifying our method as a

unified approach for various modalities of condition-

ing.

2. Related work

Generative Adversarial Networks. GAN [9] has shown

great potential on generating photo-realistic images [27,

18]. It has been applied to a wide range of tasks includ-

ing image editing [4, 31], image translation [15, 36] and

super-resolution [22]. Recent works have made tremen-

dous progress on generating high-quality photo-realistic im-

age [3, 10, 6, 18, 19]. Among the existing works on im-

age generation, one of the most well-known works is Style-

GAN [19] which introduces a stacked architecture that en-

ables high-resolution image generation with fine-grained

control. Its recent follow-up work StyleGAN2 [20] further

improved the generated image qualities and achieved state-

of-the-art image synthesis results. Our work greatly bene-

fits from the progress of the GAN because we can apply our

method to various GAN models.

Manipulation on Latent Vector. Early GAN works [27]

have already discovered that generated images can be se-

mantically edited by applying vector arithmetic on the latent

space. Since vector arithmetic-based approach is straight-

forward and model agnostic, recent works continue to ex-

plore in this direction. Existing methods can be categorized

into two classes: supervised methods [31, 26, 8] and unsu-

pervised methods [11, 32]. Supervised methods use an extra

classifier to label properties of generated images. Shen et

al. [31] train a linear SVM on pairs of latent vectors and

labels to find a decision hyperplane. Latent vectors are then

moved along the normal direction of the decision hyper-

plane for adjusting attributes. For multiple attributes, their

method can sacrifice performance for disentanglement by

orthogonalizing each direction vector. On the other hand,

unsupervised methods directly find semantically meaning-

ful directions by PCA [11] or self-supervised learning [32].

Besides vector arithmetic-based approaches, some more re-

cent works [16, 2] introduce non-linear transformations and

generative modelings in the latent space to adjust multiple

attributes simultaneously.

In contrast with existing methods, our approach utilizes

a neural network to model complicated semantic relation-

ships between latent vectors and corresponding predictions.
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We further extend the scope of conditions to a wider va-

riety of vector representations. We show that our method

achieve a higher degree of disentanglement compared with

other methods.

3. Method

3.1. Problem Definition

Let G : Z → X be a pretrained GAN generator. Z ⊆ R
d

is the d-dimensional latent space * , andX denotes the space

of generated image. The classifier network C : X → C pre-

dicts semantic properties c ∈ C ⊆ R
nc from a generated

image x ∈ X . Although C can be as simple as a multi-label

classifier, where R
nc stands for the space of nc semantic

attributes, the setting actually applies to any embedding in

Euclidean space. For example, keypoints detector with np

points on a 2D image can be regarded as an embedding to

R
2np .

Define Φ(z) := C(G(z)) for convenience. Suppose we

have a latent vector z0 ∈ Z , its corresponding properties

c0 = Φ(z0) and target properties c1. Our goal is to find

z1 ∈ Z such that Φ(z1) = c1.

3.2. Learning the Auxiliary Mapping

A powerful generator such as StyleGAN2 [20] may eas-

ily generate infinite images that match the properties c1. We

would like to attain the desired properties c1 with minimal

unwanted modification to the image. Intuitively, inZ space,

z0 can be slightly perturbed to get a z1 that is sufficiently

close to z0. Empirically, the gradient field of Φ is not suit-

able for perturbing z0, so we seek to replace it with a new

gradient field.

As a preparation, we introduce an auxiliary mapping F :
Z × C → Z satisfying

F (z,Φ(z)) = z, ∀z ∈ Z (1)

In our implementation, F is a multi-layer neural network,

and trained using a simple reconstruction loss. Inspired by

Behrmann et al. [5], we use spectral normalization [24] in

F so that its Lipschitz constant Lip(F ) < 1. As a result,

the operator norm of its Jacobian is less than 1 [12]. Fur-

thermore, for any eigenvalue λF of the Jacobian of F and

the corresponding unit eigenvector xF , we have ‖λFxF ‖ =
∥

∥

∥

∂F (z,c)
∂z

xF

∥

∥

∥
≤

∥

∥

∥

∂F (z,c)
∂z

∥

∥

∥

op
< 1, where ‖·‖op denotes op-

erator norm. Therefore, the spectral radius of the Jacobian

of F satisfies

ρ

(

∂F (z, c)

∂z

)

≤

∥

∥

∥

∥

∂F (z, c)

∂z

∥

∥

∥

∥

op

< 1 (2)

*For StyleGAN, a latent vector z is first sampled from a Gaussian dis-

tribution N (0, Id) in Z-space, and a fully-connected neural network then

transforms it into a new latent vector w in W-space. In our formulation, Z

can be either Z-space or W-space.

Figure 3 shows the training pipeline of F .

3.3. Manipulation with Surrogate Gradient Field

To formalize the perturbation of z0, we define a path

z(t), t ∈ [0, 1] in the latent space that starts from z0 and

ends at z1, i.e. z(0) = z0 and z(1) = z1. Here we make

several assumptions about path z(t).

1. The generator is capable of generating an image that

match the desired properties:

∃ z1 ∈ Z s.t. Φ(z1) = c1

2. While traversing the path, the properties Φ(z(t)) of the

generated image changes at a constant rate, i.e.

dΦ(z(t))

dt
= c1 − c0 (3)

3. ∀ z ∈ Z ,
∂F (z,Φ(z))

∂c
6= 0 (4)

The assumptions above suggests that 1. our task is well-

posed, 2. path z(t) is a smooth interpolation between the

original properties and the target properties, and 3. F is not

a trivial mapping that just map any (z, c) pair to z.

Now we derive the surrogate gradient field of Φ. Using

Eq. (1) of auxiliary mapping F , we can rewrite the path as

z(t) = F (z(t),Φ(z(t))) (5)

Take time derivatives on both sides, we have

dz(t)

dt
=

dF (z(t),Φ(z(t)))

dt

=
∂F (z(t),Φ(z(t)))

∂z

dz(t)

dt
+

∂F (z(t),Φ(z(t)))

∂c

dΦ(z(t))

dt

=
∂F (z(t),Φ(z(t)))

∂z

dz(t)

dt
+

∂F (z(t),Φ(z(t)))

∂c
(c1 − c0)

We plug in assumption 2 in the last step. Organize
dz(t)
dt

to the left hand side and rearrange the last equation, we have

dz(t)
dt =

(

I− ∂F (z(t),Φ(z(t)))
∂z

)

−1
∂F (z(t),Φ(z(t)))

∂c
(c1 − c0),

the invertibility implied by Eq. (2) [12].

Define surrogate gradient field H as

H(z):=

(

I−
∂F (z,Φ(z))

∂z

)

−1
∂F (z,Φ(z))

∂c
(c1 − c0) (6)

Note that H(z) 6= 0, ∀z ∈ Z because of Eq. (2) and as-

sumption 3. We arrive at our ordinary differential equation,

{

dz(t)
dt = H(z(t)), t ∈ [0, 1]

z(0) = z0
(7)
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Algorithm 1 Manipulating GAN with surrogate gradient

field

Input: Generator G, Classifier C, auxiliary mapping F , or-

der of the series expansion m, iteration number n, initial

latent vector z0, target attributes c1, step size λ
c0 ← C(G(z0))
δc ← λ(c1 − c0)
c(0) ← c0
for i = 1, · · · , n do

δ
(0)
z ← ∂F

∂c
(z(i−1), c(i−1))δc

δz ← δ
(0)
z

for j = 1, · · · ,m do

δ
(j)
z ← ∂F

∂z
(z(i−1), c(i−1))δ

(j−1)
z

δz ← δz + δ
(j)
z

end for

z(i) ← z(i−1) + δz
c(i) ← C(G(z(i)))
if c(i) close to c1 then

return z(i)

end if

end for

return z(n)

Figure 2. Pseudocode of our manipulation algorithm. The

outer loop is a simple forward Euler ODE solver, which computes

the movement δz , and accumulate to the current latent vector z(i).

The classifier predicts the properties of image at each time step to

determine when to stop. The inner loop approximates the matrix

inversion term in Eq. (6) using the Neumann series.

3.4. Numerical Solution of the ODE

To compute our goal z(1), we solve the initial value

problem (Eq. (7)) using a numerical ordinary differential

equation solver. Nevertheless, it is time consuming and po-

tentially numerically unstable to calculate the Jacobian of

F and the matrix inversion when evaluating H(z) (Eq. (6)).

Instead, we apply Neumann series expansion [12] to ap-

proximate the matrix inversion. For a matrix X that satisfies

ρ(X) < 1, the following expansion converges

(I−X)−1 = I+X+X
2 + . . .

Another obstacle to numerical computation is that, in

reality, the path may deviates from the assumption 2. To

be specific, at step i with a step size of λ, Φ(z(iλ)) does

not precisely equals Φ(z((i − 1)λ)) + λ(c1 − c0). Two

source of error leads to the problem: one from the numer-

ical solver, and another from not having a perfect F which

has F (z,Φ(z)) = z exactly everywhere. To overcome this

difficulty, in practice we fix the step size λ but do not neces-

sarily stop the iteration process at step 1/λ. The algorithm

checks the properties ci = Φ(z(iλ)) at each step, and stops

Auxiliary

Mapping          

Classifier

Training

Sampling

Generator  

Inference

SGF 

Figure 3. Overview of our method. PG denotes the distribution of

latent vectors in a latent space, which can be either Z-space or W-

space in the case of StyleGAN. We sample (z, c) pairs, and train

the auxiliary mapping F using MSE loss. The surrogate gradient

field H navigates the latent vector to the target in the inference

stage.

only when ci is sufficiently close to the target c1, unless it

reaches the maximum step number. Algorithm 1 shows the

summary of the manipulation procedure.

4. Experiments

4.1. Compared Methods

We compare the proposed method SGF with two state-

of-the-art latent space manipulation methods: Interface-

GAN [31] † and GANSpace [11] ‡. All compared methods

are tested using the official code release.

InterfaceGAN. We retrain the InterfaceGAN model for

each control attribute. Since InterfaceGAN can only learn

one binary attribute at once, we train on each attribute in-

dependently with the same training data of our SGF strictly

following the training setting in the paper.

GANSpace. For GANSpace, we use the pre-selected con-

trol vectors released in its official code and only apply

changes to the recommended StyleGAN2 layers.

4.2. Generator Models and Datasets

Choosing different combinations of the latent space Z
and condition space C, we set up four distinct settings for

†https://github.com/genforce/interfacegan
‡https://github.com/harskish/ganspace
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latent space manipulation to demonstrate that our method

can control different generator models under various types

of conditions.

For the generator, we test StyleGAN2 [20] and Pro-

gressiveGAN [18]. StyleGAN2 experiments are conducted

on W-space, while ProgressiveGAN experiments are con-

ducted on Z-space. To further demonstrate that our method

can accept various types of conditions besides image at-

tributes, we conduct experiments on two other represen-

tative properties (i.e., keypoints and image captions). We

only show the results of our SGF method for keypoints and

image captions, since other methods are not able to utilize

these conditions.

FFHQ-Attributes. We adopt a pretrained FFHQ Style-

GAN2 [20] as the generator for experiments on facial at-

tributes editing. For the classifier, we fine-tune a pretrained

SEResNet50 [13] model from VGGFaces2 [7] dataset. We

construct the training data for the classifier model by la-

beling 100K randomly sampled images with the Azure

Face API §, and combine them with labeled faces from the

CelebA [23] dataset. With duplicate labels removed, the fi-

nal classifier can predict 48 facial attributes. Among them,

we select four representative attributes, which includes both

highly entangled attributes (“gender” and “bald”) and less

entangled ones (“smile” and “black hair”), for quantitative

comparisons and the user study.

CelebAHQ-Attributes. To compare the performance on

models other than StyleGAN, we also test a Progressive-

GAN [18] pretrained on the CelebAHQ dataset. We use the

same facial attributes classifier as the FFHQ-Attributes in

this experiment.

Anime-KeypointsAttr. We follow [17, 30] to build a

high-quality Japanese anime-face dataset and train a Sty-

cleGAN2 on it. We base on the animeface-2009 ¶ and il-

lustration2vec [30] to create facial landmarks keypoints and

image attributes as the conditions for manipulation.

Flowers-Caption. Previous works have shown great suc-

cess on training GANs conditioned on text captions [34].

However, to our best knowledge, SGF is the first method

that can utilize text captions to conditionally manipulate la-

tent vectors of a pretrained GAN. Our experiment is based

on a pretrained image generator model [35] on Oxford-102

Flowers dataset [25]. The image caption generator is an

attention-based caption model [33] trained on flower cap-

tion dataset [28]. To fit our pipeline for latent space ma-

nipulation, we use the sentence transformer [29] to encode

generated captions into vectors.

§https://azure.microsoft.com/en-us/services/cognitive-services/face/
¶https://github.com/nagadomi/animeface-2009
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Figure 4. Illustration of the Manipulation Disentanglement

Score (MDS). (a) Manipulating the color of a blue circle to green

while keeping the shape unchanged. (b) MDS is defined as the

AUC of Manipulation Disentanglement Curve (MDC).

4.3. Implementation Details

The auxiliary mapping F is implemented with an N -

layer MLP combined with AdaIN [14]. We also apply spec-

tral normalization [24] to all fully-connected layers. We

describe the detail of network architectures in the supple-

mentary material. For Z-space experiments, we set N = 6.

While, for W-space experiments, we observe that F can eas-

ily degenerate to a trivial mapping by ignoring conditions c
when N = 6. To prevent the degeneration, we increase N
to 15 for all W-space experiments. For each experiment,

we sample 200k pairs of latent vectors and corresponding

conditions to build the training dataset of F . We apply a

truncation rate of 0.8 to all StyleGAN2 samples. We train

F for 500k iterations with a batch size of 8 using Adam

optimizer [21] with learning rate of 0.0002. For the manip-

ulation, we apply Algorithm 1 with order m = 1 and step

size λ = 0.2 as default.

4.4. Evaluation Metrics

It is difficult to designing comprehensive quantitative

metrics for measuring the disentanglement of latent space

manipulation methods, which often use model-specific

hyper-parameters to control the editing strength. For ex-

ample, Figure 5(b) shows manipulation results of “gender”

from different methods under different editing strength.

Shen et al. [31] use the number of prediction changes to

measure disentanglement among different attributes. How-

ever, comparing only the final results of image manipulation

algorithms can be unfair. When editing strength increases,

some methods tend to over-modify the image, i.e. introduc-

ing unwanted modification. Therefore, for comprehensive

measurement of disentanglement, it is necessary to design

an editing strength-agnostic metric.

4.4.1 Manipulation Disentanglement Score

For a given manipulation goal, a trade-off between accuracy

and disentanglement often exists. Figure 4(a) illustrates the

possible ways to change a blue circle to a green one. For a

both accurate and disentangled manipulation, the color be-
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comes green while the shape keeps round. An example of

accurate but entangled manipulation would be changing the

shape to a square when the color turns green.

By gradually increases manipulation strength and cal-

culate the accuracy and disentanglement measure at

each point, we can plot these points on the accuracy-

disentanglement plane to attain a Manipulation Disentan-

glement Curve (MDC). As Figure 4(a) suggests, a method

with an MDC closer to y = 1 indicates overall better dis-

entanglement. In this way, we can compare the MDCs with

each other in different methods.

In reminiscence of ROC curve, we define Manipulation

Disentanglement Score (MDS) as the Area under Curve

(AUC) of an MDC, illustrated in Figure 4(b). A method

with a higher MDS suggests that it has a higher degree of

disentanglement for the given manipulation.

For an experiment of attributes manipulation with N
samples, suppose we can infer the scores of M attributes

in total from an image. We consider an attribute is changed

if the score changes more than 0.5 during the manipulation.

Suppose there are Ns sample which successfully have their

attributes changed to the target attributes. The manipulation

accuracy is then the success rate Ns/N . For sample i, if ni

attributes other than the target attribute have changed, we

can use 1
N

∑N
i=1(1 −

ni

M−1 ) as the manipulation disentan-

glement. An alternative way to define manipulation disen-

tanglement is using image similarity, however, we found it

less sensitive to subtle changes like added beards compared

to the image attribute classifier we use. In our experiments

on facial attributes manipulation, we evaluate N = 100
samples for each attribute, and M = 48. We inverse the di-

rection of manipulation for samples that already match the

target attribute so that we can calculate manipulation accu-

racy for every sample.

4.4.2 User Study

In addition to quantitative comparison on MDS, we conduct

a user study in the FFHQ facial attributes experiments to

further evaluate the disentanglement of methods. For each

question of the user study, a user would see a source image

and manipulation results from both our SGF and the Inter-

faceGAN. The user is then asked to choose a result that has

best changed the source image to match a target attribute

while keeping other features unchanged. We use 10 ran-

dom generated images and 10 photos projected to the latent

space of GAN [20]. In total, 20 participants have made 400
preference choices.

4.5. Comparisons on FFHQ­Attributes

Experiments on attributes manipulation compare SGF to

the baseline models in the perspectives of manipulation dis-

entanglement and accuracy defined in Sec. 4.4.1. In Fig-

ure 5(a), we plot the Manipulation Disentanglement Curves

Table 1. MDS comparison on facial attribute editing on

FFHQ-Attributes and CelebaHQ-Attributes. Our SGF method

shows the best overall score in attribute editing experiments on

both FFHQ and CelebaHQ datasets, and significantly outperforms

the compared methods on attributes that tend to be entangled (e.g.

“gender” and “bald”).

MDS on FFHQ-Attributes

Method Gender Bald Smile Black Hair Overall

GANSpace 0.841 0.491 0.248 0.543 0.531

InterfaceGAN 0.808 0.254 0.883 0.938 0.721

SGF (Ours) 0.919 0.590 0.884 0.955 0.837

MDS on CelebAHQ-Attributes

Method Gender Bald Smile Black Hair Overall

InterfaceGAN 0.876 0.442 0.856 0.876 0.758

SGF (Ours) 0.912 0.799 0.896 0.897 0.876

(MDCs) for our proposed SGF with state-of-the-art meth-

ods on four facial attribute editing settings. Our method has

shown a better or comparable disentanglement degree com-

pared with other methods.

From the MDC of “gender” in baseline methods, we ob-

serve a sacrifice of manipulation disentanglement for high

accuracy, which suggests that high manipulation strength

in baseline methods introduces changes in non-target at-

tributes . Figure 5(b) qualitatively compare the results of

editing “gender” attribute. Our method changes “gender”

without side effects such as adding beards. In contrast, both

the InterfaceGAN and GANSpace add non-target proper-

ties to the final results when manipulation strength is high.

We make the same observation on the “gender” MDC in

Figure 5(a): as accuracy increases with the manipulation

strength, the disentanglement degree of all methods except

SGF drops significantly. This suggests that while accuracy

of baseline methods comes at the price of entanglement, our

method is able to achieve high accuracy and disentangle-

ment at the same time.

In Figure 5(c), we qualitatively compare SGF with Inter-

faceGAN and GANSpace on editing other attributes. For

each method and attribute, we use the hyper-parameters in

settings highlighted with green circles in Figure 5(a). For

each highlighted setting, the harmonic mean of accuracy

and disentanglement reach the peak on the curve. while

editing the target attribute, SGF consistently changes the

least number of other properties. InterfaceGAN achieves

similar disentanglement in “smile”, while showing inferior

results in both “bald” and “black hair”. GANSpace shows

inferior results in all settings.

We calculate the AUC for each method and attribute

in Figure 5(a) as the MDS in Table 1. We find some at-

tributes tend to correlate with others, e.g. “bald” often cor-

relates with “gender” (Figure 5(b)). For experiments of

such attributes, our proposed method significantly outper-

forms others. For editing relatively less entangled attributes,

e.g. “smile” and “black hair”, our method has compara-

ble results with InterfaceGAN and outperforms GANSpace.
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Figure 5. Comparison of facial attribute editing in the FFHQ-Attributes. (a) The MDCs of methods for each attribute. The point

highlighted with a green circle has highest harmonic mean of accuracy and disentanglement along the curve. (b) “gender” manipulation

results of different methods. Green boxes mark the results that use the highlighted hyper-parameters. (c) Manipulation of other attributes.

We use the highlighted hyper-parameters of each method.

These results also align with the visual perception for each

image in Figure 5(b) and (c). The overall score shows

our method can generally achieve better disentanglement

with high manipulation accuracy than InterfaceGAN and

GANSpace. As GANSpace shows inferior overall perfor-

mance, we only compare our method with InterfaceGAN in

the following experiments.

In our user study for comparison of SGF with Interface-

GAN, 61% of the total queries (244 queries of the total 400
queries) judge our method has a higher degree of disentan-

glement. Combining the results with the experiments on

MDS, we conclude that our method is able to edit attributes

with less entanglement compared with other methods.

4.6. Comparison on CelebAHQ­Attributes

The MDS of CelebAHQ-Attributes data are shown in Ta-

ble 1. Despite using a different GAN model, our SGF still

outperforms InterfaceGAN with a similar margin in each at-

tribute in FFHQ data. These results indicate that our method

can be applied to different GAN models while maintaining

similar performance gains compared to InterfaceGAN.

4.7. Manipulation on Anime­KeypointsAttr

Extending the control conditions to keypoints-attributes,

we demonstrate that SGF can use keypoints and attributes

to jointly control anime faces. Figure 6(a) shows the se-

quential editing results of head poses and facial attributes.

Our model edit images in a stable and disentangled manner

throughout the manipulation process of both keypoints and

attributes.

By fine-tuning each facial keypoint, we can add precise

facial expression control to anime characters. As shown

in Figure 6(b), moving the eyebrows changes the overall

expression from natural to sad in the second column. In

other columns, we controls the mouth and eyes to change

the character’s expressions (e.g., angry or happy).

4.8. Manipulation on Flowers­Caption

To further explore the potential of multi-dimensional

control, we use natural language as control conditions with

the help of sentence embedding. Figure 7 (a) shows that our

method can manipulate the color and the shape of generated

flowers according to the given target captions.

Figure 7(b) shows manipulation results with different

caption compositions. The first row compares the results

using captions with similar meanings. While “large and

red” and “red and large” produce completely different flow-

ers, both results match the target caption. The images in the

second row show the results of color mixing. The manipula-

tion result of “red and purple” is a flower with purplish-red

petals. From caption compositions experiments, we suggest

that our method can leverage the power of sentence embed-

ding to manipulate latent codes.

4.9. Limitations and Discussions

Some limitations exists for SGF despite the compelling

experimental results. Figure 8 shows typical failure cases

of SGF. To begin with, SGF does not cover the case where

target condition is out of the training data distribution. For

an anime image generator trained on aligned face images,

faces with unaligned keypoints are out of the generation

scope. Therefore, for the results of head yaw modifica-

tion using keypoints in Anime-KeypointsAttr dataset (Fig-

ure 8(a)), the edited faces do not exactly match the given
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Figure 6. Manipulation in Anime-KeypointsAttr dataset. (a) Sequential editing by keypoints (column 1 to 4) and attributes (columns 5

to 7). Target keypoints are shown as blue dots. (b) Keypoints manipulation for expression control, the second row shows the corresponding

target keypoint conditions.

Figure 7. Manipulation by caption in Flowers-Caption dataset. (a) Latent space manipulation results on Flowers-Caption using

different target captions. (b) Manipulation of Flowers with different caption compositions.

Figure 8. Typical failure cases of our method. Refer to Sec-

tion 4.9 for details.

target keypoints. If the target condition is relatively near

the generation scope, our method tends to stop at a point

with a similar condition. However, an extremely out-of-

distribution target condition may lead to side effects includ-

ing style and color changes (the leftmost and rightmost im-

ages in Figure 8(a)). In addition, there are cases where our

model fails to capture conditions that rarely appear. For ex-

ample, SGF failed to edit flowers in Figure 8(b) because

both captions are uncommon in the training dataset. We

suggest that building a high-quality dataset with diversity

and balanced distribution of condition may be the key to

overcome the above limitations.

5. Conclusions

We proposed a unified approach for latent space manipu-

lation on various condition modalities, showed a higher de-

gree of disentanglement in facial attributes editing and able

to use facial landmarks as well as natural languages to edit

an image. The multi-dimensions control has the potential

application to a wide variety of settings and we hope this

method will provide interesting avenues for future work.
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