
The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network

Architectures

Yawei Li1, Wen Li2, Martin Danelljan1, Kai Zhang1, Shuhang Gu3, Luc Van Gool1,4, Radu Timofte1

1Computer Vision Lab, ETH Zürich, 2UESTC, 3The University of Sydney, 4KU Leuven

{yawei.li, martin.danelljan, kai.zhang, vangool, radu.timofte}@vision.ee.ethz.ch

{liwenbnu,shuhanggu}@gmail.com

Abstract

In this paper, we tackle the problem of convolutional neu-

ral network design. Instead of focusing on the design of

the overall architecture, we investigate a design space that

is usually overlooked, i.e. adjusting the channel configura-

tions of predefined networks. We find that this adjustment

can be achieved by shrinking widened baseline networks

and leads to superior performance. Based on that, we artic-

ulate the “heterogeneity hypothesis”: with the same train-

ing protocol, there exists a layer-wise differentiated net-

work architecture (LW-DNA) that can outperform the origi-

nal network with regular channel configurations but with a

lower level of model complexity.

The LW-DNA models are identified without extra com-

putational cost or training time compared with the orig-

inal network. This constraint leads to controlled experi-

ments which direct the focus to the importance of layer-

wise specific channel configurations. LW-DNA models

come with advantages related to overfitting, i.e. the rel-

ative relationship between model complexity and dataset

size. Experiments are conducted on various networks

and datasets for image classification, visual tracking

and image restoration. The resultant LW-DNA models

consistently outperform the baseline models. Code is

available at https://github.com/ofsoundof/

Heterogeneity_Hypothesis.git.

1. Introduction

Since the advent of the deep learning era, convolu-

tional neural network (CNN) [21] design has replaced the

role of feature design in various computer vision tasks.

Recently, neural network design has also evolved from

manual design [44, 14, 18] to neural architecture search

(NAS) [31, 45] and semi-automation [49, 16, 38]. State-

of-the-art network designs focus on discovering the overall

network architecture with regularly repeated convolutional

layers. This has been the golden standard of current CNN

designs. For example, Ma et al. mentioned that a network

should have equal channel width [33]. But their analysis

is limited to minimizing the memory access cost given the

FLOPs for a single pointwise convolution.

The motivation of this paper kind of contradicts the pre-

vious design heuristics. It investigates a design space that

is usually overlooked and thus not fully explored, namely

adjusting the layer-wise channel configurations. In this pa-

per, the channel configuration of a network is defined as the

vector that summarizes the output channels of the convolu-

tional layers. We try to answer three questions: 1) whether

there exists a layer-wise differentiated network architecture

(LW-DNA) that can outperform the original one; 2) if so,

how to identify it efficiently; and 3) why it can beat the reg-

ular configuration.

Question 1: The existence of LW-DNA. To answer the

first question, we formally articulate the following hypoth-

esis. The Heterogeneity Hypothesis: For a CNN, when

trained with exactly the same training protocol (e.g. num-

ber of epochs, batch size, learning rate schedule), there

exists a layer-wise differentiated network architecture (LW-

DNA) that can outperform the original network with regular

layer-wise channel configurations but with a lower model

complexity in term of FLOPs and parameters.

To be specific, we aim at adjusting the numbers of

channels of the convolutional layers in predefined CNNs.

The other layer configurations such as kernel size and

stride are not changed. Formally, consider an L-layer

CNN f(X; Θ, c), where c = (c1, c2, · · · , cL) is the chan-

nel configuration of all of the convolutional layers, Θ de-

notes the parameters in the network, and X is the in-

put of the network. The heterogeneity hypothesis im-

plies that there should exist a new channel configura-

tion c
′ = (c′

1
, c′

2
, · · · , c′L) such that the new architecture

f ′(X; Θ′, c′) performs no worse than the original one. Af-

ter the adjustment, the channel configurations c′l could be

either larger or smaller than the original cl. We try to an-

swer this question by empirical experiments.

2144



Figure 1: Pipeline of identifying LW-DNA models. Note

that the single-shot shrinkage method only needs to run one

random mini-batch. Then the network is shrunk after the

single pass. Thus, almost no additional computational cost

is introduced. This allows for fair comparison between the

baseline model and the LW-DNA model.

Question 2: How to identify an LW-DNA efficiently?

Note that the focus of this paper is solely the network ar-

chitectures. The influence of factors other than network ar-

chitecture such as the training protocol are excluded. This

choice allows for controlled experiments and a fair compar-

ison between the possibly existing LW-DNA models and

the baseline models. But we are in turn faced with the fol-

lowing problem. Problem Statement: If the heterogeneity

hypothesis is valid, how can we efficiently and reliably find

an LW-DNA model for a CNN without additional computa-

tional cost and training time?

To solve this problem, we are inspired by recent devel-

opments in network compression [25, 24, 28]. The pipeline

of identifying LW-DNA models is shown in Fig. 1. In

short, the LW-DNA models are identified by the single-shot

shrinking of a widened and reparameterized version of the

baseline network. The details are given in Sec. 4

Question 3: How to explain the benefits of LW-DNA?

As a matter of examples, we identify LW-DNA versions of

various state-of-the-art networks for three vision tasks, incl.

image classification [14, 18, 17, 43, 16, 45, 46, 38], image

restoration [23, 29, 52, 41], and visual tracking [3]. Inter-

estingly, the identified LW-DNA models consistently out-

perform the baselines even with lower model complexities

in terms of FLOPs and number of parameters. We try to

explain this phenomenon from several perspectives.

1. CNNs are redundant. So it is possible to find a layer-

wise specific channel configuration comparable with

the baseline under lower model complexity.

2. As shown in Fig. 5, some layers of the LW-DNA mod-

els have more channels than the baseline. Indeed, the

lower layers tend to be strengthened with more chan-

nels. It might be those layers that play the essential

role in improving the network accuracy.

3. The accuracy gain of the LW-DNA models might be

related to overfitting by the baseline models. We de-

rive this conjecture from several observations. I. By

comparing the training and testing curves of an LW-

DNA model and its baseline in Fig. 4, we find that

towards the end of the training, the identified LW-

DNA model shows a higher training error but a lower

testing error, i.e. improved generalization. This phe-

nomenon is consistent across different datasets. This

also matches the observations from the pioneering un-

structured pruning, like a brain surgeon trying to boost

network generalization after brain damage [22, 13]. II.

The accuracy gain of an LW-DNA model is larger for

smaller datasets (i.e. Tiny-ImageNet) that are easier to

get overfitted to, compared with larger datasets (i.e.

ImageNet). III. On the same dataset (i.e. ImageNet),

it is easier to identify an LW-DNA model version for

larger networks (i.e. ResNet50) than for smaller net-

works (i.e. MobileNetV3).

The contributions of this paper can be summarized as

follows. First, it demonstrates the possibility of identify-

ing a superior version of a network by only adjusting the

channel configuration of the network. This could be used

as a post-searching mechanism complementary to semi- or

fully automated neural architecture search. Secondly, a

method that can identify LW-DNA models almost without

additional computational cost and training time is proposed.

This method only needs the computation of one random

batch. Thirdly, the possible reason for the improved per-

formance of an LW-DNA is explained by observing the ex-

perimental results.

2. Related Work

The lottery ticket hypothesis (LTH). The heterogeneity

hypothesis is reminiscent of the LTH [9], which addresses

the existence of sparse subnetworks that can match the test

accuracy of randomly-initialized dense networks. The win-

ning ticket is identified by greedily pruning single elements

of weight parameters with smallest magnitude. Following

works try to extend [39], theoretically prove [34], under-

stand [53], and improve the training process [40] of LTH.

The unstructured pruning breaks the dynamical isometry in

the network [24]. The core problem is the trainability of

the sparse subnetworks and the gradient flow in the sub-

networks [24]. In contrast, the heterogeneity hypothesis fo-

cuses on adjusting the channel configuration of the network.

Since the weight elements of an entire channel are pruned

together, there is no irregular kernel in the pruned network.

Gradient flow is no longer a problem in this scenario.

NAS. NAS automatizes neural network design by

searching in the design space [54, 30, 37]. Earlier works

consume lots of computation [54, 30]. Recent develop-

2145



ments accelerate the searching procedure by introducing

differentiability into searching [31]. After the searching

stage, the derived cells are repeated to construct the final

network. Thus, the final network still has a regular archi-

tecture. In this paper, we try to adjust the channel config-

uration of the network, which can be regarded as a method

complementary to NAS. Recent works try to push the fron-

tier of NAS research by either redesigning the search space

or proposing a more efficient search method [47, 42, 10, 5].

Hypernetworks. Hypernetworks are actually a kind of

reparameterization of the backbone network [11]. Hyper-

networks generate the weight parameters of the backbone

network. The input of hypernetworks can be either static or

dependent on the feature maps of the backbone network.

In this sense, hypernetworks fall under the paradigm of

meta learning. Recent developments bring hypernetworks

to network compression [32, 28]. Earlier hypernetwork de-

signs are just a stack of two linear layers. Thus, the out-

puts are fixed, which should be cropped before being used

as weights of the backbone network. The recent hypernet-

works [28] can adapt the outputs according to the length of

the input latent vectors. This design naturally suits the task

of network compression. This is one of the reasons why we

select hypernetworks as our shrinkage agent.

Network shrinkage. Network shrinkage removes unim-

portant weight parameters in the network [22, 13, 12, 26,

27, 25, 28]. Since we want to purely investigate the impor-

tance of the architecture of the identified network, the other

factors such as training protocol should be excluded. The

network shrinkage procedure should also be simplified as

much as possible. Inspired by [25, 24], the widened net-

work is shrunk at initialization according to gradients. The

network shrinkage procedure only needs one random batch.

Difference from network compression works. This

paper is different from the previous network compression

works in the following aspects. Aim. The aim of this pa-

per is a a proof of a concept that it is possible to benefit

better from the computation and parameter budget by opti-

mizing the architecture of the network. The identified LW-

DNA model of a predefined network has improved accu-

racy and slightly reduced model complexity. Previous net-

work compression works aim at improving the efficiency

of networks. Accuracy drop is inevitable for the compact

networks. Method. The single-shot method in [25] for un-

structured pruning is transferred to network shrinkage by

its collaboration with hypernetworks. There is no compu-

tational overhead for the network shrinkage method used

in this paper. Interpretation. This paper tries to inter-

pret where the benefit of the slightly reduced models comes

from, which is not done by recent works.

Figure 2: Illustration of the configuration space. The

proposed method identifies layer-specific channel config-

urations within the enlarged and constrained subspace

C(ρc, βc). Compared with searching within the con-

strained neighborhood S(c) of c, the enlarged configuration

space makes it possible to develop a straightforward shrink-

age criterion.

3. Preliminaries

3.1. Hints from network compression

Recent network compression methods shed light on the

existence of advantageous layer-wise specific networks [32,

28, 7]. Those methods can result in shrunk networks

with layer-wise specific channel configurations. Some

works [32] report accuracy gains of the pruned network over

the width-scaled versions of ResNet and MobileNets [14,

17, 43]. Yet, since the advantageous networks are identi-

fied in a network compression sense, thus with an accuracy

drop compared with the uncompressed network, it still re-

mains unknown whether there exists a layer-wise specific

network that can compete with the original one. A recent

work [28] reports an accuracy gain over uncompressed Mo-

bileNets on Tiny-ImageNet. Yet, further investigations on

larger datasets are not conducted. Moreover, the compact

networks are usually derived with training protocols dif-

ferent from those used for the baseline network, e.g. addi-

tional searching stage, larger batch size, or prolonged fine-

tuning stage. It remains unknown how the layer-wise spe-

cific channel configurations benefit the network.

3.2. Notations and definitions

Notation. In this paper, bold lowercase letters such as c,

x, and z are used to denote vectors while bold capital let-

ters such as O, Z, W are used to denote matrices and higher

dimensional tensors. The vectors, matrices, and higher di-

mensional tensors are indexed by subscripts. Greek letters

such as α, β denote constant scalars. The configuration vec-

tor and configuration space are formally defined as follows.

Definition 1 (Channel configuration vector). Consider

an L-layer CNN. The channel configuration vector of the

2146



network is defined as an L-dimensional vector that summa-

rizes the number of output channels of the network, i.e.

c = (c1, c2, · · · , cL), (1)

where cl denotes the number of output channels in the l-th

layer.

Definition 2 (Configuration space). The configuration

space E is a subspace of Euclidean space that contains the

allowable channel configuration vectors. (See Fig. 2 for one

example of the configuration space.)

The dimension of the configuration vectors depends on

the number of convolutional layers in the network. Take

VGG11 for example. The configuration vector is an 8-

dimensional vector, i.e. ,

cvgg = (64, 128, 256, 256, 512, 512, 512, 512) . (2)

As in this example, the configuration vector is regular and

its elements are dependent on each other in the sense that

most of them are repeated. For image classification net-

works, the golden standard is to repeat building blocks with

the same configuration up to the point where the spatial di-

mension of the feature map gets reduced. Some efficient

designs for mobile devices introduce a width multiplier α to

adapt to constrained resource requirements, which results in

a scaled configuration vector, i.e. ,

b = (αc1, αc2, · · · , αcL), α < 1 . (3)

3.3. Problem formulation and recast

Since the configuration vector is manually fixed, it is not

guaranteed to be optimal. In this paper, we explore the

corresponding configuration design space. The aim is to

demonstrate that there is an irregular configuration vector c′

that can compete with the original, while offering reduced

model complexity. To achieve that, we propose an algo-

rithm which can adjust (increase or decrease) the elements

of the configuration vector c while controlling the model

complexity. As shown in Fig. 2, such an adjustment proce-

dure best searches in the neighborhood of the vector, i.e.

N(c) ⊂ E . (4)

After the adjustment, an element of the configuration vector

c can be either increased or decreased, which corresponds to

growing or shrinking the l-th layer of the network. Shrink-

age criteria can be defined on the existing network and net-

work shrinkage algorithm could applied. The limitation of

a shrinkage algorithm on the original network is that it can

only explore a subspace of the neighborhood, i.e.

S(c) = {x ∈ N(c)|xl ≤ cl} ⊂ N(c) . (5)

But we do not want to be restricted to shrinkage only.

Instead, it is desirable to do both network shrinkage and

growth at the same time for the configuration vector adjust-

ment.

We circumvent this problem by recasting it as a shrink-

age problem in a larger configuration space which is ob-

tained by widening the width of the network with a width

multiplier β > 1. The new searching space H is a hyper-

rectangle delimited by the zero vector 0 and the up-scaled

configuration vector βc in the high-dimensional space, i.e.

H(0, βc) = {x ∈ E|0 ≤ xl ≤ βcl} ⊂ E . (6)

The searching algorithm then starts from the up-scaled vec-

tor βc and reduces the value of its l-th element greedily

according to the significance of the channels in the corre-

sponding convolutional layer.

4. Methodology

After introducing the preliminaries and the designing

considerations in the last section, the algorithm used to

identify LW-DNA models is explained in this section. The

pipeline is already shown in Fig. 1. The identifying proce-

dure proceeds as follows. 1) Reparameterize the widened

baseline network with hypernetworks. The outputs of the

hypernetworks act as the weight parameters of the baseline

network. The inputs of the hypernetwork serve as the han-

dle to shrink the network. 2) Compute the gradients of the

hypernetwork input, i.e. the latent vectors, with one random

batch. 3) Sparsify the latent vectors greedily according to

the magnitude of their gradients. 4) Compute the weight

parameters with the sparsified latent vectors. 5) Train the

resultant network from scratch with the same training pro-

tocol as the baseline network. And in the following, we

explain some of the key steps in detail.

4.1. Reparameterizing with hypernetworks

The network shrinkage method is explained in this sec-

tion. Instead of directly shrinking the baseline network,

we first widen it and reparameterize it with hypernet-

works [32, 28]. The reparameterization is adopted based on

the following considerations. The hypernetworks bring the

shrinkage problem into a latent space. Removing a channel

is equivalent to deleting a single element of the latent vec-

tor, which converts the problem of dealing with elements in

the whole channel to an easier one of dealing with a sin-

gle element in the latent vector. In addition, it provides a

straightforward extension of single-shot shrinkage [25] to

channel pruning (See Subsec 4.2). And single-shot shrink-

age is the core of avoiding additional computational cost

when identifying LW-DNA models. The latent vector shar-

ing mechanism in the hypernetworks also makes it possible

to deal with various state-of-the-art networks.

Consider the L-layer CNN that is brought to the larger

configuration space H(0, βc) as in Eqn. (6). The weight

2147



Figure 3: Illustration of the operations in the hypernet-

works.

parameter of the l-th convolutional layer of the CNN has

the dimension of βcl × βcl−1 × w × h, where βcl, βcl−1,

and w × h denotes the output channel, input channel, and

kernel size of the layer. For the simplicity of notation, let

n = βcl and c = βcl−1 in the following.

To reparameterize the l-th layer of the network, a latent

vector zl ∈ R
n is first attached to it. The latent vector con-

trols the output channel of the layer and removing an ele-

ment of the latent vector is equivalent to deleting an output

channel of the layer. Since the output channel of the cur-

rent layer acts as the input channel of the next layer, the

latent vectors are shared between consecutive layers. Then

as shown in Fig. 3, the hypernetwork takes as input the la-

tent vector of the previous layer and the current layer. It

computes a latent matrix, i.e. Zl = z
l · zl−1

T
, which forms

a grid used for network shrinkage. Every element of the

latent matrix is transformed to a vector by two consecutive

linear operations, i.e.

O
l
i,j = W

l
2
· (Zl

i,jW
l
1
) , (7)

where W
l
1
∈ R

m×1 transforms the elements into a higher-

dimensional embedding space and W
l
2
∈ R

wh×m converts

the tensors vectors in the embedding space to the output

weight. Note that Wl
1

and W
l
2

are unique for each element

Z
l
i,j and for the simplicity of notation the subscript i, j is

omitted. The output could be assembled into a 3D tensor

O
l ∈ R

n×c×wh which can be used as the weight parameter

of the convolutional layer. The latent matrix acts as a handle

to shrink the layer. As shown in Fig. 3, if a single element

of the latent vector zl is nullified, the entire row of the la-

tent matrix is masked out. As a result, the corresponding

output channel is removed. Similarly, removing an element

of zl−1 corresponds to removing the output channel of the

l−1-th layer and the input channel of the l-th layer. Details

of handling different layers such as depth-wise convolution

and batch normalization are given in the supplementary.

4.2. Singleshot shrinkage

After reparameterizing the network with hypernetworks,

the parameters in the network are first randomly initial-

ized [4]. Then the single-shot shrinkage method is used to

adjust the width of the network.

Consider a single mini-batch {Xi,Yi} from the dataset.

The output of the network is computed as

Ŷi = f(Xi; Θ, z) , (8)

where z denotes the latent vectors and Θ is the parameter

set that contains W1 and W2. The loss is computed as

L = L (Yi, f(Xi; Θ, z)) . (9)

Then the gradients of the loss function with respect to the

latent vectors are computed as

∇L =
∂L (Yi, f(Xi; Θ, z))

∂z
. (10)

The magnitude of the gradients is used as the criterion to

sparsify the latent vectors. The elements whose gradient

magnitude is smaller than a threshold are removed. The

threshold is determined by a binary search algorithm, which

allows the resultant network to reach a predefined FLOP

target. The resultant network is the final LW-DNA model

and is trained from scratch with the same training protocol

as the baseline model.

The single-shot shrinkage method is inspired by single-

shot pruning of weight elements [25]. But the original

method is single element oriented. It removes single weight

parameters in the network and results in unstructured ker-

nels. It remains to be explored how to transform the single-

shot method to network shrinkage. The hypernetworks pro-

vide such a connection. By resorting to hypernetworks, the

shrinkage is conducted on the latent space whose elements

correspond to channels in the network and serve as the agent

for shrinkage. Deleting an element of the latent vector is

equivalent to remove a channel in the network. Thus, spar-

sifying the latent vectors according to their gradients is a

natural transferring of the single-shot method in [25].

4.3. Constraining model complexity

Model complexity is measured in terms of FLOP and

parameter count. The target is to find a model that has both

fewer FLOPs and parameters while achieving improved ac-

curacy. Yet, the two metrics are not always consistent with

each other. For example, when the FLOPs target is set, a

parameter over-pruned model might be observed in some of

the experiments, which could lead to inferior performance.

Thus, a new hyper-parameter ρ is introduced which controls

the minimum percentage of remaining channels in convolu-

tional layers. In this way, the search space C(ρc, βc) is a

confined subspace of the original search space H(0, βc), i.e.

C(ρc, βc) = {x ∈ E|ρcl ≤ xl ≤ βcl} ⊂ H(0, βc) . (11)

A similar hyper-parameter τ is introduced for the final lin-

ear layers of image classification networks. The hyper-

parameters ρ and τ are termed convolutional percentage

2148



Dataset Network Method Top-1 Error (%) FLOPs [G] / Ratio (%) Params [M] / Ratio (%)

ImageNet [6]

ResNet50 [14]

Baseline 23.28 4.1177 / 100.0 25.557 / 100.0

MutualNet [48] 21.40 4.1177 / 100.0 25.557 / 100.0

LW-DNA 23.00 3.7307 / 90.60 23.741 / 92.90

MetaPruning [32] 23.80 3.0000 / 72.86 –

AutoSlim [50] 24.00 3.0000 / 72.86 23.100 / 90.39
RegNet [38]

X-4.0GF

Baseline 23.05 4.0005 / 100.0 22.118 / 100.0

LW-DNA 22.74 3.8199 / 95.49 15.285 / 69.10

MobileNetV3 small [16]
Baseline 34.91 0.0612 / 100.0 3.108 / 100.0

LW-DNA 34.84 0.0605 / 98.86 3.049 / 98.11

Tiny-ImageNet

MobileNetV1 [17]

Baseline 51.87 0.0478 / 100.0 3.412 / 100.0

Baseline KD 48.00 0.0478 / 100.0 3.412 / 100.0

DHP KD 46.70 0.0474 / 99.16 2.267 / 66.43

LW-DNA 46.44 0.0460 / 96.23 1.265 / 37.08

MobileNetV2 [43]

Baseline 44.38 0.0930 / 100.0 2.480 / 100.0

Baseline KD 41.25 0.0930 / 100.0 2.480 / 100.0

DHP KD 41.06 0.0896 / 96.34 2.662 / 107.34

LW-DNA 40.74 0.0872 / 93.76 2.230 / 89.90

MobileNetV3 small [16]

Baseline 47.55 0.0207 / 100.0 2.083 / 100.0

Baseline KD 41.52 0.0207 / 100.0 2.083 / 100.0

DHP KD 41.46 0.0192 / 92.75 1.078 / 51.76

LW-DNA 41.35 0.0178 / 85.99 1.799 / 86.36

MnasNet [45]

Baseline 51.79 0.0271 / 100.0 3.359 / 100.0

Baseline KD 48.17 0.0271 / 100.0 3.359 / 100.0

DHP KD 48.10 0.0264 / 97.42 2.512 / 74.79

LW-DNA 46.85 0.0250 / 92.25 1.258 / 37.45

CIFAR100

RegNet [38]

Y-400MF

Baseline 21.65 0.4585 / 100.0 3.947 / 100.0

LW-DNA 18.65 0.4468 / 97.45 2.466 / 62.48
RegNet [38]

X-400MF

Baseline 21.75 0.4698 / 100.0 4.810 / 100.0

LW-DNA 18.81 0.4610 / 98.13 4.404 / 91.56

EfficientNet [46]
Baseline 20.74 0.4161 / 100.0 4.136 / 100.0

LW-DNA 19.54 0.3850 / 92.53 2.121 / 51.28

DenseNet40 [18]
Baseline 26.00 0.2901 / 100.0 1.100 / 100.0

LW-DNA 22.46 0.2638 / 90.93 1.016 / 92.35

CIFAR10 [20] DenseNet40 [18]
Baseline 5.50 0.2901 / 100.0 1.059 / 100.0

LW-DNA 4.87 0.2632 / 90.73 0.963 / 90.87

ResNet56 [14]
Baseline 5.74 0.1274 / 100.0 0.856 / 100.0

LW-DNA 5.49 0.1262 / 99.06 0.536 / 62.62

Table 1: Image classification results. Baseline and Baseline KD denote the original network trained without and with knowl-

edge distillation respectively.

and linear percentage in this paper, respectively. During the

pruning, the FLOP budget is fixed. By tuning the hyper-

parameters ρ and τ , the algorithm is able to find networks

with the same FLOPs but varying parameter budgets.

5. Experimental Results

The experimental results are shown in this section. We

try to identify LW-DNA for various state-of-the-art net-

works including ResNet [14], RegNet [38], MobileNets [17,

43, 16], EfficientNet [46], MnasNet [45], DenseNet [18],

SRResNet [23], EDSR [29], DnCNN [52], and U-Net [41].

The identified LW-DNA model and the baseline network

are trained with exactly the same training protocol. The de-

tails of the training protocol for different tasks are given in

the supplementary. Knowledge distillation [15] is used for

image classification on CIFAR [20] and Tiny-ImageNet[6]

(Baseline KD, DHP KD [28], and LW-DNA model). The

balancing hyperparameter and temperature are set to 0.4 and

4, respectively. The teacher is the pretrained widened ver-

sion of the baseline network. Knowledge distillation is not

used for experiments on ImageNet because the execution of

the teacher network in this case also consumes considerable

time and GPU resources.

Image classification. The results of image classification

networks are compared in Table 1. A complete version of

2149



0 20 40 60 80 100 120 140
Epochs

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

135 137 139 141 143 145 147 149

19

20

21

22

23

24

25

11 13 15 17 19 21 23 25 27

45

46

47

48

49

50

51

52

(a) ResNet50, ImageNet.

0 20 40 60 80 100 120 140
Epochs

10

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

135 137 139 141 143 145 147

12

14

16

18

20

22

11 13 15 17 19 21 23 25

32

34

36

38

40

(b) RegNet-4GF, ImageNet.

0 25 50 75 100 125 150 175 200
Epochs

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

201 203 205 207 209 211 213 215 217 219

20

25

30

35

40

45

50

26 28 30 32 34 36 38 40 42 44 46

47.5

50.0

52.5

55.0

57.5

60.0

62.5

(c) MobileNetV1, Tiny-ImageNet.

Figure 4: Training and testing log of the LW-DNA models and the baseline models.

20 40
Layer Index

0.8

0.9

1.0

1.1

Ch
an

ne
l R

at
io

Baseline
LW-DNA

(a) ResNet50, ImageNet.

20 40 60
Layer Index

0.75

1.00

1.25

1.50

1.75

Ch
an

ne
l R

at
io

Baseline
LW-DNA

(b) RegNet-4GF, ImageNet.

20 40
Layer Index

0.5

1.0

1.5

2.0

Ch
an

ne
l R

at
io

Baseline
LW-DNA
DHP

(c) MobileNetV2, Tiny-ImageNet.

10 20
Layer Index

0.5

1.0

1.5

2.0

Ch
an

ne
l R

at
io

Baseline
LW-DNA
DHP

(d) MobileNetV1, Tiny-ImageNet.

Figure 5: Percentage of remaining output channels of LW-DNA models over the baseline network.

the results is given in the supplementary. We have several

key observations. I. The identified LW-DNA models out-

perform the original network (denoted as Baseline or Base-

line KD when knowledge distillation is used) with lower

model complexity in terms of both FLOPs and number of

parameters. This is a direct support for the Heterogeneity

Hypothesis. II. The accuracy of the baseline network can

be improved by knowledge distillation. Yet, the improved

baseline still performs worse than LW-DNA. This shows the

robustness of LW-DNA, i.e. not affected by a specific train-

ing technique. III. The improvement of LW-DNA scales up

to large-scale datasets, i.e. ImageNet. For the ImageNet ex-

periment, we set ρ = 0.4 and τ = 0.45 by the ablation study

on Tiny-ImageNet shown in the supplementary. This hyper-

parameter combination works well across the three investi-

gated networks. The success on ImageNet and the robust-

ness of the hyper-parameters imply the wide existence of

LW-DNA models and the ease of finding them. IV. Mutual-

Net is a training scheme when applied to a specific network,

which could be combined with our work.

Proximal gradient descent vs. single-shot shrinkage.

Besides single-shot shrinkage, there are also other can-

didate methods to prune networks, e.g. proximal gradi-

ent descent (PGD). The choice of single-shot shrinkage is

based on the following considerations. First, it is extremely

computation-efficient. Only one random batch is used to

identify the LW-DNA models. This meets the design re-

quirements of introducing no computational cost. This con-

sistence makes it possible to identify the importance of the

architecture of LW-DNA models while controlling the other

factors. Secondly, by analyzing the closed-form solution to

the proximal operator with ℓ1 regularization, i.e. the soft-

thresholding operator, we find that PGD tends to diminish

the elements of the latent vectors with the approximately

consistent speed. As a results, the final magnitude of the el-

ements has some kind of relationship with the initial magni-

tude. Therefore, if the initialization of an element is large, it

is likely that the final magnitude is still relatively large. The

distribution of the latent vectors during the PGD optimiza-

tion is shown in the supplementary. The final distribution is

related to the initialization. Thus, it becomes reasonable to

shrink the latent vectors at initialization.

The benefits of LW-DNA models are analyzed by several

observations of the experimental results. I. The percentage

of remaining channels is shown in Fig. 5. Some layers of

the LW-DNA networks are strengthened. This might con-

tribute to the improved performance of LW-DNA. II. As

shown in Fig. 4, towards the end of the training, the LW-

DNA models shoot a lower test error with increased train-

ing error. The improved generalization on the test set comes

with reduced model complexity and lower training accu-

racy. This phenomenon is consistent with the pioneering

unstructured pruning methods [22, 13] that try to balance

model complexity and overfitting. The same phenomenon

2150



Network Method
PSNR [dB] FLOPs [G] /

Ratio (%)

Params [M ] /

Ratio (%)Set5 [2] Set14 [51] B100 [35] Urban100 [19] DIV2K [1]

SRResNet [23]
Baseline 32.02 28.50 27.52 25.88 28.84 32.81 / 100.0 1.53 / 100.0

LW-DNA 32.07 28.51 27.52 25.88 28.85 28.79 / 87.75 1.36 / 88.43

EDSR [29]
Baseline 32.10 28.55 27.55 26.02 28.93 90.37 / 100.0 3.70 / 100.0

LW-DNA 32.13 28.61 27.59 26.09 28.99 55.44 / 61.34 2.84 / 76.94

Table 2: Results on single image super-resolution networks. The upscaling factor is ×4.

on both unstructured pruning and structured pruning points

to a common underlying factor. III. The accuracy gain of

LW-DNA on Tiny-ImageNet is larger than ImageNet. As

known, smaller datasets are easier to be overfitted to. IV.

On ImageNet, it is easier to identify LW-DNA models for

ResNet50 and RegNet than MobileNetV3. Since the larger

models ResNet50 and RegNet contain more redundancy, it

is easier for them to overfit the dataset. Based on the above

observations, we conjecture that the improvement of LW-

DNA model might be related to model overfitting.

Visual tracking. To validate the generalization ability of

the identified LW-DNA, we apply the LW-DNA and base-

line version of ResNet50 to visual tracking. State-of-the-art

tracking workflow DiMP [3] is used as the test bed. For a

fair comparison, the LW-DNA and the baseline are trained

with the same protocol. They are first pretrained on Im-

ageNet then finetuned following the DiMP workflow. In

Table 3, the networks are compared on two datasets, i.e.

TrackingNet [36] and LaSOT [8]. On the smaller dataset

TrackingNet, LW-DNA version slightly beats the baseline

while on the larger dataset LaSOT, LW-DNA outperforms

the baseline elegantly. The success plot on LaSOT is shown

in Fig. 6. As shown there, DiMP-LW-DNA is consistently

better than DiMP-Baseline and other state-of-the-art track-

ing methods across the range of overlap threshold. In con-

clusion, the results show that the benefits of LW-DNA can

be transferred to other vision tasks.

Image Restoration. Table 2 shows the results on super-

resolution networks. For EDSR, the LW-DNA models per-

form better than the baseline but with significant reduction

of model complexity. On the large test dataset Urban100

and DIV2K, the LW-DNA model of EDSR leads to nearly

0.1dB PSNR gain over the baseline. For SRResNet, LW-

DNA achieves slightly reduction of model complexity with-

out drop of PSNR. More results on image denoising are

shown in the supplementary. In conclusion, the results val-

idate the existence of LW-DNA models for low-level vi-

sion networks.

6. Conclusion

In this paper, we state the heterogeneity hypothesis

which in essence is the existence of advantageous LW-DNA

models for a predefined network architecture. We try to val-

Metric DiMP-Baseline DiMP-LW-DNA

TrackingNet [36]

Precision 68.06 68.27

Norm. Prec. (%) 79.70 79.64

Success (AUC) (%) 73.77 73.83

LaSOT [8]

Precision 54.97 57.30

Norm. Prec. (%) 63.70 65.82

Success (AUC) (%) 55.87 57.43

Table 3: Tracking test results. DiMP-LW-DNA and DiMP-

Baseline use the identified LW-DNA and baseline version

of ResNet50, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

10

20

30

40

50

60

70

80

Ov
er

la
p 

Pr
ec

isi
on

 [%
]

Success plot

DiMP-LW-DNA [57.4]
DiMP-Baseline [55.9]
ATOM [51.5]
SiamRPN++ [49.6]
MDNet [39.7]
VITAL [39.0]
SiamFC [33.6]

Figure 6: Success plot on the LaSOT dataset for visual

tracking.

idate the hypothesis by empirical studies. In order to single

out the importance of the network architecture, the training

protocol is kept the same for the baseline and the LW-DNA

models. This is achieved by converting the problem of iden-

tifying LW-DNA to a network shrinkage problem and de-

signing an efficient shrinkage algorithm. The experiments

on various network architectures and vision tasks demon-

strate the benefits of the identified LW-DNA models. By

examining the results, we conjecture that the advantage of

the LW-DNA model might be related to model overfitting.

Acknowledgement: This work is partially supported by the Major Project

for New Generation of AI under Grant No. 2018AAA0100400, the ETH

Zürich Fund (OK), a Huawei Technologies Oy (Finland) project, an Ama-

zon AWS grant, and an Nvidia grant.

2151



References

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.

In Proc. CVPRW, July 2017. 8

[2] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie Line Alberi-Morel. Low-complexity single-image

super-resolution based on nonnegative neighbor embedding.

In Proc. BMVC, 2012. 8

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In Proc. ICCV, pages 6182–6191, 2019. 2, 8

[4] Oscar Chang, Lampros Flokas, and Hod Lipson. Princi-

pled weight initialization for hypernetworks. In Proc. ICLR,

2020. 5

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progres-

sive differentiable architecture search: Bridging the depth

gap between search and evaluation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 1294–1303, 2019. 3

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical im-

age database. In Proc. CVPR, pages 248–255. IEEE, 2009.

6

[7] Xiaohan Ding, Tianxiang Hao, Ji Liu, Jungong Han, Yuchen

Guo, and Guiguang Ding. Lossless cnn channel pruning

via gradient resetting and convolutional re-parameterization.

arXiv preprint arXiv:2007.03260, 2020. 3

[8] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

LaSOT: A high-quality benchmark for large-scale single ob-

ject tracking. In Proc. CVPR, pages 5374–5383, 2019. 8

[9] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv

preprint arXiv:1803.03635, 2018. 2

[10] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. In

European Conference on Computer Vision, pages 544–560.

Springer, 2020. 3

[11] David Ha, Andrew Dai, and Quoc V Le. HyperNetworks. In

Proc. ICLR, 2017. 3

[12] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and Huffman coding. In Proc. ICLR,

2015. 3

[13] Babak Hassibi and David G Stork. Second order deriva-

tives for network pruning: Optimal brain surgeon. In Proc.

NeurIPS, pages 164–171, 1993. 2, 3, 7

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc.

CVPR, pages 770–778, 2016. 1, 2, 3, 6

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 6

[16] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proc. ICCV, pages 1314–1324, 2019. 1, 2, 6

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2, 3, 6

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proc. CVPR, pages 2261–2269, 2017. 1, 2, 6

[19] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single

image super-resolution from transformed self-exemplars. In

Proc. CVPR, pages 5197–5206, 2015. 8

[20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

1

[22] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Proc. NeurIPS, pages 598–605, 1990. 2, 3,

7

[23] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proc. CVPR, pages 105–114, 2017. 2,

6, 8

[24] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould,

and Philip HS Torr. A signal propagation perspective for

pruning neural networks at initialization. arXiv preprint

arXiv:1906.06307, 2019. 2, 3

[25] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS

Torr. SNIP: Single-shot network pruning based on connec-

tion sensitivity. arXiv preprint arXiv:1810.02340, 2018. 2,

3, 4, 5

[26] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

Proc. ICLR, 2017. 3

[27] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,

and Radu Timofte. Group sparsity: The hinge between fil-

ter pruning and decomposition for network compression. In

Proc. CVPR, 2020. 3

[28] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu

Timofte. DHP: Differentiable meta pruning via hypernet-

works. arXiv preprint arXiv:2003.13683, 2020. 2, 3, 4, 6

[29] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In Proc. CVPRW, pages 1132–1140,

2017. 2, 6, 8

[30] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proc. ECCV, September 2018. 2

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In Proc. ICLR, 2019. 1, 3

2152



[32] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. MetaPruning:

Meta learning for automatic neural network channel pruning.

In Proc. ICCV, 2019. 3, 4, 6

[33] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

ShuffleNet V2: Practical guidelines for efficient cnn archi-

tecture design. In Proc ECCV, pages 116–131, 2018. 1

[34] Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and

Ohad Shamir. Proving the lottery ticket hypothesis: Prun-

ing is all you need. 2020. 2

[35] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proc. ICCV, volume 2, pages 416–423, July

2001. 8

[36] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proc. ECCV, pages 300–317, 2018. 8

[37] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameters

sharing. In Proc. ICML, pages 4095–4104, 2018. 2

[38] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. arXiv preprint arXiv:2003.13678, 2020. 1, 2, 6

[39] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-

havi, Ali Farhadi, and Mohammad Rastegari. What’s hidden

in a randomly weighted neural network? In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11893–11902, 2020. 2

[40] Alex Renda, Jonathan Frankle, and Michael Carbin. Com-

paring rewinding and fine-tuning in neural network pruning.

arXiv preprint arXiv:2003.02389, 2020. 2

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In Proc. MICCAI, pages 234–241. Springer, 2015. 2,

6

[42] Binxin Ru, Pedro Esperanca, and Fabio Carlucci. Neu-

ral architecture generator optimization. arXiv preprint

arXiv:2004.01395, 2020. 3

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In Proc. CVPR, pages

4510–4520, 2018. 2, 3, 6

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[45] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proc. CVPR, pages 2820–2828, 2019. 1, 2, 6

[46] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 2, 6

[47] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-

Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS: Par-

tial channel connections for memory-efficient architecture

search. arXiv preprint arXiv:1907.05737, 2019. 3

[48] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi

Zhang, and Andrew Willis. MutualNet: Adaptive con-

vnet via mutual learning from network width and resolution.

2020. 6

[49] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tAdapt: Platform-aware neural network adaptation for mo-

bile applications. In Proc. ECCV, pages 285–300, 2018. 1

[50] Jiahui Yu and Thomas Huang. Autoslim: Towards one-

shot architecture search for channel numbers. arXiv preprint

arXiv:1903.11728, 2019. 6

[51] Roman Zeyde, Michael Elad, and Matan Protter. On sin-

gle image scale-up using sparse-representations. In Interna-

tional Conference on Curves and Surfaces, pages 711–730.

Springer, 2010. 8

[52] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian denoiser: residual learning

of deep CNN for image denoising. IEEE TIP, 26(7):3142–

3155, 2017. 2, 6

[53] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski.

Deconstructing lottery tickets: Zeros, signs, and the super-

mask. In NeurIPS, pages 3592–3602, 2019. 2

[54] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In Proc. ICLR, 2017. 2

2153


