Toward Accurate and Realistic Outfits Visualization with Attention to Details

Kedan Li1,2 \hspace{1em} Min Jin Chong1,2 \hspace{1em} Jeffrey Zhang1,2 \hspace{1em} Jingen Liu3
\{kedan, minjin, jeff\}@revery.ai, jingenliu@gmail.com
1University of Illinois, Urbana Champaign. 2Revery AI Inc. 3JD AI Research.

Abstract

Virtual try-on methods aim to generate images of fashion models wearing arbitrary combinations of garments. This is a challenging task because the generated image must appear realistic and accurately display the interaction between garments. Prior works produce images that are filled with artifacts and fail to capture important visual details necessary for commercial applications. We propose Outfit Visualization Net (OVNet) to capture these important details (e.g. buttons, shading, textures, realistic hemlines, and interactions between garments) and produce high quality multiple-garment virtual try-on images. OVNet consists of 1) a semantic layout generator and 2) an image generation pipeline using multiple coordinated warps. We train the warper to output multiple warps using a cascade loss, which refines each successive warp to focus on poorly generated regions of a previous warp and yields consistent improvements in detail. In addition, we introduce a method for matching outfits with the most suitable model and produce significant improvements for both our and other previous try-on methods. Through quantitative and qualitative analysis, we demonstrate our method generates substantially higher-quality studio images compared to prior works for multi-garment outfits. An interactive interface powered by this method has been deployed on fashion e-commerce websites and received overwhelmingly positive feedback.

1. Introduction

While e-commerce has brought convenience to many aspects of our lives, shopping online is difficult for fashion consumers who want to try-on garments and outfits before deciding to buy them [52]. In most online shopping experiences, we are only given a neutral product image of a garment or a single example of a model wearing the garment, and users have to imagine how the garment would look in different settings (e.g. with different garments, on different models etc.). As a result, there has been a considerable amount of literature on synthesizing people wearing garments [18, 53, 46, 11, 16, 58, 41, 25, 23].

Figure 1. Our method takes in a model image and multiple neutral garments images as inputs, and generates a high quality image of the selected model wearing the garments. Pay careful attention to details of the garment properties that are accurately portrayed (e.g., the patterns on the dress (A-1), the unicorn and the string (C-2), the hemline (C-2), buttons (B-1, D-2), and the lengths of the garments); the interaction between multiple garments has been captured (e.g., the collar and sleeve coming out of the sweater (A-1), the open outerwear cast shading (B-1, C-2) to the garment beneath); the interaction between the garment and the person is natural (e.g., the loose sleeves, the folds by the arm (D-2), and the shadows casted on the leg by the dresses); and skin is generated realistically (B-1). See image without bounding box in Appendix.

Three natural cases arise when shopping online. A user may want to see (a) any image of a model wearing a chosen set of garments (outfit) to visualize a combination; (b) any image of themselves wearing the outfit to see how the garments interact; and (c) an image of themselves wearing the outfit (the VITON case [18, 53, 46, 11, 16, 58, 25, 23]). In all cases, users expect the image to capture the visual features of the garments and the physical interactions between
them. However, current methods have problems capturing details of shading, texture, drape and folds. Getting these right is crucial for shoppers to make purchase decisions.

In this work, we introduce a variety of innovations that substantially improve upon the synthesis of details (Figure 1). Our proposed method not only produces accurate textures, necklines, and hemlines, but also can drape multiple garments with realistic overlay and shading. The drape can adapt to the body pose and generate natural creases, folds, and shading. Skin and background are also generated, with appropriate shadows casted from the garments (Figure 1). Our method significantly outperforms prior work in multi-garment image synthesis as shown in Figure 9.

While other virtual try-on (VITON) methods [18, 53, 46, 11, 16, 58, 23] focused on single garment try-on, Neuberger et al. proposed O-VITON [41], which transfers multiple garments from model to model. In comparison, our system takes garments from neutral garment photographs and transfers them to a model. This distinction is commercially important because it is easier and cheaper to obtain neutral pictures. The formatting is also consistent across different sites, meaning no extra work is required for the merchants. Also, O-VITON [41] encodes garments into feature vectors and broadcasts the vectors onto a layout to produce the image. Such a formulation can handle complex garment shapes (a major difficulty for multi-garment try-on) but results in a loss of spatial patterns (e.g., logos, prints, buttons), making it hard to synthesize texture details accurately. In contrast, other VITON literature [18, 53, 16, 58, 23] uses warping, which faithfully perseveres details. However, they only demonstrate success with warping single garments of simple shapes (mostly). Warping multiple garments with complicated shapes has not yet been achieved.

In this work, we directly address the challenge of warping multiple garments, while also being able to accurately transfer textures between complicated garment shapes (Figure 1). Our procedure uses multiple warps, which can handle (say) open jackets, and can generate buttons, zippers, logos, and collars correctly (Figure 2). The warpers are trained end-to-end with the generator and learn to coordinate through a cascading loss, which encourages subsequent warps to address errors made by earlier warps. Using multiple coordinated warps produces substantial quantitative and qualitative improvements over prior single-warp methods [18, 53, 11, 16, 58, 25].

Finally, because publicly available try-on datasets do not contain rich garment categories, we test on a dataset with all available garment categories from multiple fashion e-commerce sites, and show that our method works with all categories.

We introduce a garment-pose matching procedure that connects seamlessly with the jacket (Pose 2 & 5).

2. Related Work

There are multiple ways to tackle virtual try-on. One solution is to use 3D modeling and rendering [8, 15, 43], but obtaining 3D measurements of the garments and users

[10]https://demo.revery.ai
match garments to models. Tsiao et al. [20] learns a shape embedding to enable matching between human bodies and well-fitting clothing items. Prior work estimates the shape of the human body [3, 30], clothing items [10, 27] and both [40, 47], through 2D images. The DensePose [1] descriptor helps model the deformation and shading of clothes and has been adopted by recent work [42, 14, 56, 62, 7, 61].

Virtual try-on (VITON) maps a single garment onto a model image. VITON [18] first proposed using TPS transformation to create a warp, followed by a generation network to synthesize the final output. CP-VTON [53] improves this method by using a differentiable component for TPS transformation. Han et al. [16] uses a flow estimation network to enable more degrees of freedom for the warp. Issenhuth et al. [23] proposed a teacher-student training paradigm to warp without relying on masks. To enable shape changes (e.g., short sleeve to long sleeve), a common procedure has been to predict a semantic layout of body segments and clothes to assist with image generation [58, 25, 63, 44, 16]. More recent works proposed architectural improvements toward better preservation of details [54, 44] and adding adversarial training during the refinement phase to improve image realism [11, 63, 58, 44]. Others followed similar procedures [51, 22, 2]. The virtual try-on task has also been extended to multi-view scenarios and videos [13, 12]. In summary, recent work in VITON managed to preserve garment details, but only for single garment, with simple shapes (mostly tops).

Outfit try-on: Neuberger et al. [41] proposed a virtual try-on method that works for multiple garments. The method relies on visual feature vector encoding rather than warping, which falls short in preserving textures comparing to other VITON methods. To make up for deficiencies, they proposed an online optimization step that requires fine-tuning a generator using a discriminator for every query. Performing such an operation is massively expensive (requires multiple rounds of gradient computation and back-propagation), making it unrealistic to respond to user queries in real-time. In comparison, our method produces images of significantly better quality (Figure 9) and requires much less computation (<2s latency on a K80).

3. Outfit Visualization Net

We propose Outfit Visualization Net (OVNet) to generate images of a model (person) wearing multiple garments (outfit), faithfully capturing the garments details and the interactions between them. OVNet consists of two components trained separately: a Semantic Layout Generator G_{layout} and a Multi-Warps Garment Generator $G_{garment}$.

Semantic Layout Generator G_{layout} predicts semantic layout m' (in the form of segmentation map) conditioned on a garment image x, a pose map p of the model and an incomplete layout m_i (more details in appendix). This in-
For example, when generating the incomplete layout \(m \), and learns to reconstruct the ground truth layout \(m \). The multi-warp garment generator \(G_{\text{garment}} \) (right) has two modules. The

warping module is a spatial transformer that takes in the garment image \(x \) and its semantic layout \(m^c \) and regresses \(k \) sets of transformation parameters \(\theta_1, \ldots, \theta_k \). It then samples \(k \) warps \(w_1, \ldots, w_k \) where \(w_k = W(x, \theta_k) \), using the predicted transformations. The

inpainting module takes in the predicted warps \(w_1, \ldots, w_k \), the full semantic layout \(m' \), the skin color channel \(s \) (median color of the face) and the incomplete model image \(y_i \) and generates the final image \(y' \) of the model wearing garment \(x \). Two modules are trained jointly.

The layout generator takes in the incomplete layout concatenated with the pose and the garment as input, and learns to predict the original layout \(m' = G_{\text{layout}}([x, m_i, \hat{p}]) \). Because skip connections propagate information from the input to the output, we use a U-Net architecture to retain information from \(m_i \) in the output \(m' \). The network is trained using a pixel-wise cross-entropy loss and a LSGAN [37] loss to encourage the generated semantic layouts to resemble real semantic layouts. The total training loss for \(G_{\text{layout}} \) can be written as

\[
L_{\text{layout}} = \lambda_1 L_{CE} + \lambda_2 L_{GAN}
\]

where \(\lambda_1 \) and \(\lambda_2 \) are the weights for each loss. Because the argmax function is non-differentiable, we adopt the Gumbel softmax trick et al. [26] to discretize the layout generator’s output such that the gradient generated by the discriminator can flow back to the generator.

During experiments, we observed that the type of garment a model is wearing greatly influences pose prediction results, as in Figure 5. For example, between models with highly similar poses, one wearing a jacket and another one wearing a t-shirt, we observe vastly different pose predictions. Also, because we train the network to reconstruct the ground truth semantic layout conditioned on garment and pose, the pose representation may impose a prior on the type of garment to expect. This sometimes leads to errors during inference. As in Figure 6, when there is a mismatch between the provided garment (a tank) and what the pose representation implies (a jacket), the layout generator may output a layout that doesn’t respect the garment shape. In Section 4, we propose a garment-pose matching procedure to alleviate this issue.

3.1. The Semantic Layout Generator

When synthesizing a person image, it is common practice to produce a semantic layout as structural constraints can guide the image generation [11, 33, 21, 66, 16, 58] and we follow a similar procedure. To train the layout generator, we obtain pairs of garment images \(x \) and model images \(y \) wearing \(x \). From \(y \), we obtain the semantic layout \(m \) using off-the-shelf human parsing models [34] and the pose map \(p \) using OpenPose [55, 5, 50, 6] (Figure 4 top left). Based on the garment category of \(x \), we produce an incomplete layout \(m_i \) by setting the garment prediction classes as the background class. A full list of semantic categories and the detailed procedure for producing the incomplete layout \(m_i \) for different categories of garments are in Appendix.

3.2. Multi-Warps Garment Generator

Our garment generation network \(G_{\text{garment}} \) (Figure 4 right) takes in a garment image \(x^c \) of class \(c \) (write as \(x \) for simplicity), a model image \(y \) and a segmentation mask.
Figure 5. We notice that the human pose annotation from OpenPose embeds information differently depending on the type of garment. For example, the pose predictor consistently predicts wider distance between shoulder and elbow anchor for models wearing coats (3, 4) than models wearing shirts (1, 2), despite both models having similar posture and body shape. This implies that the pairing between pose and garments can influence the predicted layout.

The Warping Module resembles a spatial transformer network [24]. First, a regressor takes in the garment image x^c and the mask m^c as input, and regresses k sets of spatial transformation parameters $\theta_1, \ldots, \theta_k$. Then, it generates a grid for each of the transformation parameters, and samples grids from the garment image x to obtain k warps w_1, \ldots, w_k where $w_1 = \mathcal{W}(x, \theta_1)$. The warps are optimized to match the garment worn by the target model $m^c \otimes y$ using per pixel L_1 loss. Inspired by [16], we impose a structure loss to encourage the garment region z (a binary mask separating garment and background as in Figure 7) of x to overlap with the garment layout of the garment mask m^c on the model after warping. The warping loss can be written as:

$$L_{\text{warp}}(k) = |\mathcal{W}(x, \theta) - (m^c \otimes y)| + \beta |\mathcal{W}(z, \theta_k) - m^c|$$ \hspace{1cm} (2)

where β controls the strength of the structure loss. This loss is sufficient to train a single warp baseline method. The choice of warper here is unimportant, and in our implementation, we use affine transformation with 6 parameters.

Cascade Loss: With multiple warps, each warp w_j is trained to address the mistakes made by previous warps w_i where $i < j$. For the kth warp, we compute the minimum loss among all the previous warps at every pixel location, written as

$$L_{\text{warp}}(k) = \frac{\sum_{u=1}^{W} \sum_{v=1}^{H} \min(L_{\text{warp}}(1)_{(u,v)}, \ldots, L_{\text{warp}}(k)_{(u,v)}) \, wh}{WH}$$ \hspace{1cm} (3)

where u, v are pixel locations; W, H are the image width and height; and $L_{\text{warp}}(k)_{(u,v)}$ is the loss of the kth warp at pixel location u, v. The cascade loss computes the average loss across all warps. An additional regularization term is added to encourage the transformation parameters of all later warps to stay close to the first warp.

$$L_{\text{case}}(k) = \frac{\sum_{i=1}^{k} L_{\text{warp}}(i)}{k} + \alpha \frac{\sum_{i=2}^{k} \|\theta_k - \theta_1\|^2}{k - 1}$$ \hspace{1cm} (4)

The cascade loss enforce a hierarchy among all warps, making it more costly for an earlier warp to make a mistake than for a later warp. This prevents oscillation during the training (multiple warps competing for the same objective).

The idea is comparable with boosting — using multiple simple warpers (weak learners), each with a small degree of freedom but can handle complex geometric shape when combined. Warpers interact with each others differently compared to classifiers. Concatenating multiple warps channel-wise allows a generator to reason about the geometry while also leveraging the parallelism of the computation (less latency). Training end-to-end allows all warps to share gradients, making it possible for warps to adjust according to each other and the image generator to guide the warpers.

The Inpainting Module concatenates all the warps w_1, \ldots, w_k, the semantic layout m (or m^c during inference), and the incomplete image y_i as input, and outputs the final image y' of model y wearing garment x. This is different from a standard inpainting task because the exact content to inpaint is provided through the input channels. We use a U-Net architecture to encourage copying information from the input. The network is trained to reconstruct the ground truth image using a per pixel L_1 loss, a perceptual loss [29], and a Spectral Norm GAN with hinge loss [39]. The total loss for training G_{garment} with k warps is written as

$$L_{\text{garm}}(k) = \gamma_1 L_{\text{case}}(k) + \gamma_2 L_1 + \gamma_3 L_{\text{perc}} + \gamma_4 L_{\text{GAN}}$$ \hspace{1cm} (5)

where $\gamma_1, \gamma_2, \gamma_3$ and γ_4 are the weights for each loss.

4. Garment-Pose Matching

While our Outfit Visualization Network and other prior works [16, 58] support shape changes (e.g., skirt to pants, long sleeve to short sleeve), we notice that semantic layout generators strongly favor certain garment-model(person) pair over others. The root cause is because the pose detection results are heavily biased by garments (Figure 5). For example, the pose representation extracted from a person wearing a long dress has attributes (e.g., odd position...
Figure 6. This figure shows an example result from a matched garment-pose pair versus a non-matched pair. A model \(y \) with extracted pose \(p \) is fed two different outfits \(O_1 \) and \(O_2 \). The garments in \(O_1 \) match with the shape of garments worn by the original model \(y \), thus results in an accurate layout prediction \(m_1^{*} \) and output \(y_1^{*} \). In contrast, the sleeveless tank in \(O_2 \) does not match with pose \(p \), thus was wrongly generated with sleeves in \(y_2^{*} \).

Figure 7. This figure shows the training procedure for the garment-pose matching embedding. We obtained a foreground mask \(z_a \) from garment image \(x_a \), and learn a shape Auto-encoder \(\{ E_s, D_s \} \) to produce a shape embedding. The pose \(p_a \) from the corresponding model \(y_a \) is embedded closer to \(z_a \) than a random pose \(p_b \). This only works for scenarios (a) and (b) (from Intro 1) of the feet, wide legs, etc.) that hint to the generator to expect a long dress, Figure 5. Thus, during inference, putting a different garment (e.g. trousers) on this model will cause problems (Figure 6), because the garment and pose are always extracted from the same person during training. Fully addressing this problem may require improving pose representations and is left as a future direction.

To overcome such deficiency, we propose that choosing a suitable model for a given set of garments will result in better quality generation compared to using a random model. The strategy can be adopted in application scenarios (a) and (b) (from Intro 1) where we are not forced to operate on a fixed model image. The general relationship between pose and garment is hard to capture, but we expect a garment \(x_a \) to work well with its paired model \(y_a \). Also, because shape is the only relevant attribute to the semantic layout, we expect a garment \(x_b \) with similar shape as \(x_a \) to work better with \(y_a \) than a garment \(x_c \) with a different shape. We want an embedding to capture such property.

To train the garment-pose embedding, we first learn a Garment Shape Auto-encoder \(\{ E_s, D_s \} \) to obtain a condensed garment shape representation (Figure 7). We use the garment’s foreground mask \(z \) (a binary mask of 1’s for foreground and 0’s for background) as input, and train the Auto-encoder to reconstruct the garment mask \(z' = D_s(E_s(z)) \) using mean squared error as the reconstruction loss. Additionally, we apply \(\mathcal{L}_2 \) normalization on the Auto-encoder’s embedding space and we regard the data encoding \(E_s(z) \) as an embedding for garment shape. Subsequently, we learn a pose encoder \(E_p \) to project Openpose map \(p \) into the shape embedding space.

\[
\mathcal{L}_{match} = \| D_z(E_s(z_a)) - z_a \|^2 + \mathcal{L}_{triplet}(E_s(z_a), E_p(p_a), E_p(p_b)) \tag{6}
\]

Because the same pose may correspond to garments of multiple categories, we train a set of specific pose encoders \(\{ E_p^c \}_{c \in C} \) for each garment category \(c \).

At inference time, we search for a set of suitable poses given a query outfit \(O = \{ z^{c_1}, ..., z^{c_m} \} \) (a set of garments of different categories). We compute the distance between the outfit \(O \) and a pose \(p \) as the maximum distance between the shape embedding of any garment in the outfit and the pose embedding:

\[
d(O, p) = \max (\{ \| E_s(z^{c_i}) - E_p^c(p) \|^2, z^{c_i} \in O \})
\]

The images whose pose have the shortest distances to the query outfit are preferably chosen.

5. Experiments

5.1. Datasets & Experiment Setup

Because publicly available try-on datasets do not include rich garment categories, we experiment on a new dataset of 321k fashion products scraped from e-commerce websites, containing all the available garment categories. Each product includes a neutral garment image (front-view, laying flat, plain background), and a model image (single person, front-view). Garments are grouped into four types (top, bottoms, outerwear, or full-body). We randomly split the data into 80% for training, 5% for validation and 15% for testing. Because the model images do not come with body parsing annotation, we use off-the-shelf human parsing models [34] to generate semantic layouts as training labels.

We also compare with prior work on the established VITON dataset [18]. Note we do not compare with single-garment try-on methods on the new multi-category dataset because single-garment try-on methods do not work reasonably on our dataset, we expand on this in our supplementary. Because the original VITON test set consists of only 2,032 garment-model pairs (insignificant for computing FID), we resample a larger test set of 50k mismatched garment-model pairs, following the procedure of the original work [18]. To quantify the effect of garment-poses on generation quality,
Figure 8. The figures shows qualitative comparison between using multiple (2) warpers and a single warper. Note for single warp: the buttons are in the wrong place in A and D; problems with sleeve boundaries in E; a severe misalignment in C; a misplaced tag in B. All problems are fixed in multi-warp results.

Table 1. This table compares SSIM [65] and IS [48] (larger is better) reported on the original VITON test set. Results show that our garment generation pipeline outperforms prior works.

<table>
<thead>
<tr>
<th>Methods</th>
<th>SSIM</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITON [18]</td>
<td>.783</td>
<td>2.650</td>
</tr>
<tr>
<td>CP-VTON [53]</td>
<td>.745</td>
<td>2.757</td>
</tr>
<tr>
<td>GarmentGAN [44]</td>
<td>-</td>
<td>2.774</td>
</tr>
<tr>
<td>VTNFP [63]</td>
<td>.803</td>
<td>2.784</td>
</tr>
<tr>
<td>SieveNet [25]</td>
<td>.766</td>
<td>2.820</td>
</tr>
<tr>
<td>ClothFlow [16]</td>
<td>.841</td>
<td>-</td>
</tr>
<tr>
<td>ACGPN [58]</td>
<td>.845</td>
<td>2.829</td>
</tr>
<tr>
<td>Ours (4 warps)</td>
<td>.852</td>
<td>2.846</td>
</tr>
</tbody>
</table>

Table 2. This table compares the FID$_\infty$ [9] score (smaller is better) of our method on the new multi-category dataset. We compare the performance between using different numbers of warps. Results shows that using more warps significantly increase performance.

<table>
<thead>
<tr>
<th>warp</th>
<th>bottoms</th>
<th>full-body</th>
<th>tops</th>
<th>outerwear</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.458</td>
<td>2.057</td>
<td>1.165</td>
<td>1.323</td>
<td>.872</td>
</tr>
<tr>
<td>2</td>
<td>1.461</td>
<td>2.069</td>
<td>1.163</td>
<td>1.328</td>
<td>.874</td>
</tr>
<tr>
<td>4</td>
<td>1.472</td>
<td>2.207</td>
<td>1.215</td>
<td>1.349</td>
<td>.927</td>
</tr>
<tr>
<td>8</td>
<td>1.461</td>
<td>2.069</td>
<td>1.163</td>
<td>1.328</td>
<td>.874</td>
</tr>
</tbody>
</table>

Table 3. This table reports the FID$_\infty$ [9] score (smaller is better) of our method on the multi-category dataset. We compare the performance between using different numbers of warps. Results shows that using more warps significantly increase performance.

Table 2. This table compares the FID$_\infty$ [9] score (smaller is better) of our method on the new multi-category dataset. We compare the performance between using different numbers of warps. Results shows that using more warps significantly increase performance.

Table 3. This table reports the FID$_\infty$ [9] score (smaller is better) of our method on the multi-category dataset. We compare the performance between using different numbers of warps. Results shows that using more warps significantly increase performance.

Figure 9. We compare visual results between O-VITON [41] and ours. The top rows show the garments in the outfit and the bottom row shows the generated try-on results. For fair comparison, we found garment images that most closely resemble the garments chosen in [41] in terms of style, color, and texture. Image results for O-VITON are directly taken from their paper. There are substantial difference in quality between results. The unnaturally flat torso and uneven shoulders of A-1 are not present in B-1. In A-2, the buttons on the jacket are distorted/missing, whereas B-2 represents them accurately. In A-3, the jacket and top lack realism due to missing creases, folds, and bumps compared to B-3. Properties of the arms are also kept intact in B-3. (See Appendix for more)
category test dataset using different number of warps. Using more warps substantially improves the performance on all garment categories, with diminishing returns as it increases. We set the number of warps to 4.

5.3. Qualitative Comparison

We show comprehensive qualitative examples of our method. In Figure 8, we show how multiple warpers can significantly improve and correct the details. In Figure 1, we show examples of how garment details are realistically captured: patterns (A-1), shadows (B-1, C-2, D-2), hemlines (C-2), buttons (B-1) and numerous other features are all accurately represented (refer to figure for more details).

In Figure 2, we show that our method can generate the same outfit selection on a diverse set of models and poses (e.g. different stances, skin colors, and hand/arm positions). The garments' properties are consistent across all models, suggesting that the network has learned a robust garment representation. Pay attention to Pose 2 & 5 when the hands are in the pockets; the jacket/jean pocket plumps up and the sleeve interacts seamlessly with the pocket. These realistic details are likely results of using a GAN loss.

Finally in Figure 9, we compare our results to O-VITON [41], the state-of-the-art in multi-garment try-on. Compared to O-VITON, our method applies clothes more naturally onto models (A-1 vs B-1), localizes buttons more accurately (A-2 vs B-2), and generates more realistic textures and more convincing fabric properties (A-3 vs B-3).

We also show common mistakes made by our method in Figure 10. Our mistakes tend to be quite forgiving, resulting in inaccurate but realistic interpretations of the outfits. These failures are caused by inaccurate layout predictions.

To further substantiate the quality of our image generation from a provided layout, we perform a user study to verify how often users can distinguish synthesized images from real images. A user is presented with an image of the product and an image of a model wearing the product. The user is then asked if the image of the model wearing the product is real or synthesized.

Table 4. The user study results show that participants have difficulty distinguishing between real and synthesized images. 51.6% and 61.5% of fake images were thought to be real by crowds and researchers, respectively. Some of the real images were marked as fake, suggesting participants were actively trying to spot flaws.

The results of our case study show that users are mostly fooled by our images; there is a very high false-positive rate (i.e. synthesized image is marked real by a user; Table 4). Figure 11 shows two examples of synthesized images that 70% of participants reported as real. These are hard outerwear examples with multiple segmented regions and complicated shading. Nevertheless, our method manages to generate high quality synthesized images that consistently fool users. See supplementary material for the complete settings and results of the user study.

6. Conclusion & Discussions

In this work, we propose a systematic method to enable outfit-level generation with realistic garment details. Several design choices are crucial. (1) We operate on neutral garment images rather than images of garments worn by models. We believe using neutral product images is more accessible for consumers and readily provided by clothing brands, making our solution easily adoptable. (2) Using warping is important toward accurately preserving geometric textures. Warping multiple garments with complicated shapes is extremely challenging, and we are the first to demonstrate success in generation of all garment categories through warping. (3) Even though, our try-on generation pipeline (as well as others) support arbitrary pairs of garment and model images, we demonstrate that it is highly advantageous to carefully choose the pair when possible.

Despite the success, our method can be improved in many aspects. Our method can handle variations in body pose and skin tone, but not body shape. Enabling body shape variations would get us one step closer to achieving the difficult goal of dressing garments directly on consumers’ photos. For such a task, the main challenge lies in handling out of distribution user-uploaded photos. Additionally, enabling try-on for shoes, bags, and other accessories would make the outfit generation complete.
References

[17] Xintong Han, Zuxuan Wu, Weilin Huang, Matthew R. Scott, and Larry S. Davis. Compatible and diverse fashion image inpainting. 2019. 3

[18] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An image-based virtual try-on network. In CVPR, 2018. 1, 2, 3, 5, 6, 7

