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Abstract

Virtual try-on methods aim to generate images of fash-

ion models wearing arbitrary combinations of garments.

This is a challenging task because the generated image must

appear realistic and accurately display the interaction be-

tween garments. Prior works produce images that are filled

with artifacts and fail to capture important visual details

necessary for commercial applications. We propose Outfit

Visualization Net (OVNet) to capture these important de-

tails (e.g. buttons, shading, textures, realistic hemlines, and

interactions between garments) and produce high quality

multiple-garment virtual try-on images. OVNet consists of

1) a semantic layout generator and 2) an image genera-

tion pipeline using multiple coordinated warps. We train

the warper to output multiple warps using a cascade loss,

which refines each successive warp to focus on poorly gen-

erated regions of a previous warp and yields consistent im-

provements in detail. In addition, we introduce a method

for matching outfits with the most suitable model and pro-

duce significant improvements for both our and other previ-

ous try-on methods. Through quantitative and qualitative

analysis, we demonstrate our method generates substan-

tially higher-quality studio images compared to prior works

for multi-garment outfits. An interactive interface powered

by this method has been deployed on fashion e-commerce

websites and received overwhelmingly positive feedback.

1. Introduction

While e-commerce has brought convenience to many as-

pects of our lives, shopping online is difficult for fashion

consumers who want to try-on garments and outfits before

deciding to buy them [52]. In most online shopping ex-

periences, we are only given a neutral product image of a

garment or a single example of a model wearing the gar-

ment, and users have to imagine how the garment would

look in different settings (e.g. with different garments, on

different models etc.). As a result, there has been a consid-

erable amount of literature on synthesizing people wearing

garments [18, 53, 46, 11, 16, 58, 41, 25, 23].

Model 1 Outfit A Results A-1 Outfit B Results B-1

Outfit C Results C-2 Outfit D Results D-2Model 2

Figure 1. Our method takes in a model image and multiple neutral

garments images as inputs, and generates a high quality image of

the selected model wearing the garments. Pay careful attention

to details of the garment properties that are accurately portrayed

(e.g., the patterns on the dress (A-1), the unicorn and the string

(C-2), the hemline (C-2), buttons (B-1, D-2), and the lengths of

the garments); the interaction between multiple garments has been

captured (e.g., the collar and sleeve coming out of the sweater (A-

1), the open outerwear cast shading (B-1, C-2) to the garment be-

neath); the interaction between the garment and the person is nat-

ural (e.g., the loose sleeves, the folds by the arm (D-2), and the

shadows casted on the leg by the dresses); and skin is generated

realistically (B-1). See image without bounding box in Appendix.

Three natural cases arise when shopping online. A user

may want to see (a) any image of a model wearing a cho-

sen set of garments (outfit) to visualize a combination; (b)

any image of themselves wearing the outfit to see how the

garments interact; and (c) an image of themselves wearing

the outfit (the VITON case [18, 53, 46, 11, 16, 58, 25, 23]).

In all cases, users expect the image to capture the visual fea-

tures of the garments and the physical interactions between
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them. However, current methods have problems capturing

details of shading, texture, drape and folds. Getting these

right is crucial for shoppers to make purchase decisions.

In this work, we introduce a variety of innovations that

substantially improve upon the synthesis of details (Fig-

ure 1). Our proposed method not only produces accurate

textures, necklines, and hemlines, but also can drape multi-

ple garments with realistic overlay and shading. The drape

can adapt to the body pose and generate natural creases,

folds, and shading. Skin and background are also generated,

with appropriate shadows casted from the garments (Fig-

ure 1). Our method significantly outperforms prior work in

multi-garment image synthesis as shown in Figure 9.

While other virtual try-on (VITON) methods [18, 53, 46,

11, 16, 58, 23] focused on single garment try-on, Neuberger

et al. proposed O-VITON [41], which transfers multiple

garments from model to model. In comparison, our sys-

tem takes garments from neutral garment photographs and

transfers them to a model. This distinction is commercially

important because it is easier and cheaper to obtain neutral

pictures. The formatting is also consistent across different

sites, meaning no extra work is required for the merchants.

Also, O-VITON [41] encodes garments into feature vec-

tors and broadcasts the vectors onto a layout to produce the

image. Such a formulation can handle complex garment

shapes (a major difficulty for multi-garment try-on) but re-

sults in a loss of spatial patterns (e.g., logos, prints, buttons),

making it hard to synthesize texture details accurately. In

contrast, other VITON literature [18, 53, 16, 58, 23] uses

warping, which faithfully perseveres details. However,

they only demonstrate success with warping single gar-

ments of simple shapes (mostly). Warping multiple gar-

ments with complicated shapes has not yet been achieved.

In this work, we directly address the challenge of warp-

ing multiple garments, while also being able to accurately

transfer textures between complicated garment shapes (Fig-

ure 1). Our procedure uses multiple warps, which can han-

dle (say) open jackets, and can generate buttons, zippers,

logos, and collars correctly (Figure 2). The warpers are

trained end-to-end with the generator and learn to coor-

dinate through a cascading loss, which encourages subse-

quent warps to address errors made by earlier warps. Us-

ing multiple coordinated warps produces substantial quan-

titative and qualitative improvements over prior single-warp

methods [18, 53, 11, 16, 58, 25].

Finally, because publicly available try-on datasets do not

contain rich garment categories, we test on a dataset with

all available garment categories from multiple fashion e-

commerce websites. Evaluation on this new dataset shows

that using multiple warps consistently outperforms single

warp baselines in this new setting, demonstrated both quan-

titatively (Table 3) and qualitatively (Figure 8). Our try-

on system also produces higher quality images compared

Outfit Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6

Figure 2. We show a sequence of visualizations for the same outfit

generated on different reference models. Our generation method

is able to adapt to a diverse set of poses, skin-tones, and hand

positions. When the hand is in the pocket, the jeans plump up and

connect seamlessly with the jacket (Pose 2 & 5).

to prior works on both single and multi-garment genera-

tion (Table 1 and 2, and Figure 9). Furthermore, we intro-

duce a procedure for matching garment-pose pairs, which

yields significant improvement for both our and previous

image generation pipelines in scenarios (a) and (b) (Ta-

ble 2). Lastly, we conduct a user study comparing our

generated images with real commercial photos, simulating

the effectiveness of e-commerce sites replacing real pho-

tographs of models with our synthesized images. Results

show over 50% of our synthesized images were thought to

be real even with references to real images (Table 4). Fur-

thermore, our method is fast enough to integrate with inter-

active user-interfaces, where users can select garments and

see generated visualizations in real-time. A live demo of an

virtual try-on shopping interface powered by our method is

publicly available 10.

As a summary of our contributions:

• We introduce OVNet - the first multi-garment try-on

framework that generates high quality images at laten-

cies low enough to integrate with interactive software.

• We are the first warping-based try-on method that sup-

ports multi-garment synthesis on all garment types.

• We introduce a garment-pose matching procedure that

significantly enhances our method and prior methods.

• Our results strongly outperform prior works, both

quantitatively and qualitatively.

• We evaluate on a dataset with all available garment cat-

egories from multiple fashion e-commerce sites, and

show that our method works with all categories.

2. Related Work

There are multiple ways to tackle virtual try-on. One

solution is to use 3D modeling and rendering [8, 15, 43],

but obtaining 3D measurements of the garments and users

10https://demo.revery.ai
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Figure 3. The figure shows a sequence of outfit visualizations

produced by our method on two different models. Our method

can modify one garment at a time, leaving the rest of the image

untouched. The details of the garments’ shape are accurately rep-

resented (e.g., neckline shape, skirt length, pant width, etc.) and

consistent on both models. The garment interactions of the top

(hanging or tucked-in) also vary between poses.

is difficult and costly. A more economic and scalable ap-

proach is to synthesize images without 3D measurements.

We discuss the variations of this approach in detail.

Image synthesis: Spatial transformer networks estimate

geometric transformations using neural networks [24]. Sub-

sequent work [31, 46] shows how to warp one object onto

another. Warping works with images of rigid objects [28,

35] and non-rigid objects (e.g., clothing) [18, 13, 53].

In contrast to using a single warp with high degree of

freedom, our work coordinates multiple spatial warps to

support garments of complex shape. We use U-Net to com-

bine multiple warps into a single image. U-Net is com-

monly used for inpainting methods, which tackle filling

in missing portions of an image [57, 36, 60, 59]). Han

et al. [17, 61] also show inpainting methods can complete

missing clothing items on people.

Generating clothed people: Zhu et al. [66] uses a con-

ditional GAN to generate images based on pose skeletons

and text descriptions of garments. SwapNet [45] learns to

transfer clothes from person A to person B by disentan-

gling clothing and pose features. Hsiao et al. [21] learns

a fashion model synthesis network using per-garment en-

codings to enable minimal edits to specific items. Recently,

Men et al. [38] proposed a person image synthesis method,

controllable through interpolating style and pose represen-

tations. These methods use feature vectors as visual repre-

sentations, and thus cannot preserve geometric patterns (e.g,

logo, prints). Our method warps garments and directly uses

the warped images to generate our result.

Garment & body matching underlie our method to

match garments to models. Tsiao et al. [20] learns a shape

embedding to enable matching between human bodies and

well-fitting clothing items. Prior work estimates the shape

of the human body [3, 30], clothing items [10, 27] and

both [40, 47], through 2D images. The DensePose [1] de-

scriptor helps model the deformation and shading of clothes

and has been adopted by recent work [42, 14, 56, 62, 7, 61].

Virtual try-on (VITON) maps a single garment onto a

model image. VITON [18] first proposed using TPS trans-

formation to create a warp, followed by a generation net-

work to synthesize the final output. CP-VTON [53] im-

proves this method by using a differentiable component for

TPS transformation. Han et al. [16] uses a flow estima-

tion network to enable more degrees of freedom for the

warp. Issenhuth et al. [23] proposed a teacher-student train-

ing paradigm to warp without relying on masks. To en-

able shape changes (e.g., short sleeve to long sleeve), a

common procedure has been to predict a semantic layout

of body segments and clothes to assist with image genera-

tion [58, 25, 63, 44, 16]. More recent works proposed ar-

chitectural improvements toward better preservation of de-

tails [54, 44] and adding adversarial training during the re-

finement phase to improve image realism [11, 63, 58, 44].

Others followed similar procedures [51, 22, 2]. The virtual

try-on task has also been extended to multi-view scenarios

and videos [13, 12]. In summary, recent work in VITON

managed to preserve garment details, but only for single

garment, with simple shapes (mostly tops).

Outfit try-on: Neuberger et al. [41] proposed a vir-

tual try-on method that works for multiple garments. The

method relies on visual feature vector encoding rather than

warping, which falls short in preserving textures compar-

ing to other VITON methods. To make up for deficien-

cies, they proposed an online optimization step that re-

quires fine-tuning a generator using a discriminator for ev-

ery query. Performing such an operation is massively ex-

pensive (requires multiple rounds of gradient computation

and back-propagation), making it unrealistic to respond to

user queries in real-time. In comparison, our method pro-

duces images of significantly better quality (Figure 9) and

requires much less computation (<2s latency on a K80).

3. Outfit Visualization Net

We propose Outfit Visualization Net (OVNet) to gener-

ate images of a model (person) wearing multiple garments

(outfit), faithfully capturing the garments details and the

interactions between them. OVNet consists of two com-

ponents trained separately: a Semantic Layout Generator

Glayout and a Multi-Warps Garment Generator Ggarment.

Semantic Layout Generator Glayout predicts semantic

layout m′ (in the form of segmentation map) conditioned

on a garment image x, a pose map p of the model and an

incomplete layout mi (more details in appendix). This in-
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Figure 4. Outfit Visualization Net, which synthesizes an image of a model wearing multiple garments, consists of two components. The

Semantic Layout Generator Glayout (left) takes in the garment image x, the pose representation p and an incomplete semantic layout

mi, and learns to reconstruct the ground truth layout m. The multi-warp garment generator Ggarment (right) has two modules. The

warping module is a spatial transformer that takes in the garment image x and its semantic layout mc and regress k sets of transformation

parameters θ1..θk. It then samples k warps w1..wk where w1 = W(x, θ1), using the predicted transformations. The inpainting module

takes in the predicted warps w1..wk, the full semantic layout m′, the skin color channel s (median color of the face) and the incomplete

model image yi and generates the final image y′ of the model wearing garment x. Two modules are trained jointly.

complete layout mi hides relevant semantic layout classes.

For example, when generating the incomplete layout mi for

a top, we take the ground truth layout m and set the top,

neckline, and arm classes to the background class. The gen-

erated layout m′ is then used to guide the image generation.

Multi-Warps Garment Generator Ggarment takes in

the garment image x, the predicted full layout m′ and the

model image y, and produces an image y′ with model y

wearing garment x. Ggarment only modifies one garment

on the model at a time. Thus, garments of other categories

remain unchanged from y to y′.

Using our formulation, synthesizing an outfit requires

multiple sequential operations, with each operation swap-

ping a single garment. Compared to Neuberger et al.’s [41]

formulation, which is forced to generate a complete layout

per inference, our formulation enables users to modify a

single garment at a time, leaving the rest of the image un-

touched (Figure 3). Having this property benefits the user

experience, as most people modify an outfit one piece at a

time. The proposed method can be adopted to all applica-

tion scenarios (a), (b), and (c) (from the Intro 1).

3.1. The Semantic Layout Generator

When synthesizing a person image, it is common prac-

tice to produce a semantic layout as structural constraints

can guide the image generation [11, 33, 21, 66, 16, 58] and

we follow a similar procedure. To train the layout genera-

tor, we obtain pairs of garment images x and model images

y wearing x. From y, we obtain the semantic layout m us-

ing off-the-shelf human parsing models [34] and the pose

map p using OpenPose [55, 5, 50, 6] (Figure 4 top left).

Based on the garment category of x, we produce an incom-

plete layout mi by setting the garment prediction classes as

the background class. A full list of semantic categories and

the detailed procedure for producing the incomplete layout

mi for different categories of garments are in Appendix.

The layout generator takes in the incomplete layout con-

catenated with the pose and the garment as input, and learns

to predict the original layout m′ = Glayout([x,mi, p]). Be-

cause skip connections propagate information from the in-

put to the output, we use a U-Net architecture to retain in-

formation from mi in the output m′. The network is trained

using a pixel-wise cross-entropy loss and a LSGAN [37]

loss to encourage the generated semantic layouts to resem-

ble real semantic layouts. The total training loss for Glayout

can be written as
Llayout = λ1LCE + λ2LGAN (1)

where λ1 and λ2 are the weights for each loss. Be-

cause the argmax function is non-differentiable, we adopt

the Gumbel softmax trick et al. [26] to discretize the layout

generator’s output such that the gradient generated by the

discriminator can flow back to the generator.

During experiments, we observed that the type of gar-

ment a model is wearing greatly influences pose prediction

results, as in Figure 5. For example, between models with

highly similar poses, one wearing a jacket and another one

wearing a t-shirt, we observe vastly different pose predic-

tions. Also, because we train the network to reconstruct

the ground truth semantic layout conditioned on garment

and pose, the pose representation may impose a prior on the

type of garment to expect. This sometimes leads to errors

during inference. As in Figure 6, when there is a mismatch

between the provided garment (a tank) and what the pose

representation implies (a jacket), the layout generator may

output a layout that doesn’t respect the garment shape. In

Section 4, we propose a garment-pose matching procedure

to alleviate this issue.

3.2. Multi­Warps Garment Generator

Our garment generation network Ggarment (Figure 4

right) takes in a garment image xc of class c (write as x

for simplicity), a model image y and a segmentation mask
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Figure 5. We notice that the human pose annotation from Open-

Pose embeds information differently depending on the type of gar-

ment. For example, the pose predictor consistently predicts wider

distance between shoulder and elbow anchor for models wearing

coats (3, 4) than models wearing shirts (1, 2), despite both models

having similar posture and body shape. This implies that the pair-

ing between pose and garments can influence the predicted layout.

mc covering the target garment’s class c on the model image

y, and generates a realistic synthesized image of the model

wearing the provided garment. Ggarment consists of two

modules: (a) a warper to create k specialized warps, by

aligning the garment image x with the semantic layout mc

of the garment class; (b) an inpainting module to generate

the final image leveraging the warps, the semantic layout

m, the skin color of the model s (median color of the face),

and the incomplete model image yi where the target gar-

ment, skin, and background are masked out. Unlike prior

works [18, 53, 16, 58] that learn a single warp with high

degrees of freedom to align garments, our method learns a

family of warps, each specializing on certain features. The

inpainting network is fed all the warps and learns to com-

bine them by choosing features to look for from each warp,

as it is trained jointly with the warper.

The Warping Module resembles a spatial transformer

network [24]. First, a regressor takes in the garment image

xc and the mask mc as input, and regress k sets of spa-

tial transformation parameters θ1...θk. Then, it generates a

grid for each of the transformation parameters, and samples

grids from the garment image x to obtain k warps w1..wk

where w1 = W(x, θ1). The warps are optimized to match

the garment worn by the target model mc⊗y using per pixel

L1 loss. Inspired by [16], we impose a structure loss to en-

courage the garment region z (a binary mask separating gar-

ment and background as in Figure 7) of x to overlap with

the garment layout of the garment mask mc on the model

after warping. The warping loss can be written as:

Lwarp(k) = |W(x, θ)−(mc⊗y)|+β|W(z, θk)−mc| (2)

where β controls the strength of the structure loss. This

loss is sufficient to train a single warp baseline method. The

choice of warper here is unimportant, and in our implemen-

tation, we use affine transformation with 6 parameters.

Cascade Loss: With multiple warps, each warp wj is

trained to address the mistakes made by previous warps wi

where i < j. For the k th warp, we compute the minimum

loss among all the previous warps at every pixel location,

written as

Lwarp(k) =

∑W,H

u=1,v=1 min(Lwarp(1)(u,v)..Lwarp(k)(u,v))

wh
(3)

where u, v are pixel locations; W,H are the image width

and height; and Lwarp(k)(u,v) is the loss of the kth warp

at pixel location u, v. The cascade loss computes the aver-

age loss across all warps. An additional regularization term

is added to encourage the transformation parameters of all

later warps to stay close to the first warp.

Lcasc(k) =

∑k

i=1 Lwarp(i)

k
+ α

∑k

i=2 ‖θk − θ1‖
2

k − 1
(4)

The cascade loss enforce a hierarchy among all warps, mak-

ing it more costly for an earlier warp to make a mistake than

for a later warp. This prevents oscillation during the training

(multiple warps competing for the same objective).

The idea is comparable with boosting – using multi-

ple simple warpers (weak learners), each with a small de-

gree of freedom but can handle complex geometric shape

when combined. Warpers interact with each others differ-

ently compared to classifiers. Concatenating multiple warps

channel-wise allows a generator to reason about the geomet-

rics while also leveraging the parallelism of the computation

(less latency). Training end-to-end allows all warps to share

gradients, making it possible for warps to adjust according

to each other and the image generator to guide the warpers.

The Inpainting Module concatenates all the warps

w1..wk, the semantic layout m (or m′ during inference),

and the incomplete image yi as input, and outputs the final

image y′ of model y wearing garment x. This is different

from a standard inpainting task because the exact content

to inpaint is provided through the input channels. We use a

U-Net architecture to encourage copying information from

the input. The network is trained to reconstruct the ground

truth image using a per pixel L1 loss, a perceptual loss [29],

and a Spectral Norm GAN with hinge loss [39]. The total

loss for training Ggarment with k warps is written as

Lgarm(k) = γ1Lcasc(k)+γ2L1+γ3Lperc+γ4LGAN (5)

where γ1, γ2, γ3 and γ4 are the weights for each loss.

4. Garment-Pose Matching

While our Outfit Visualization Network and other prior

works [16, 58] support shape changes (e.g., skirt to pants,

long sleeve to short sleeve), we notice that semantic layout

generators strongly favor certain garment-model(person)

pair over others. The root cause is because the pose de-

tection results are heavily biased by garments (Figure 5).

For example, the pose representation extracted from a per-

son wearing a long dress has attributes (e.g., odd position
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m1’ m2’y1’ y2’O1 O2py

Reference Model Matched Outfit Non-matched Outfit

Figure 6. This figure shows an example result from a matched

garment-pose pair versus a non-matched pair. A model y with

extracted pose p is fed two different outfits O1 and O2. The gar-

ments in O1 match with the shape of garments worn by the original

model y, thus results in an accurate layout prediction m′

1 and out-

put y′

1. In contrast, the sleeveless tank in O2 does not match with

pose p, thus was wrongly generated with sleeves in y′

2.

Es

za

Ds

za’

pa

pb

Ep

Garment-pose 

 embedding space

Es(za)

Ep(pb)

Ep(pa)

xa

ya

yb

Figure 7. This figure shows the training procedure for the

garment-pose matching embedding. We obtained a foreground

mask za from garment image xa, and learn a shape Auto-encoder

{Es, Ds} to produce a shape embedding. The pose pa from the

corresponding model ya is embedded closer to za than a random

pose pb. This only works for scenarios (a) and (b) (from Intro 1)

of the feet, wide legs, etc.) that hint to the generator to ex-

pect a long dress, Figure 5. Thus, during inference, putting

a different garment (e.g. trousers) on this model will cause

problems (Figure 6), because the garment and pose are al-

ways extracted from the same person during training. Fully

addressing this problem may require improving pose repre-

sentations and is left as a future direction.

To overcome such deficiency, we propose that choosing a

suitable model for a given set of garments will result in bet-

ter quality generation compared to using a random model.

The strategy can be adopted in application scenarios (a) and

(b) (from the Intro 1) where we are not forced to operate on

a fixed model image. The general relationship between pose

and garment is hard to capture, but we expect a garment xa

to work well with its paired model ya. Also, because shape

is the only relevant attribute to the semantic layout, we ex-

pect a garment xb with similar shape as xa to work better

with ya than a garment xc with a different shape. We want

an embedding to capture such property.

To train the garment-pose embedding, we first learn a

Garment Shape Auto-encoder {Es, Ds} to obtain a con-

densed garment shape representation (Figure 7). We use the

garment’s foreground mask z (a binary mask of 1’s for fore-

ground and 0’s for background) as input, and train the Auto-

encoder to reconstruct the garment mask z′ = Ds(Es(z))
using mean squared error as the reconstruction loss. Addi-

tionally, we apply L2 normalization on the Auto-encoder’s

embedding space and we regard the data encoding Es(z) as

an embedding for garment shape. Subsequently, we learn

a pose encoder Ep to project Openpose map p into the

shape embedding space. Ep is trained using a Triplet loss

Ltriplet [49] to encourage pa and za with an identical gar-

ment a to have a closer embedding to each other compared

to a randomly sampled pose pb by a margin of α. The full

training loss is written as

Lmatch = ‖Ds(Es(za))− za‖
2+

Ltriplet(Es(za), Ep(pa), Ep(pb)) (6)

Because the same pose may correspond to garments of mul-

tiple categories, we train a set of specific pose encoders

{Ec1
p ..Ecn

p } for each garment category c ∈ C.

At inference time, we search for a set of suitable poses

given a query outfit O = {zc1 , ..., zcm} (a set of garments of

different categories). We compute the distance between the

outfit O and a pose p as the maximum distance between the

shape embedding of any garment in the outfit and the pose

embedding: d(O, p) = max({‖Es(z
ci) − Eci

p (p)‖2, zci ∈
O}). The images whose pose have the shortest distances to

the query outfit are preferably chosen.

5. Experiments

5.1. Datasets & Experiment Setup

Because publicly available try-on datasets do not include

rich garment categories, we experiment on a new dataset of

321k fashion products scraped from e-commerce websites,

containing all the available garment categories. Each prod-

uct includes a neutral garment image (front-view, laying

flat, plain background), and a model image (single person,

front-view). Garments are grouped into four types (top, bot-

toms, outerwear, or full-body). We randomly split the data

into 80% for training, 5% for validation and 15% for testing.

Because the model images do not come with body parsing

annotation, we use off-the-shelf human parsing models [34]

to generate semantic layouts as training labels.

We also compare with prior work on the established VI-

TON dataset [18]. Note we do not compare with single-

garment try-on methods on the new multi-category dataset

because single-garment try-on methods do not work reason-

ably on our dataset, we expand on this in our supplementary.

Because the original VITON test set consists of only 2,032

garment-model pairs (insignificant for computing FID), we

resample a larger test set of 50k mismatched garment-model

pairs, following the procedure of the original work [18]. To

quantify the effect of garment-poses on generation quality,
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Figure 8. The figures shows qualitative comparison between using

multiple (2) warpers and a single warper. Note for single warp: the

buttons are in the wrong place in A and D; problems with sleeve

boundaries in E; a severe misalignment in C; a misplaced tag in B.

All problems are fixed in multi-warp results.

Methods SSIM IS

VITON [18] .783 2.650

CP-VTON [53] .745 2.757

GarmentGAN [44] - 2.774

VTNFP [63] .803 2.784

SieveNet [25] .766 2.820

ClothFlow [16] .841 -

ACGPN [58] .845 2.829

Ours (4 warps) .852 2.846

Table 1. This table compares SSIM [65] and IS [48] (larger is bet-

ter) reported on the original VITON test set. Results show that our

garment generation pipeline outperforms prior works.

Methods Random Pairs Matched Pairs

CP-VTON [53] 15.11 13.42

ACGPN [58] 11.13 9.03

Ours (4 warps) 9.81 7.02

Table 2. This table compares the FID∞ [9] score on two resampled

test sets (see Sec. 5.1), one randomly sampled and the other using

our pose-garment matching. Results show that choosing compati-

ble pairs yield significantly improves to all try-on methods.

we create another resampled test set where garment-model

pairs are selected using our Garment-Pose matching proce-

dure: every garment in the original test set is paired with its

25 nearest neighbor models in the pose embedding space.

Other details about network architectures, training pro-

cedures and hyper parameters are provided in the Appendix.

5.2. Quantitative Results

Following prior works, we report SSIM [65] and IS [48]

scores on the original VITON test set [18]. As shown in Ta-

ble 1, our multi-warp generation pipeline outperforms prior

works in both metrics. Additionally, while Frechet Incep-

tion Distance (FID) [19] is commonly used to evaluate gen-

erated image quality [4, 64, 32], Chong et al. [9] recently

showed that FID is biased and proposed an extrapolation to

an unbiased score (FID∞). We adopt FID∞ in our work

over FID. Results from WUTON [23] are excluded because

their experiments were conducted on a different dataset.

Neuberger et al.’s [41] is the only known prior work that

Figure 9. We compare visual results between O-VITON [41] and

ours. The top rows show the garments in the oufit and the bot-

tom row shows the generated try-on results. For fair comparison,

we found garment images that most closely resemble the garments

chosen in [41] in terms of style, color, and texture. Image results

for O-VITON are directly taken from their paper. There are sub-

stantial difference in quality between results. The unnaturally flat

torso and uneven shoulders of A-1 are not present in B-1. In A-2,

the buttons on the jacket are distorted/missing, whereas B-2 repre-

sents them accurately. In A-3, the jacket and top lack realism due

to missing creases, folds, and bumps compared to B-3. Properties

of the arms are also kept intact in B-3. (See Appendix for more)

warp bottoms full-body tops outerwear overall

1 1.930 4.461 2.489 2.233 1.577

2 1.472 2.207 1.215 1.349 .927

4 1.461 2.069 1.163 1.328 .874

8 1.458 2.057 1.165 1.323 .872

Table 3. This table reports the FID∞ [9] score (smaller is better)

of our method on the new multi-category dataset. We compare the

performance between using different numbers of warps. Results

shows that using more warps significantly increase performance.

supports multi-garment try-on. However, quantitative com-

parison is impossible as (1) their code and dataset are not

released and (2) their formulation uses images of people

wearing garment rather than neutral garment images. In-

stead, we compare with them qualitatively (Figure 9).

To evaluate our garment-pose matching procedure, we

run OVNet and prior methods with released implementa-

tions [53, 58] on two resampled test sets of 50k pairs,

one sampled using the garment-pose matching procedure

and the other sampled randomly. We report results in Ta-

ble 2. Using garment-pose matching significantly improves

results for all methods, even those that are designed to ac-

cept arbitrary garment-model pairs (ours and ACGPN [58]).

Additionally, our garment generation pipeline shows con-

sistently better FID∞ scores compared to other methods.

Table 3 reports the FID∞ for our method on the multi-
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Outfit A Results A Outfit B Results B Outfit C Results C Outfit D Results D

Figure 10. Our method has forgiving failure modes. When it fails,

it still outputs an image of the person wearing realistic garments,

but with misrepresented attributes. In A, it turns spaghetti straps

into thick straps, and has difficulty with laces; in B, the coat is

generated as open-back; the asymmetrical neckline in C is turned

into panels; and transparency is not captured in D.

category test dataset using different number of warps. Using

more warps substantially improves the performance on all

garment categories, with diminishing returns as it increases.

We set the number of warps to 4.

5.3. Qualitative Comparison

We show comprehensive qualitative examples of our

method. In Figure 8, we show how multiple warpers can

significantly improve and correct the details. In Figure 1,

we show examples of how garment details are realistically

captured: patterns (A-1), shadows (B-1, C-2, D-2), hem-

lines (C-2), buttons (B-1) and numerous other features are

all accurately represented (refer to figure for more details).

In Figure 2, we show that our method can generate the

same outfit selection on a diverse set of models and poses

(e.g. different stances, skin colors, and hand/arm positions).

The garments’ properties are consistent across all models,

suggesting that the network has learned a robust garment

representation. Pay attention to Pose 2 & 5 when the hands

are in the pockets; the jacket/jean pocket plumps up and the

sleeve interacts seamlessly with the pocket. These realistic

details are likely results of using a GAN loss.

Finally in Figure 9, we compare our results to O-

VITON [41], the state-of-the-art in multi-garment try-on.

Compared to O-VITON, our method applies clothes more

naturally onto models (A-1 vs B-1), localizes buttons more

accurately (A-2 vs B-2), and generates more realistic tex-

tures and more convincing fabric properties (A-3 vs B-3).

We also show common mistakes made by our method in

Figure 10. Our mistakes tend to be quite forgiving, result-

ing in inaccurate but realistic interpretations of the outfits.

These failures are caused by inaccurate layout predictions.

To further substantiate the quality of our image gener-

ation from a provided layout, we perform a user study to

verify how often users can distinguish synthesized images

from real images. A user is presented with an image of the

product and an image of a model wearing the product. The

user is then asked if the image of the model wearing the

product is real or synthesized.

Figure 11. Two synthesized images that 70% of the participants

in the user study thought were real. Note, e.g., the shading, the

wrinkles, even the zip and the collar.

Participants Acc FP FN

Crowds 31 0.573 0.516 0.284

Researchers 19 0.655 0.615 0.175

Table 4. The user study results show that participants have diffi-

culty distinguishing between real and synthesized images. 51.6%

and 61.5% of fake images were thought to be real by crowds and

researchers, respectively. Some of the real images were marked as

fake, suggesting participants were actively trying to spot flaws.

The results of our case study show that users are mostly

fooled by our images; there is a very high false-positive rate

(i.e. synthesized image is marked real by a user; Table 4).

Figure 11 shows two examples of synthesized images that

70% of participants reported as real. These are hard outer-

wear examples with multiple segmented regions and com-

plicated shading. Nevertheless, our method manages to

generate high quality synthesized images that consistently

fool users. See supplementary material for the complete

settings and results of the user study.

6. Conclusion & Discussions

In this work, we propose a systematic method to enable

outfit-level generation with realistic garment details. Sev-

eral design choices are crucial. (1) We operate on neutral

garment images rather than images of garments worn by

models. We believe using neutral product images is more

accessible for consumers and readily provided by cloth-

ing brands, making our solution easily adoptable. (2) Us-

ing warping is important toward accurately preserving ge-

ometric textures. Warping multiple garments with compli-

cated shapes is extremely challenging, and we are the first to

demonstrate success in generation of all garment categories

through warping. (3) Even though, our try-on generation

pipeline (as well as others) support arbitrary pairs of gar-

ment and model images, we demonstrate that it is highly

advantageous to carefully choose the pair when possible.

Despite the success, our method can be improved in

many aspects. Our method can handle variations in body

pose and skin tone, but not body shape. Enabling body

shape variations would get us one step closer to achiev-

ing the difficult goal of dressing garments directly on con-

sumers’ photos. For such a task, the main challenge lies

in handling out of distribution user-uploaded photos. Ad-

ditionally, enabling try-on for shoes, bags, and other acces-

sories would make the outfit generation complete.
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