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Abstract

Few-shot object detection (FSOD) aims to learn detec-

tors that can be generalized to novel classes with only a

few instances. Unlike previous attempts that exploit meta-

learning techniques to facilitate FSOD, this work tackles

the problem from the perspective of sample expansion. To

this end, we propose a simple yet effective Transforma-

tion Invariant Principle (TIP) that can be flexibly applied

to various meta-learning models for boosting the detection

performance on novel class objects. Specifically, by intro-

ducing consistency regularization on predictions from var-

ious transformed images, we augment vanilla FSOD mod-

els with the generalization ability to objects perturbed by

various transformation, such as occlusion and noise. Im-

portantly, our approach can extend supervised FSOD mod-

els to naturally cope with unlabeled data, thus addressing

a more practical and challenging semi-supervised FSOD

problem. Extensive experiments on PASCAL VOC and

MSCOCO datasets demonstrate the effectiveness of our TIP

under both of the two FSOD settings.

1. Introduction

While the availability of large number of labeled data

has enabled deep neural networks to dominate the computer

vision community. they struggle in addressing problems

with scarce labeled data [6, 15]. In contrast, humans can

rapidly learn new concepts with only a few examples avail-

able. This big gap between humans and deep neural net-

works provides fertile ground for developing deep learning

techniques. Due to this fact, few-shot learning, which learns

algorithms that allow for better generalization on tasks with

a few labeled training samples, has become topical. Differ-

ent from most previous works designed for few-shot classi-

fication, we focus on a more challenging and more practical

case – few-shot object detection (FSOD) [5, 9, 2]. Specifi-

cally, given a set of base classes with rich labeled data per

class and a set of novel class with a few labeled data per

class, FSOD aims to learn a model to detect objects from

both base and novel classes.
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Figure 1. Results with naive data augmentation. The evaluation

metrics are the 1, 2, 3, 5, 10-shot detection performance (i.e., mean

Average Precision, mAP) on the first novel class set of PASCAL

VOC dataset. Notations: ‘Baseline’ – A meta-learning-based ap-

proach [23] that has achieved the state-of-the-art results; ‘Baseline

+ AugS’ – Augmenting support images when training the base-

line model. ‘Baseline + AugQ’ – Augmenting query images when

training the baseline model.

Recent progress of FSOD has featured meta-learning

strategy [10, 24, 23]. It uses a pool of auxiliary detec-

tion tasks generated from base class training set to perform

transfer learning to novel class tasks with only a few exam-

ples available. Here, each auxiliary task is constructed to

simulate the few-shot scenario: given a small training set

(called support set) with a labeled instance per class, and a

small test set (called query set), a meta learner trains the tar-

get detector in a guided manner: For each class, its support

sample is used to extract class-wise representative features

and embedded into a guidance vector. Then the guidance

vector is incorporated into query feature learning to facili-

tate the query sample features suitable for detecting objects

of the target class.

Orthogonal to the design of meta-learning strategy, we

tackle this challenging FSOD problem from the perspec-

tive of sample expansion and further improve its perfor-

mance. A naive solution is to involve transformed images
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Figure 2. The TSNE Visualization of guidance vectors obtained

by naive data augmentation solution. In this figure, guidance vec-

tors from different classes are illustrated in different colors. The

guidance vectors generated by using transformed images are de-

noted by hollow circles, while the guidance vectors of original

images are denoted by solid circles. These original images and

its transformed variants are also provided. The guidance vectors

of transformed images generated by using the same original im-

age are shown to be separable in the guidance embedding space.

This means that the learned guidance vectors didn’t effectively en-

code the representative features which should be invariant to image

transformation.

into the training process. However, it is impressive that sim-

ply adding the data augmentation techniques leads to very

limited improvement or even performance drop, as shown

in Figure 1. To analysis this phenomenon, we provide a

TSNE visualization of the guidance vectors extracted by us-

ing transformed images, as shown in Figure 2. Here, guid-

ance vectors from different classes are illustrated in differ-

ent colors. The guidance vectors of original images are de-

noted by solid circles, while the guidance vectors of their

transformed images are denoted by hollow circles. These

original images and their transformed variants are also pro-

vided. We can observe that guidance vectors of transformed

images generated by using the same original image are sep-

arable in the guidance embedding space. This means that

the learned guidance vectors didn’t effectively encode the

class-wise representative features which should be invariant

to image transformation.

To overcome this issue, a novel approach named by

Transformation Invariant Principle (TIP) is proposed. The

TIP applies consistency regularization on guidance vectors

from various transformed images to provide additional su-

pervision for guidance learning. As illustrated in Figure 3,

the TIP for guidance extraction branch is implemented by

adding a Transformed Guidance Consistency (TGC) Loss

on the top of the guidance vectors of original images and

their transformed variants. The TGC Loss computes the dif-

ference between guidance vectors generated from an origi-

nal image and its transformed variants. Moreover, the TIP

introduces the proposal consistent regularization into query

image prediction to generate transformation invariant query

features. This is implemented as a proposal detection net-

work that takes transformed images as inputs and outputs

suitable Region of Interest (RoI) proposals for their orig-

inal images. The prediction of bounding boxes is condi-

tioned on these RoI proposals and the transformation in-

variant guidance vectors learned by TGC Loss. The pro-

posed TIP can be used to cope with unlabeled images and

thus extend our approach to a more realistic yet more chal-

lenging scenario, i.e. semi-supervised FSOD. In this way,

both fully-supervised and semi-supervised FSOD problems

can be handled in a unified detection framework. Exper-

imental results on PASCAL VOC and MSCOCO datasets

demonstrate that our approach is effective for both of the

two FSOD settings.

In summary, our contributions are three folds:

• To the best of our knowledge, this is the first work to

address the challenging FSOD problem from the per-

spective of sample expansion.

• We propose a simple yet effective approach, named by

TIP, to improve the generalization ability over trans-

formed images, and experimental results demonstrate

that our method achieves state-of-the-art results on two

benchmark datasets.

• Our approach can be easily extended to a more realistic

yet more challenging semi-supervised FSOD scenario,

with superior performance obtained. This further vali-

dates the effectiveness of the proposed approach.

2. Related Work

Few-shot learning is a fundamental yet unsolved prob-

lem in machine learning and computer vision [1, 19, 13,

14, 11, 25, 12]. Most of these existing work is devel-

oped in the context of classification, while we focus on

the more challenging object detection task in the few-shot

scenario. Meta-learning is a popular solution to address

FSOD [22, 10, 23, 24]. Wang et al. developed a weight pre-

diction meta-model to produce the parameters of category-

specific components from few examples [22]. A detector

with these learned features is used for novel class objects

detection. Kang et al. proposed to reweigh pre-trained fea-

tures by a meta-model and facilitated these features suitable

for detecting novel classes [10]. Yan et al. extended Kang

et al’s method and developed a meta-learning model over

more fine-grained RoI features, and thus achieve better per-

formance on novel classes [24]. Xiao et al. propose a uni-

fied meta-learning framework that can tackle both 2D de-

tection task and 3D viewpoint estimation task [23]. In this
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Figure 3. Overview of the proposed approach. To improve the generalization ability of current meta-learning-based FSOD approaches,

our TIP approach applies consistency regularization on both guidance extraction and query prediction branches. For guidance extraction

branch, we develop a TGC Loss over guidance vectors of original images and their transformed variants to impose consistency between

them. For query prediction branch, we introduce a proposal consistent regularization by first predicting the RoI proposals of transformed

images and then predicting bounding boxes of query samples conditioned on these RoI proposals as well as the transformation-invariant

guidance vectors extracted by the guidance extraction branch.

paper, we propose to exploit TIP to improve the generaliza-

tion ability of these meta-learning-based FSOD approaches.

This will benefit object detection on novel classes with only

a few labeled samples. The proposed TIP approach is or-

thogonal to the design of meta-learning approaches and can

be applied to improve any meta-learning-based approaches

for FSOD.

In addition to meta-learning-based approaches, some

data synthesis approaches [8, 21, 18, 26, 7, 3] have been

proposed for few-shot image classification scenario, but rare

works are proposed for FSOD. These data synthesis ap-

proaches designed for few-shot classification can alleviate

the severe lack of novel class data in some degree. Note that,

although our approach is developed from the perspective

of sample expansion, we focus on learning invariant rep-

resentations by adding consistency regularization between

transformed images, rather than generating fake data which

cannot be distinguished from real images. Therefore, our

approach is flexible to integrate previous data synthesis ap-

proaches.

3. Preliminary

We start by defining precisely the current meta-learning

paradigm for FSOD. Recent progress of FSOD has been

made possible by following an episodic meta-learning

paradigm [10, 24, 22, 23]. Here, we are given a set of base

classes Cbase with sufficient labeled samples per class and

a set of novel classes Cnovel with a few labeled instances

per class. A meta learner randomly samples many auxiliary

training tasks from the whole training set to simulate the

few-shot situation in novel classes.

Specifically, in each episode, we randomly select N class

from base class set Cbase to form an episodic class set Ce.

For each class ci ∈ Ce, we randomly select an image with

an object of this class and thus form a small-scale training

set, which is called support set S = {Isi }
K
i=1

, each element

denoting a support image. Then, we randomly select sev-

eral samples from the remain base class images that also

contain objects from Ce and form a test set, which is called

query set Q. The meta learning framework consists of two
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branches: a guidance extraction branch and a query predic-

tion branch. In the guidance extraction branch, a guidance

encoder G takes each support image Isi ∈ S as input, and

generates a guidance vector gi that captures representative

features related to its class ci. A classification loss of these

guidance vectors forces them to be separable in the guid-

ance embedding space. In the query prediction branch, each

query image is encoded by a query encoder R to obtain its

visual features. Then, we aggregate each guidance vector

and query features to facilitate more effective features to de-

tect objects from its class. After that, a detection module P
takes these aggregated features as inputs and outputs poten-

tial locations of bounding boxes and class probabilities. We

optimize the parameters of the full model by minimizing

the detection loss of all query samples and the classifica-

tion loss of guidance vectors. Since this strategy can learn

an effective learning algorithm that produces detector with

good generalization on novel class test examples, we call

this paradigm as meta-learning.

4. Transformation Invariant Principle

4.1. Motivation

Although the meta-learning-based approaches have

achieved promising results, the generalization gap on un-

labeled test samples from novel classes between fully-

supervised setting and few-shot setting is still very large. In

this work, we propose to narrow the gap from the perspec-

tive of sample expansion. However, due to the guidance in-

consistency between different transformed images, simply

adding data augmentation techniques fails to improve de-

tection performance, as illustrated in Figures 1&2. To over-

come this issue, we propose a TIP approach which imposes

invariant consistency among transformed images. Our TIP

approach introduces consistency regularization to the guid-

ance extraction branch and query prediction branch, respec-

tively. The proposed TIP approach can be inserted into the

current meta-learning-based FSOD approaches and further

improve their detection precision.

4.2. Transformation Invariant Guidance Extraction

To effectively encode representative features related to

each class, the guidance vector of each class should be

transformation invariant. To obtain such invariant guid-

ance vectors, we design a Transformed Guidance Consis-

tency (TGC) Loss, where the difference between guidance

vectors of original images and their transformed images are

computed.

Specifically, given a support image Isi , we feed it into

a data transformation module T and thus generate a trans-

formed image T (Isi ). The transformation module can be

implemented as non-parametric data augmentation tech-

niques, e.g. Gaussian noise and cutout, or parametric data

synthesis approaches. Then, we feed a support image Isi ∈
S as well as its bounding box annotation Ls

i into the guid-

ance encoder G and produce its guidance vector gi. G is im-

plemented as a convolutional neural network, e.g. ResNet-

101 in our paper. The bounding box annotation Ls
i is con-

verted to a binary mask and concatenated with the image to

construct a four-channel input for G. Given a support image

Isi (with its annotation Ls
i ), the formulation of its guidance

vector is given as follows:

gi = G(Isi , L
s
i ). (1)

Similarly, we feed the transformed image T (Isi ) into G
and produce its guidance vector ĝi. The difference between

the two vectors is then computed with a measurement func-

tion M and a transformed guidance consistency loss LTGC

formulated in Equation (2) is designed to minimize the dif-

ference.

LTGC(ci) = M(gi, ĝi). (2)

The measure function M is implemented by an L2-norm

over the difference of the two guidance vectors. Its formu-

lation is given in Equation (3).

M(gi, ĝi) = ‖gi − ĝi‖. (3)

We also analyze the forms of the measurement function

to validate the effectiveness of the proposed approach (see

ablation study in Section 5.1.3). In addition, we fol-

low [23, 22] and add a cross entropy classification loss

LG
CLS that encouraging guidance vectors to be diverse for

different classes.

By exploiting the consistency between transformed im-

ages, our TGC Loss forces guidance vectors of the same

image to be more clustered and thus captures more repre-

sentative features shared among the same objects in trans-

formed images. These refined guidance vectors will help

to produce more effective features for detecting novel class

objects and thus benefit FSOD.

4.3. Transformation Invariant Query Prediction

For query prediction, we assume that results of im-

ages with spatial invariant transformation (such as Gaussian

noise) should be consistent with those of original images.

To achieve this, we first use transformed images to extract

RoI proposals and then detect objects in original images

conditioned on these transformed RoI proposals. We mini-

mize the detection loss of original images to force the detec-

tor to perform consistent detection results on both original

images and their transformed variants.

Specifically, given a query image Iq , we first feed it into

the transformation module T to produces its transformed

variant T (Iq). Then we feed the transformed image into a

backbone network B followed by a Region Proposal Net-

work (RPN) RPN [17] to extract a set of RoI proposals
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R̂ = {r̂ij}
Nr

i=1
, where Nr denotes the total number of RoIs.

The formulation of these RoI proposals is given as follows:

R̂ = {r̂j}
Nr

j=1
= RPN ((B(T (Iq))). (4)

In the meanwhile, the original image Iq is fed into the

backbone B to extract base feature maps. A RoI align layer

A is exploited to align the RoI proposals of transformed

images with feature map of original image and produces a

set of RoI features conditioned on R̂. These conditioned

RoI features are formulated in Equation (5).

F̂ = {f̂j}
Nr

j=1
= A(B(Iq), R̂), (5)

where F̂ = {f̂j}
Nr

j=1
denotes the set of conditioned RoI fea-

tures.

After that, as the method described in Section 3, these

RoI features are aggregated with the transformation invari-

ant guidance vectors learned by the method proposed in

Section 4.2 to produce features related to specific class ob-

ject detection. The detection module P takes these aggre-

gated features as inputs, and then outputs potential locations

of bounding boxes and class probabilities.

To optimize the parameters in this branch, we use the

same detection loss of query images as in [23, 24]. The

detection loss is formulated in Equation (6).

LQuery = LLOC + LQ
CLS + LRoI , (6)

where LLOC denotes the smooth L1 loss over predicted

bounding box locations, LQ
CLS denotes the cross entropy

loss over predicted class probabilities, and LRoI is applied

to the output of the RPN to distinguish foreground from

background and refine the proposals.

By combining the classification loss and TGC Loss for

guidance extraction, we minimize the loss function formu-

lated in Equation (7) to train the whole detection model.

Loverall = LQuery + LTGC + LG
CLS . (7)

4.4. Extension to SemiSupervised Scenario

Although the TIP approach is originally designed for

fully-supervised FSOD, it can be easily extended to cope

with unlabeled images, thus leading to a more challenging

yet realistic scenario, i.e., semi-supervised FSOD. Specifi-

cally, our approach exploits the similar framework as in the

fully-supervised scenario. The only difference is adding a

transformation consistency loss over unlabeled images to

impose the consistency between guidance vectors of unla-

beled images and its variants obtained by spatial invariant

transformations. For each unlabeled image as well as its

transformed image, we compute their guidance vectors by

using the guidance extractor G and leverage the transforma-

tion consistency loss Lu to minimize their differences. The

loss Lu for unlabeled images is formulated in Equation (8).

Lu(I
u
i ) = ‖G(T (Iui ), Lu)− G(Iui , Lu)‖, (8)

where Lu = φ denotes an empty annotation set. The bound-

ing box annotation Lu is converted to an all-one mask and

concatenated with the unlabeled image to construct a four-

channel input for G. Experimental results show that our

method not only outperforms baseline methods and even

outperforms fully-supervised approaches on some few-shot

cases (see Table 5).

5. Experimental Evaluation

In this work, we evaluate our approach in two scenar-

ios: 1) Standard FSOD where labeled instances are used for

model training; 2) Semi-supervised FSOD where a large

number of unlabeled samples are available during model

training.

5.1. Standard FewShot Object Detection

In this section, two benchmark datasets, i.e., PASCAL

VOC [4] and MSCOCO [16] are used to evaluate the effec-

tiveness of our approach.

5.1.1 Experimental Setup

PASCAL VOC 2007 and 2012 datasets [4] consists of a total

of 16.5k train-val images and 5k test images from 20 differ-

ent categories. Consistent with the standard few-shot setup

in [23], we use VOC 07 and 12 train-val sets for training

and VOC 07 test set for testing. 15 of the 20 categories are

considered as base classes, and the remaining 5 categories

as novel classes. As in [23, 10, 22, 20], we use the same

three base-novel class splits. Each novel class has only K

bounding box annotations for model training. Here, K is

set to be 1, 2, 3, 5, 10.

MSCOCO [16] is a more challenging benchmark for ob-

ject detection. This dataset involves 80k training, 40k vali-

dation, and 20k test images over 80 object categories. Fol-

lowing the setting in [23, 24], 5k images from the valida-

tion set (denoted as minval) are used for evaluation, and the

remaining train-val images for training. We use the 20 cat-

egories that also present in PASCAL VOC as novel classes,

and the other 60 categories are used as base classes. Similar

to PASCAL VOC, we randomly select a few bounding box

annotations for novel classes and K is set to be 10 and 30.

The training details and implementation details of our TIP

approaches are given in the supplementary material. As in

[23], we report results averaged over multiple random runs.

We compare our approach with recent and representative

FSOD approaches [23, 24, 20] that have achieved the state

of-the-art results.

5.1.2 Results and Discussions

We provide the competitive results on PASCAL VOC and

MSCOCO datasets in Tables 1&2. For PASCAL VOC
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Model
Novel Class Set 1 Novel Class Set 2 Novel Class Set 3

1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot

MRCNN [24] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA/w.fc [20] 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7 15.7 27.2 34.7 40.8 44.6

TFA/w.cos [20] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6

FA [23] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

TIP(ours) 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9

Table 1. Comparative results for standard FSOD on the PASCAL VOC dataset. We evaluate the performance on three different sets of

novel categories. The mean average precision (%) on the novel classes is used as the evaluation metrics of this dataset. The reported results

are averaged over multiple runs. Our approach consistently outperforms competing models across all number of shots and all three novel

class sets.

No.Shot Model
Average Precision Average Recall

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

10

MRCNN [24] 8.7 19.1 6.6 2.3 7.7 14.0 12.6 17.8 17.9 7.8 15.6 27.2

TFA/w.fc [20] 9.1 17.3 8.5 - - - - - - - - -

TFA/w.cos [20] 9.1 17.1 8.8 - - - - - - - - -

FA [23] 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9

TIP(ours) 16.3 33.2 14.1 5.4 17.5 25.8 23.6 30.2 30.5 12.7 32.3 43.8

30

MRCNN [24] 12.4 25.3 10.8 2.8 11.6 19.0 15.0 21.4 21.7 8.6 20.0 32.1

TFA/w.fc [20] 12.0 22.2 11.8 - - - - - - - - -

TFA/w.cos [20] 12.1 22.0 12.0 - - - - - - - - -

FA [23] 14.7 30.6 12.2 3.2 15.2 23.8 22.0 28.2 28.4 8.3 30.3 42.1

TIP(ours) 18.3 35.9 16.9 6.0 19.3 29.2 25.2 32.0 32.3 14.1 34.6 45.1

Table 2. Comparative results for standard FSOD on the MSCOCO dataset. We evaluate the performance on 20 novel classes that also

present in PASCAL VOC dataset. The evaluation metrics are average precision and average recall under different IoU thresholds, different

number of predicted bounding boxes and different object scales, as in [16]. The reported results are averaged over multiple runs. Our

approach achieves significant performance improvement, comparing with the state-of-the-art approach [23].

dataset, our TIP approach outperforms state-of-the-arts re-

sults across different number of shots. This indicates that

the proposed approach can effectively detect objects with

very limited bounding box annotations. Moreover, our TIP

approach yields the best results on different novel class sets

on the PASCAL VOC dataset, thanks to the transformation

invariant guidance vectors and query features learned by our

approach.

For MSCOCO dataset, our approach achieves big per-

formance gains over the state-of-the art models, i.e., 16.3%

vs. 12.5 % (FA) mAP on 10 shots scenario and 18.3 %

vs. 14.7% (FA) mAP on 30 shots scenario. The significant

performance improvement mainly comes from the coop-

eration of transformation invariant principle on query pre-

diction branch and guidance extraction branch, which pro-

duces more effective guidance vector and query features for

detecting objects from novel classes. Th significant per-

formance improvement also demonstrates the scalability of

our approach for large-scale FSOD problems. In particu-

lar, our approach outperforms the state-of-the-art approach

with a large margin on different size of objects simultane-

ously. This demonstrates that our TIP approach is effective

for detecting objects in different scales.

5.1.3 Ablation Study

We investigate the contributions of different proposed trans-

formation invariant modules and summarize the results

in Table 3. We compare our full model with three

stripped-down versions : 1) ‘Baseline’ – the meta-learning

model [23], without any transformation invariant regular-

ization. ‘TIGE’ – the model similar to [23] except for the

guidance extraction by the transformation invariant model

proposed in Section 4.2; ‘TIQP’ – the model similar to [23]

except for predicting bounding boxes of query images by

the transformation invariant model proposed in Section 4.3.

These ablations are based on 1, 2, 3, 5, 10-shot object detec-

tion performances on PASCAL VOC in the first base/novel

split setting. We can observe that the model without any

transformation invariant regularization gets the worst per-

formance. Moreover, adding either transformation invariant

regularization on guidance extraction or query prediction

can improve the performance. Applying both modules fur-

ther provides more performance gains. This implies that our

TIP applied to both guidance extraction and query predic-

tion branches is crucial to improve performance of FSOD

models.
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Model 1-shot 2-shot 3-shot 5-shot 10-shot

Baseline 24.2 35.3 42.2 49.1 57.4

TIGE 26.5 35.9 42.8 49.5 59.2

TIQP 26.3 35.8 42.8 49.7 59.0

Full Model 27.7 36.5 43.3 50.2 59.6

Table 3. Ablation study on contribution of different transformation

invariant modules in our approach. The evaluation metric is the 1,

2, 3, 5, 10-shot detection performance (mAP) on the first novel

class set of the PASCAL VOC dataset. Notations: ‘Baseline’ –

the meta-learning model [23], without any transformation invari-

ant regularization; ‘TIGE’ – the model similar to [23] except for

the guidance extraction by the transformation invariant model pro-

posed in Section 4.2; ‘TIQP’ – the model similar to [23] except for

predicting bounding boxes of query images by the transformation

invariant model proposed in Section 4.3.

Moreover, we conduct a diagnosis experiments over the

forms of measurement function formulated in Equation (2).

In addition the L2 distance given in Equation (3), we also

provide another two measurement function: one is smooth

L1 loss function over the difference between normalized

guidance vectors of original images and its transformed

variants ; the other is the ‘parametric L2 distance’ which

is formulated in the following equation.

‖gi − θ(ĝi)‖, (9)

where θ(·) is an embedding function whose input dimension

and output dimension are the same. The results of these

measurement functions are illustrated in Table 4. We can

observe that our L2 distance solution yields better results

than two alternative solutions. This indicates that our L2

distance solution is more suitable than the other two alter-

natives.

5.1.4 Qualitative Results

We provide qualitative visualizations of the detected novel

objects of PASCAL VOC in Figure 4. We show our model

achieves much better detection result than baseline model,

thanks to the transformation invariant guidance vectors and

query features learned by our TIP approach.

5.2. SemiSupervised FewShot Object Detection

5.2.1 Experimental Setup

To further evaluate the effectiveness of our approach, we

test our approach in a more challenging yet practical setting,

i.e., semi-supervised FSOD, where a small subset of labeled

base class data and additional unlabeled samples is available

for model training. The experiments are conducted on PAS-

CAL VOC dataset. We first create two additional splits to

separate the images of each class into disjoint labeled and

Model 1-shot 2-shot 3-shot 5-shot 10-shot

Smooth L1 25.9 35.4 42.5 49.6 58.1

Parametric L2 26.9 35.7 42.6 49.3 59.0

L2 distance (ours) 27.7 36.5 43.3 50.2 59.6

Table 4. Diagnosis experiment over the forms of measurement

function formulated in Equation (2). The evaluation is the same

as in Table 3. Notations: ‘Parametric L2’ – formulated in Equa-

tion (9). ‘Smooth L1’ – smooth L1 loss function over the dif-

ference between normalized guidance vectors of original images

and its transformed variants. ‘L2 distance (ours)’ – Our solution

formulated in Equation (3). Our solution is shown to be more ef-

fective than two alternative solutions.

unlabeled sets. Specifically, we randomly select 50% la-

beled samples from base classes to form a labeled set and

the remain 50% samples are used to form an unlabeled set.

Similarly, we creat a more challenging semi-supervised set-

ting where base class set is split into 25% labeled samples

and 75% unlabeled samples. For novel classes, we follow

the setting in standard FSOD and only provide K bound-

ing box annotations per novel class for training, where K is

set to be 1, 2, 3, 5, and 10. For testing, we use the 5k sam-

ples from VOC 2007 test as in standard setting. The training

strategy is the same as that in standard FSOD. The mean av-

erage precision on novel classes is used as evaluation metric

for this dataset.

Since works on semi-supervised FSOD are rare, we use

two striped-down versions of our approach, i.e., ‘TIGE’

and ‘TIQP’ in ablation study, as baselines for the semi-

supervised scenario. In addition, we also compare our ap-

proach with fully-supervised FSOD approaches [23, 20, 24]

which used the whole base class training set for model train-

ing. This comparison can measure the gap between semi-

supervised FSOD approaches and fully-supervised ones.

5.2.2 Results and Discussions

Table 5 provides the comparative results on PASCAL VOC

dataset under semi-supervised FSOD scenario. We can ob-

serve that: 1) Our full model outperforms the two baselines

under the semi-supervised FSOD scenario. This validates

the effectiveness of our approach in semi-supervised FSOD

scenario. 2) Our semi-supervised FSOD approach outper-

forms some fully-supervised FSOD approaches in some

few-shot cases. In particularly, our approach with 50% la-

beled samples for training achieves comparable results or

even outperforms the fully-supervised state-of-the-arts (i.e.

FA [23]) in some cases. The superior performance of our

approach demonstrates its generalization ability in semi-

supervised FSOD. This also confirms that, through the the

proposed TIP, the model can learn to obtain a better novel

class detector which copes with both labeled and unlabeled

data to facilitate FSOD.
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Figure 4. Qualitative visualizations of the detected novel objects obtained by baseline models and our approach on the PASCAL VOC

dataset. The results of baseline model and our approach are given in the first and second rows, respectively. Their ground truth is given in

the last row. Our approach yields much better detection results than baseline.

Supervision Model
Novel Class Set 1 Novel Class Set 2

1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot

Fully

MRCNN [24] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4

TFA/w.fc [20] 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7

TFA/w.cos [20] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5

FA [23] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7

Semi-25%labeled

TIGE(ours) 20.4 30.7 34.6 43.5 50.6 16.9 20.4 28.1 34.0 41.9

TIQP(ours) 20.5 30.2 34.8 43.1 50.3 17.6 21.0 27.5 34.3 41.2

TIP(ours) 21.3 31.6 35.9 44.0 51.5 18.1 21.9 28.7 35.9 42.3

Semi-50%labeled

TIGE(ours) 25.3 32.4 38.8 46.7 54.3 18.7 27.4 31.1 36.5 44.9

TIQP(ours) 24.3 31.1 42.4 45.2 52.1 19.4 26.4 31.7 36.5 44.7

TIP(ours) 25.6 33.2 43.1 46.6 55.7 21.1 27.8 32.2 38.0 45.6

Table 5. Comparative results for semi-supervised FSOD on the PASCAL VOC dataset. We evaluate the performance on three different sets

of novel categories. The mean average precision (%) on the novel classes is used as the evaluation metrics of this dataset. The reported

results are averaged over multiple runs. Due to the limited text space, we show the results of the first two novel class sets. For the results

of the third novel class set, please refer to the supplementary material.

6. Conclusion

In this paper, we propose a transformation invariant

principle to address the challenging FSOD problem from

the perspective of sample expansion. By introducing

the consistency regularization on both guidance extrac-

tion and query prediction branches, our approach facilitates

vanilla FSOD models invariant to various image transfor-

mations. In particular, our approach can cope with unla-

beled image and thus be extended to semi-supervised FSOD

scenario. Extensive experiments on the PASCAL VOC

and MSCOCO datasets show that the proposed approach

achieves state-of-the-art results under both fully-supervised

and sem-supervised FSOD scenarios.
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