
Flow-based Kernel Prior with Application to Blind Super-Resolution

Jingyun Liang1 Kai Zhang1,∗ Shuhang Gu1,2 Luc Van Gool1,3 Radu Timofte1

1 Computer Vision Lab, ETH Zurich, Switzerland
2 The University of Sydney, Australia 3 KU Leuven, Belgium

{jinliang, kai.zhang, vangool, timofter}@vision.ee.ethz.ch shuhanggu@gmail.com

https://github.com/JingyunLiang/FKP

Abstract

Kernel estimation is generally one of the key problems

for blind image super-resolution (SR). Recently, Double-

DIP proposes to model the kernel via a network architec-

ture prior, while KernelGAN employs the deep linear net-

work and several regularization losses to constrain the ker-

nel space. However, they fail to fully exploit the general

SR kernel assumption that anisotropic Gaussian kernels are

sufficient for image SR. To address this issue, this paper

proposes a normalizing flow-based kernel prior (FKP) for

kernel modeling. By learning an invertible mapping be-

tween the anisotropic Gaussian kernel distribution and a

tractable latent distribution, FKP can be easily used to re-

place the kernel modeling modules of Double-DIP and Ker-

nelGAN. Specifically, FKP optimizes the kernel in the la-

tent space rather than the network parameter space, which

allows it to generate reasonable kernel initialization, tra-

verse the learned kernel manifold and improve the optimiza-

tion stability. Extensive experiments on synthetic and real-

world images demonstrate that the proposed FKP can sig-

nificantly improve the kernel estimation accuracy with less

parameters, runtime and memory usage, leading to state-

of-the-art blind SR results.

1. Introduction

Image super-resolution (SR) is a fundamental low-level

vision task whose goal is to recover the high-resolution

(HR) image from the low-resolution (LR) input. With

the development of convolutional neural networks (CNN),

CNN-based methods [10, 19, 25, 30, 38, 47, 56] have been

gaining the popularity in solving image SR. However, most

of existing works assume the blur kernel is fixed and known

(e.g., bicubic downsampling kernel), which tends to result

in a dramatic performance drop in real-world applications.

Hence, blind image SR that aims to deal with unknown blur

∗Corresponding author.

kernels is becoming an active research topic.

Compared to non-blind SR, blind SR generally needs to

additionally estimate the blur kernel and thus is more ill-

posed. A popular line of work tries to decompose blind

SR into two sub-problems, i.e., kernel estimation and non-

blind SR. As a preliminary step of non-blind SR, ker-

nel estimation plays a crucial role. If the estimated ker-

nel deviates from the ground-truth, the HR image recon-

structed by the non-blind SR methods would deteriorate se-

riously [11, 17, 50]. In view of this, this paper focuses on

the SR kernel estimation problem.

Recently, some kernel estimation methods, such as

Double-DIP [15, 39] and KernelGAN [3], have shown

promising results. Specifically, with two deep image pri-

ors (DIPs) [44], Double-DIP can be used to jointly opti-

mize the HR image and blur kernel in the parameter space

of untrained encoder-decoder networks by minimizing the

LR image reconstruction error. Although DIP has shown

to be effective for modeling natural images, whether it is

effective to model blur kernel or not remains unclear. The

main reason is that blur kernel usually has a small spatial

size and has its own characteristics that differ from natu-

ral images. In [39], a fully-connected network (FCN) is

used to model the kernel prior, which, however, lacks in-

terpretability. With a different framework to Double-DIP,

KernelGAN designs an internal generative adversarial net-

work (GAN) for the LR image on the basis of image patch

recurrence property [16, 35, 57]. It defines the kernel im-

plicitly by a deep linear network, which is optimized by

the GAN loss and five extra regularization losses such as

sparsity loss. Obviously, these two methods do not make

full use of the anisotropic Gaussian kernel prior which has

been demonstrated to be effective enough for real image

SR [11, 40, 50, 54, 55].

In this paper, we propose a flow-based kernel prior (FKP)

for kernel distribution modeling and incorporate it into ex-

isting blind SR models. Based on normalizing flow, FKP

consists of several batch normalization layers, permutation

layers and affine coupling layers, which allow the model

10601

to capture the kernel distribution by learning an invertible

mapping between the kernel space and the latent space (e.g.,

high-dimensional Gaussian). FKP is optimized in an un-

supervised way by minimizing the negative log-likelihood

loss of the kernel. Once trained, it can be incorporated into

existing blind SR models such as Double-DIP and Kernel-

GAN for kernel estimation, in which FKP fixes its parame-

ters and optimizes the latent variable in the network input

space. Specifically, for Double-DIP, we jointly optimize

DIP for HR image estimation and FKP for kernel estimation

by minimizing the LR image reconstruction error. For Ker-

nelGAN, we blur the LR image with the kernel estimated

by FKP rather than using a deep linear network, and then

optimize it by adversarial training.

Using FKP as a kernel prior offers several advantages:

1) Fewer parameters. FKP model only has 143K param-

eters, whereas Double-DIP and KernelGAN involve 641K

and 151K for kernel modeling, respectively. 2) More stable

convergence. On the one hand, unlike Double-DIP that uses

random noise input and KernelGAN that uses random net-

work parameters for kernel initialization, FKP can explic-

itly initialize a reasonable kernel since it is a bijective func-

tion. On the other hand, the kernel is implicitly constrained

to be in the learned kernel manifold during model optimiza-

tion. 3) Better kernel estimation. With a learned kernel

prior, the kernel estimation accuracy can be improved for

several existing blind SR methods such as Double-DIP and

KernelGAN.

The main contributions are summarized as follows:

1) We propose a kernel prior named FKP that is applica-

ble for arbitrary blur kernel modeling. It learns a bi-

jective mapping between the kernel and the latent vari-

able. To the best of our knowledge, FKP is the first

learning-based kernel prior.

2) By fixing its parameters and optimizing the latent vari-

able, FKP traverses the learned kernel manifold and

searches for the kernel prediction, ensuring reasonable

kernels for initialization and along optimization.

3) With less parameters, runtime and memory usage, FKP

improves the stability and accuracy of existing kernel

estimation methods including Double-DIP and Ker-

nelGAN, leading to state-of-the-art blind SR perfor-

mance.

2. Related Work

Kernel Estimation. Prior to the deep learning era, tradi-

tional kernel estimation methods typically utilize prior in-

formation of image patches or edges [2, 21, 35, 41, 46].

In the deep learning era, Gandelsman et al. [15] propose

the Double-DIP based on the Deep Image Prior (DIP) [44],

which uses untrained encoder-decoder networks with skip

connections as image priors for image dehazing, image de-

convolution, transparency separation, etc. Similarly, Ren et

al. [39] propose a fully-connected network (FCN) as a ker-

nel prior for image deconvolution. However, whether this

idea works on blind SR kernel estimation or not is still

an open problem, as blind SR is severely ill-posed due to

downsampling. Different from above methods, Kligler et

al. [3] propose KernelGAN to estimate kernel based on

the image patch recurrence property [16, 35, 57]. They

use a deep linear network as a generator to generate a re-

downscaled image from the LR image, and a discriminator

to ensure cross-scale patch similarity. The blur kernel is de-

rived from the generator. Gu et al. [17] propose a predict-

and-correct strategy to estimate kernel and HR image alter-

nately. But it is highly dependent on training HR-LR image

pairs and only estimates the feature of kernel.

Normalizing Flow. Normalizing flows [8, 9, 22, 24, 28,

29, 32, 37] are invertible generative models that deform the

complex data distribution to a simple and tractable distri-

bution. Dinh et al. [8] propose to stack non-linear additive

coupling and other transformation layers as the flow model

NICE. Inspired by NICE, Dinh et al. [9] propose RealNVP,

which upgrades additive coupling to affine coupling without

loss of invertibility and achieves better performance. After

that, Kingma et al. [28] propose 1×1 convolution to replace

the fixed permutation layer in RealNVP and succeed to syn-

thesize realistic-looking images. Normalizing flows have

also been successfully applied in generating other types of

data, such as audio data [26] and point cloud data [51].

3. Flow-based Kernel Prior

Generally, the classical degradation model of image

SR [12, 13, 31] assumes the LR image y is obtained via

a composition of blurring and downsampling from the HR

image x. Mathematically, it is formulated as

y = (x⊗ k) ↓s +n, (1)

where x ⊗ k denotes the convolution between x and blur

kernel k, ↓s represents the downsampling operation with

scale factor s, and n is the noise. Particularly, blind SR [3,

17, 21, 44] aims to estimate the HR image and blur kernel

simultaneously. According to the Maximum A Posteriori

(MAP) framework, it can be solved as

x∗,k∗ = argmin
x,k

‖y − (x⊗ k) ↓s ‖2 + λΦ(x) + γΩ(k),

(2)

where ‖y − (x ⊗ k) ↓s ‖2 is the data fidelity term, Φ(x)
denotes the image prior, Ω(k) represents the kernel prior, λ

and γ are trade-off parameters. It has been well-studied that

poor kernel estimation would cause a severe performance

drop for HR image estimation [11, 17, 55]. However, while

various image priors have been proposed to describe natural

image statistics [5, 6, 7, 20, 36, 44], little attention has been

paid on designing the kernel prior.

10602

zk k

Flow Block

B
at

ch
N

o
rm

.

P
er

m
u
ta

ti
o
n

A
ffi

n
e

T
ra

n
s.

Figure 1: The schematic illustration of the flow-based kernel prior

(FKP) network. FKP learns an invertible mapping between the

kernel k and the latent variable zk by several flow blocks, each

of which is a succession of batch normalization, permutation and

affine transformation layers.

In view of this, we aim to learn a kernel prior based on

normalizing flow in this paper. Formally, let k ∈ K denotes

the kernel variable and zk ∈ Z denotes the corresponding

latent variable. k and zk obey probability distributions pK
and pZ , respectively. We define a bijection fθ : K → Z

with parameter θ. For kernel k, it can be encoded as a la-

tent variable zk = fθ(k) in the latent space. Inversely,

k could be exactly reconstructed by the inverse mapping:

k = f−1
θ

(zk). According to the change of variable for-

mula [8], the probability of k is computed as

pK(k) = pZ(fθ(k))

∣

∣

∣

∣

det(
∂fθ(k)

∂k
)

∣

∣

∣

∣

, (3)

where
∂fθ(k)

∂k
is the Jacobian of fθ at k. Generally, pZ is a

simple tractable distribution, such as multivariate Gaussian

distribution. fθ is often composed of a sequence of invert-

ible and tractable transformations: fθ = f1
θ
◦ f2

θ
◦ · · · ◦ fN

θ
,

and we have hn = fn
θ
(hn−1) for n ∈ {1, ..., N}. The in-

put and output h0 and hN of fθ are k and zk, respectively.

Under maximum likelihood estimation, θ can be optimized

by minimizing the negative log-likelihood (NLL) loss

L(k;θ) = − log pZ(fθ(k))−
N
∑

n=1

log

∣

∣

∣

∣

det(
∂fn

θ
(hn−1)

∂hn−1
)

∣

∣

∣

∣

.

(4)

More specifically, we build FKP by stacking invertible

flow layers. As shown in Fig. 1, it consists of several

flow blocks, and each block includes three consecutive lay-

ers: batch normalization layer, permutation layer and affine

transformation layer [9]. For affine transformation layer, we

use small fully-connected neural networks (FCN) for scal-

ing and shifting, in which each FCN stacks fully-connected

layers and tanh activation layers alternately.

FKP is trained by the NLL loss given training kernel

samples. When it is plugged into existing kernel estima-

tion models as a kernel prior, we first randomly sample a

latent variable zk, which corresponds to a random kernel as

shown in Fig. 2. Then, we fix the model parameters and

update zk by gradient back-propagation under the guidance

of kernel estimation loss. Instead of starting with random

Figure 2: Diverse kernel samples generated by randomly sampling

from the latent space of the flow-based kernel prior (FKP). Here,

FKP is trained on anisotropic Gaussian kernels with scale factor 4.

initialization and slowly updating the kernel, FKP moves

along the learned kernel manifold and generates reliable

kernels f−1
θ

(zk) during the update of zk. In addition, when

zk follows multivariate Gaussian distribution, most of the

mass of distribution is near the surface of a sphere of radius√
D [34, 45], where D is the dimension of zk. Therefore

we optimize zk on the sphere surface by restricting its Eu-

clidean norm as ‖zk‖2 =
√
D after every update, avoiding

optimizing in the entire latent space.

4. Incorporating FKP to Double-DIP

4.1. Original Double­DIP

DIP [44] is an image prior in the form of a randomly

initialized encoder-decoder network G, in which the net-

work structure captures low-level image statistics. By opti-

mizing network parameter θG , natural-looking image x =
G(zx;θG) is reconstructed from the fixed random noise in-

put zx. To model different image components, Double-

DIP [15] couples two DIPs for image decomposition tasks

such as image segmentation. This framework is also ex-

ploited in image deconvolution by replacing one DIP with a

fully-connected network (FCN) [39]. If Double-DIP and its

variants are used for blind SR, they can be formulated as






θ
∗
G ,θ

∗
K′ = argmin

θG ,θK′

‖y − (G(zx;θG)⊗K′(zk;θK′)) ↓s ‖2

x∗ = G(zx;θ∗
G), k∗ = K′(zk;θ

∗
K′) (5)

where K′(zk;θK′) is a kernel prior based on untrained neu-

ral networks such as DIP and FCN. In training, random

noise inputs zx and zk are fixed, while randomly initialized

network parameter θG and θK′ are optimized to minimize

the LR image reconstruction error.

However, applying above Double-DIP framework to

blind SR kernel estimation is non-trivial. On the one hand,

unlike images, kernels are spatially small and have no nat-

ural image properties such as self-similarity. Designing

a DIP-like network based on convolution layers or fully-

connected layers and then using the network architecture as

a kernel prior may not be a good choice. On the other hand,

due to the downsampling operation, blind SR is extremely

ill-posed compared with other image restoration tasks. The

knowledge incorporated by untrained networks may not be

sufficient for estimating the HR image and kernel simulta-

neously. As will be shown in experiments, untrained neural

networks fail to generate reasonable kernel estimations.

10603

zx

DIP
G(zx; θG)

⊗, ↓s

LR

Lossreconst
zk

FKP

K(zk; θK)

Figure 3: The schematic illustration of DIP-FKP. DIP esti-

mates SR image G(zx; θG) from zx, while FKP estimates kernel

G(zx; θG) from zk. ⊗ and ↓s denote blur and downsampling with

scale factor s, respectively. The model is optimized by minimizing

the LR image reconstruction error.

4.2. Proposed DIP­FKP

Instead of using a DIP-like untrained network as the ker-

nel prior, we propose to incorporate FKP into the Double-

DIP framework, which we refer to as DIP-FKP. The HR

image and kernel are jointly estimated as






θ
∗
G , z

∗
k = argmin

θG ,zk

‖y − (G(zx;θG)⊗K(zk;θK)) ↓s ‖2

x∗ = G(zx;θ∗
G), k∗ = K(z∗k;θK) (6)

where K(zk;θK) is the incorporated FKP. The correspond-

ing schematic illustration is shown in Fig. 3.

In DIP-FKP, we optimize the kernel latent variable zk,

rather than network parameter θK, which is fixed as it has

modeled the kernel prior. More specifically, in forward

propagation, FKP generates a kernel prediction K(zk;θK)
to blur the SR image G(zx;θG) produced by DIP, in order

to obtain the LR image prediction. The mean squared er-

ror between the resulting LR prediction and LR image are

used as the loss function. In back propagation, gradients are

back-propagated from the loss function to kernel prediction,

and then to the latent variable zk.

With FKP, DIP-FKP embeds kernel prior into the net-

work effectively by moving the kernel prediction along the

learned kernel manifold, which enables accurate and stable

kernel estimation. Therefore, without massive training data

and long training time, DIP-FKP can estimate SR image

and blur kernel simultaneously during testing phase. It is

noteworthy that while DIP-FKP is able to estimate kernels

accurately, it has limited performance on SR image recon-

struction as it is self-supervised. For this reason, we use

non-blind model USRNet [53] to generate the final SR re-

sult based on the kernel estimation.

5. Incorporating FKP to KernelGAN

5.1. Original KernelGAN

In a single image, small image patches tend to recur

across different scales [16, 57]. It is further observed in [35]

LR

preal ∼ patches(LR)
real

fake⊗, ↓s

D

zk

FKP

K(zk; θK)

RLR

pfake ∼ patches(RLR)

Figure 4: The schematic illustration of KernelGAN-FKP. Kernel

K(zk;θK) is generated by FKP and is then used to generate the

re-downscaled LR (RLR) image from the LR image. ⊗ and ↓s de-

note blur and downsampling with scale factor s, respectively. The

model is optimized similar to GAN: FKP tries to fool the discrim-

inator D to believe that image patch preal extracted from the LR

image and patch pfake extracted from the RLR image share the

same distribution.

that when the LR image is degraded with a blur kernel to ob-

tain a re-downscaled low-resolution (RLR) image, the ker-

nel between the HR and LR image maximizes the internal

patch distribution similarity between the LR and RLR im-

age. According to this observation, KernelGAN [3] trains

an internal generative adversarial network (GAN) on a sin-

gle LR image in order to estimate the blur kernel. It consists

of a deep linear generator G that downscales the LR image

by several learnable convolution layers and a discriminator

D that distinguishes between patch distributions of the LR

and RLR image. The blur kernel is derived from G in every

iteration. Formally, KernelGAN is optimized as







θ
∗
G ,θ

∗
D = argmin

θG

max
θD

{

(D(p)− 1)2 + (D(G(p)))2 +R
}

k∗ ← θ
∗
G (7)

where p is a patch randomly extracted from the LR image

y, i.e., p ∼ patches(y), and R represents extra regulariza-

tion on the kernel k. More specifically,R includes the mean

squared error between k and the bicubic kernel, as well as

other regularization constraints on kernel pixel sum, bound-

ary, sparsity and centrality. However, the performance of

KernelGAN is unstable. It also suffers from the burden

of hyper-parameter selection due to multiple regularization

terms.

5.2. Proposed KernelGAN­FKP

The instability of KernelGAN may come from the weak

patch distribution of some images, i.e., there are multiple

kernels that could generate the RLR image with similar

patch distribution to the LR image. In this case, the dis-

criminator cannot distinguish between different patch dis-

tributions, thus leading to wrong kernel prediction. To alle-

viate the problem, we propose to incorporate the proposed

FKP into KernelGAN in order to constrain the optimization

10604

space. We refer to this method as KernelGAN-FKP which

can be formulated as















z∗k,θ
∗
D = argmin

zk

max
θD

{

(D(p)− 1)2

+ (D((p⊗K(zk;θK)) ↓s))2
}

k∗ = K(z∗k;θK)
(8)

As illustrated schematically in Fig. 4, KernelGAN-FKP

directly generates the kernel from the latent variable zk and

uses it to degrade the LR image instead of using a deep

linear network. In optimization, zk is optimized to fool the

discriminator, which equals to traversing in the kernel space

to find a kernel that the discriminator cannot distinguish.

This constrains the optimization space of the generator and

ensures kernel generation quality, which allows more stable

convergence than the original KernelGAN, even without ex-

tra regularization terms. Similar to DIP-FKP, we adopt US-

RNet [53] for non-blind SR after kernel prediction.

6. Experiments

6.1. Experimental Setup

Data Preparation. Since the blur kernels of real LR

images are usually unimodal [35, 41] and can typically

be modeled by a Gaussian [40], most existing blind SR

works [3, 17, 21, 40, 42, 43, 49, 54, 55] assume the SR ker-

nel is isotropic or anisotropic Gaussian kernel. Following

this widely-adopted assumption, we conduct experiments

on anisotropic Gaussian kernels, even though FKP is trained

in an unsupervised way and can be used to model arbitrary

kernel estimation given kernel samples. For scale factor

s ∈ {2, 3, 4}, the kernel sizes and width ranges are set to

(4s + 3) × (4s + 3) and [0.175s, 2.5s], respectively. The

rotation angle range is [0, π] for all s. We blur and down-

sample images with random kernels to generate testing sets

based on Set5 [4], Set14 [52], BSD100 [33], Urban100 [23]

and the validation set of DIV2K [1]. Following Kernel-

GAN [3] and USRNet [53], the blur kernel is shifted and

the upper-left pixels are kept in downsampling to avoid sub-

pixel misalignments. For evaluation, we compare kernels

by PSNR, and compare SR images by PSNR and SSIM [48]

on Y channel in the YCbCr space.

FKP. Since FKP is a bijection, the latent variable dimen-

sion, the FCN input and output dimensions are the same as

the kernel size. To capture kernel variety, the dimension of

FCN hidden layers is set to 5(s+ 1) for scale factor s. The

total number of flow blocks and FCN depth are set to 5 and

3, respectively. We randomly generate anisotropic Gaussian

kernels as training data and use the Adam optimizer [27] to

optimize the model for 50,000 iterations. The batch size

and learning rate are set to 100 and 1e-4, respectively. Due

to page limit, ablation study on FKP is provided in the sup-

plementary.

DIP-FKP. The DIP architecture is same as in [44]. The

model is optimized by the Adam optimizer for 1,000 itera-

tions with β1 = 0.9 and β2 = 0.999. The learning rates for

FKP and DIP are set to 0.1 and 0.005, respectively.

KernelGAN-FKP. Small patches of size 64× 64 are ran-

domly cropped from the LR image for GAN training. We

use the WGAN-GP loss [18] and set the gradient penalty to

0.1 to increase training stability. The learning rate is 5e-4

and the batch size is 64. For scale factors 2 and 4, we train

the model for 1,000 and 4,000 iterations, respectively, by

the Adam optimizer with β1 = 0.5 and β2 = 0.999.

6.2. Experiments on DIP­FKP

6.2.1 Quantitative Results

Comparison with state-of-the-arts. Average PSNR and

SSIM results of different methods are shown in Table 1. We

compare the proposed DIP-FKP with bicubic interpolation,

RCAN [56], DIP [44], Double-DIP [15, 39] and the upper

bound model (non-blind USRNet [53] given ground-truth

kernels). Specifically, RCAN is one of the representative

bicubic SR oriented models. When the kernel deviates from

the predefined bicubic kernel, its performance deteriorates

seriously. Double-DIP tries to remedy kernel mismatch by

incorporating an untrained fully-connected network (FCN)

as the kernel prior. However, its performance is unsatisfac-

tory and worse than DIP that has no kernel prior. In contrast,

DIP-FKP incorporates FKP as the kernel prior and improves

the performance of DIP by significant margins across all

datasets and scale factors. After applying the estimated ker-

nels of DIP-FKP for non-blind SR, the performance could

be further improved due to accurate kernel estimation.

Comparison with other kernel priors. Table 2 shows

the results on kernel PSNR and image PSNR/SSIM (be-

fore and after non-blind SR) when using different kernel

priors. “DIP+Softmax” uses a Softmax layer as the kernel

prior, which is used to meet the non-negative and sum-to-

one constraints on kernel. However, such a simple kernel

prior gives rise to poor performance. Double-DIP adds two

fully-connected layers before the Softmax layer, but its per-

formance is still unsatisfactory. This actually accords with

our analysis in Sec. 4.1 that an untrained network may not

be a good kernel prior. For the special case of Gaussian ker-

nel, it is also possible to use a parametric Gaussian gener-

ation model as a kernel prior (denoted as “DIP+Parametric

Prior”). As we can see, before non-blind SR, using FKP

achieves similar image PSNR as using the parametric prior.

This is because the quality of generated images is heavily

dependent on DIP. However, FKP significantly outperforms

the parametric prior in terms of kernel estimation, which

leads to better image PSNR after non-blind SR. It is worth

pointing out that, unlike the parametric prior, FKP can be

10605

Table 1: Average PSNR/SSIM of different methods on various datasets. Note that due to GPU memory constraints, we crop 960 × 960
center image patches for DIV2K in kernel estimation. The best and second best results are highlighted in red and blue colors, respectively.

Method Scale Set5 [4] Set14 [52] BSD100 [33] Urban100 [23] DIV2K [1]

Bicubic Interpolation ×2 26.58/0.8010 24.85/0.6939 25.19/0.6633 22.35/0.6503 26.97/0.7665

RCAN [56] ×2 26.80/0.8004 24.83/0.6945 25.21/0.6619 22.30/0.6499 26.99/0.7666

DIP [44] ×2 26.82/0.7518 25.40/0.6868 24.71/0.6508 23.29/0.6749 -

Double-DIP [15] ×2 24.71/0.6423 22.21/0.5626 23.31/0/5681 21.03/0.5701 -

DIP-FKP (ours) ×2 30.16/0.8637 27.06/0.7421 26.72/0.7089 24.33/0.7069 -

DIP-FKP + USRNet [53] (ours) ×2 32.34/0.9308 28.18/0.8088 28.61/0.8206 26.46/0.8203 30.13/0.8686

GT + USRNet [53] (upper bound) ×2 36.37/0.9508 32.56/0.8945 31.34/0.8772 29.97/0.8954 34.59/0.9268

Bicubic Interpolation ×3 23.38/0.6836 22.47/0.5884 23.17/0.5625 20.37/0.5378 24.50/0.6806

RCAN [56] ×3 23.56/0.6802 22.31/0.5801 23.04/0.5506 20.14/0.5247 24.32/0.6712

DIP [44] ×3 28.14/0.7687 25.19/0.6581 25.25/0.6408 23.22/0.6512 -

Double-DIP [15] ×3 23.21/0.6535 20.20/0.5071 20.38/0.4499 19.61/0.4993 -

DIP-FKP (ours) ×3 28.82/0.8202 26.27/0.6922 25.96/0.6660 23.47/0.6588 -

DIP-FKP + USRNet [53] (ours) ×3 30.78/0.8840 27.76/0.7750 27.29/0.7484 24.84/0.7510 29.03/0.8354

GT + USRNet [53] (upper bound) ×3 33.95/0.9199 29.91/0.8283 28.82/0.7935 27.22/0.8274 31.79/0.8754

Bicubic Interpolation ×4 21.70/0.6198 20.86/0.5181 21.95/0.5097 19.13/0.4729 23.01/0.6282

RCAN [56] ×4 21.86/0.6174 20.37/0.4940 21.71/0.4935 18.60/0.4465 22.69/0.6128

DIP [44] ×4 27.34/0.7465 25.03/0.6371 24.92/0.6030 22.55/0.6128 -

Double-DIP [15] ×4 20.99/0.5578 18.31/0.4426 18.57/0.3815 18.15/0.4491 -

DIP-FKP (ours) ×4 27.77/0.7914 25.65/0.6764 25.15/0.6354 22.89/0.6327 -

DIP-FKP + USRNet [53] (ours) ×4 29.29/0.8508 26.70/0.7383 25.97/0.6902 23.89/0.7078 27.44/0.7859

GT + USRNet [53] (upper bound) ×4 31.91/0.8894 28.30/0.7742 27.33/0.7277 25.47/0.7635 29.99/0.8272

No Ground-Truth
(Real Image)

PSNR (dB) 20.76/20.33/- 23.43/28.42/- 22.41/17.99/- 20.48/16.69/- 25.74/31.23/- 26.11/33.79/-

LR (×4) RCAN [56] DIP [44]
DIP [44]+Softmax

+ USRNet [53]

Double-DIP [15, 39]

+ USRNet [53]

DIP-FKP (ours)

+ USRNet [53]
GT + USRNet [53]

Figure 5: Visual results of different methods on synthetic and real-world images for scale factor 4. Estimated/ground-truth kernels are

shown on the top right of images. More visual results are provided in the supplementary.

used to model arbitrary kernel distributions as it is trained

in an unsupervised way.

Robustness to non-Gaussian kernel and image noise.

We add noise to kernels and LR images to test the model ro-

bustness to non-Gaussian kernels and image noises, respec-

tively. For non-Gaussian kernels, we apply uniform mul-

tiplicative noise (40% of the maximum kernel pixel value,

i.e., 0.4) on the kernel and then normalize it to meet the

sum-to-one constraint. For image noise, we add noise of

level 10 (3.92% of the maximum image pixel value) to the

image after blurring and downsampling. As one can see

from Table 2, even under heavy kernel corruption, DIP-FKP

still produces comparable results, showing good robustness

to non-Gaussian kernels. When the image is corrupted by

noise, DIP-FKP has a moderate performance drop, but it

still outperforms its competitors by a large margin. In this

case, we argue that the kernel estimation performance is

mainly limited by DIP rather than the proposed FKP.

Model parameter, runtime and memory usage. The

total number of parameters of kernel priors in DIP-FKP

10606

Table 2: Average PSNR/SSIM of using different kernel priors. Ex-

periments are conducted on BSD100 [33] when scale factor is 2.

Results on non-Gaussian kernel and image noise are also provided.

Method
Kernel

PSNR

Image PSNR/SSIM

Before

Non-Blind SR

After

Non-Blind SR

×2

DIP [44] + Softmax 32.67 23.62/0.5587 23.76/0.5783

Double-DIP [15, 39] 39.98 23.31/0.5681 18.47/0.4441

DIP [44] + Parametric Prior 34.99 26.76/0.7091 28.00/0.7682

DIP-FKP (ours) 46.79 26.72/0.7089 28.61/0.8206

×2, with Non-Gaussian Kernel

DIP [44] + Softmax 32.84 23.69/0.5629 23.81/0.5877

Double-DIP [15, 39] 39.36 23.29/0.5693 18.25/0.4364

DIP [44] + Parametric Prior 34.50 26.74/0.7096 27.77/0.7631

DIP-FKP (ours) 44.27 26.76/0.7097 27.88/0.8019

×2, with Image Noise of Level 10 (3.92%)

DIP [44] + Softmax 32.47 23.06/0.5314 23.67/0.5846

Double-DIP [15, 39] 39.89 22.73/0.5322 21.95/0.6011

DIP [44] + Parametric Prior 31.98 26.61/0.6939 27.11/0.7118

DIP-FKP (ours) 45.20 26.66/0.6946 27.67/0.7403

0 200 400 600 800 1000
Iteration

44

46

48

50

52

Ke
rn

el
 P

SN
R

(d
B)

Double-DIP
DIP-FKP

(a)

0 200 400 600 800 1000
Iteration

39
40
41
42
43
44
45
46

Ke
rn

el
 P

SN
R

(d
B)

KernelGAN
KernelGAN-FKP

(b)

Figure 6: The intermediate kernel results of Double-DIP, DIP-

FKP, KernelGAN and KernelGAN-FKP during optimization. The

testing images in (a) and (b) are “156065” in BSD100 [33] and

“0812” in DIV2K [1], respectively.

and Double-DIP are 143K and 641K, respectively. With

a lightweight FKP, runtime and memory usage of DIP-FKP

on a Tesla V100 GPU for generating a HR image of size

1, 024 × 1, 024 are about 280 seconds and 10.6GB, while

Double-DIP needs about 300 seconds and 11.2GB memory

for the same setting.

6.2.2 Visual Results

Comparison with state-of-the-arts. The visual results of

different methods on synthetic and real-world images are

shown in Fig. 5. As one can see, the results of RCAN tends

to be blurry, while DIP tends to generate noise-like images.

When different kernel priors are incorporated to DIP, both

“DIP+Softmax” and Double-DIP fail to generate reasonable

kernels, resulting in obvious artifacts such as over-smooth

patterns and ringings. In contrast, DIP-FKP produces ker-

nels that are very close to the ground-truths and generates

the most visually-pleasant SR results for both synthetic and

real-world images.

Intermediate results during optimization. Fig. 6(a) pro-

vides an example to show the intermediate kernel results of

Table 3: Average PSNR/SSIM of different methods on DIV2K [1].

Note that KernelGAN is not applicable for scale factor 3. Results

on small-image datasets are omitted due to weak patch recurrence.

Method
Kernel

PSNR

Non-blind

PSNR/SSIM

×2

Bicubic Interpolation - 26.97/0.7665

RCAN [56] - 26.99/0.7666

KernelGAN [44]+USRNet [53] 44.95 27.59/0.8162

KernelGAN-FKP + USRNet [53] (ours) 47.78 28.69/0.8567

GT + USRNet [53] (upper bound) - 34.59/0.9268

×4

Bicubic Interpolation - 23.20/0.6329

RCAN [56] - 23.20/0.6310

KernelGAN [44]+USRNet [53] 57.26 23.69/0.6539

KernelGAN-FKP + USRNet [53] (ours) 60.61 25.46/0.7229

GT + USRNet [53] (upper bound) - 29.46/0.8069

×2, with Non-Gaussian Kernel

Bicubic Interpolation - 26.96/0.7662

RCAN [56] - 26.98/0.7663

KernelGAN [44]+USRNet [53] 43.27 27.00/0.8030

KernelGAN-FKP + USRNet [53] (ours) 44.72 27.40/0.8334

GT + USRNet [53] (upper bound) - 34.59/0.9272

×2, with Image Noise of Level 10 (3.92%)

Bicubic Interpolation - 26.65/0.7258

RCAN [56] - 26.22/0.6627

KernelGAN [44]+USRNet [53] 44.55 28.53/0.8281

KernelGAN-FKP + USRNet [53] (ours) 47.13 29.58/0.8303

GT + USRNet [53] (upper bound) - 31.27/0.8497

Double-DIP and DIP-FKP. It can be observed that Double-

DIP is randomly initialized and only has a slight improve-

ment during optimization. In contrast, with the incorpora-

tion of FKP, DIP-FKP has a good kernel initialization and

the kernel is constrained to be in the learned kernel mani-

fold, thereby converging better than Double-DIP.

6.3. Experiments on KernelGAN­FKP

6.3.1 Quantitative Results

Comparison with state-of-the-arts. In Table 3, we

compare the average kernel and image PSNR/SSIM of

the proposed KernelGAN-FKP with bicubic interpolation,

RCAN [56], KernelGAN [3] and the upper bound model

(non-blind SR model USRNet [53] given ground-truth ker-

nels). As one can see, RCAN has similar performance to

naive bicubic interpolation due to kernel mismatch. Ker-

nelGAN is able to deal with different kernels and achieves

better results than RCAN. Compared with KernelGAN,

KernelGAN-FKP obtains further kernel PSNR gains of

2.83dB and 3.35dB for scale factors 2 and 4, respectively,

which incur 1.1dB and 1.77dB image PSNR improvements

after non-blind SR. The improvements can be attributed to

the incorporation of FKP.

Robustness to non-Gaussian kernel and image noise.

Table 3 also shows the results of different methods when

given non-Gaussian kernels or noisy images. The ex-

periment details are similar to DIP-FKP. As one can

see, although all methods suffer from performance drops,

10607

P
S

N
R

(d
B

)

L
R

(×
4
)

2
4
.0

5
/2

1
.9

4
/-

R
C

A
N

[5
6

]

2
8
.3

0
/2

3
.7

8
/-

K
ern

elG
A

N
[3

]

+
U

S
R

N
et

[5
3

]

3
1
.3

5
/2

6
.0

1
/-

K
ern

elG
A

N
-F

K
P

(o
u
rs)

+
U

S
R

N
et

[5
3
]

No Ground-Truth
(Real Image)

3
2
.1

8
/2

6
.8

1
/-

G
T

+
U

S
R

N
et

[5
3

]

Figure 7: Visual results of different methods on synthetic and real-

world images for scale factor 4. Estimated/ground-truth kernels

are shown on the top right of images. More visual results are pro-

vided in the supplementary.

KernelGAN-FKP still outperforms other methods by sub-

stantial margins. In particular, KernelGAN-FKP delivers

comparable performance in handling image noise. The un-

derlying reason might be that noise injection in the genera-

tor of GAN can help to circumvent over-fitting [14].

Model parameter, runtime and memory usage. From

KernelGAN to KernelGAN-FKP, the deep linear network

is replaced by the proposed FKP, which reduces the total

number of generator parameters from 151K to 143K. On

a Tesla V100 GPU, runtime and memory usage of Kernel-

GAN are about 93 seconds and 1.3GB, respectively, which

are independent of images sizes. As for KernelGAN-FKP,

it requires 90 seconds and 1.5GB memory.

6.3.2 Visual Results

Comparison with state-of-the-arts. Fig. 7 shows the vi-

sual comparison of different methods on synthetic and real-

world images. It can be seen that RCAN tends to generate

blurry images that are only slightly better than LR images.

This is because the assumed bicubic kernel is sharper than

the ground-truth kernels. Instead, KernelGAN tends to pro-

duce smoother kernels, leading to over-sharpen edges. In

comparison, KernelGAN-FKP generates more accurate blur

kernels and results in less artifacts for both synthetic and

real-world images.

Intermediate results during optimization. The interme-

diate kernel results of KernelGAN-FKP and KernelGAN

are shown in Fig. 6(b). As one can see, KernelGAN-FKP

converges more stably and better than KernelGAN, which

oscillates during optimization. This suggests that the in-

corporation of FKP can increase the training stability and

improve kernel estimation performance.

6.4. DIP­FKP v.s. KernelGAN­FKP

While DIP-FKP and KernelGAN-FKP outperform

Double-DIP and KernelGAN, respectively, it is interesting

to compare their differences. Since DIP-FKP jointly es-

timates the kernel and HR image, it requires more mem-

ory. Also, it generally generates better kernel estimations

and has more stable convergence for small images. On the

contrary, KernelGAN-FKP requires much less memory as

it only needs to optimize the kernel, but it does not per-

form well for small images and large scale factors because

it needs to re-downscale the LR image.

7. Conclusion

In this paper, we propose a flow-based kernel prior (FKP)

for kernel distribution modeling and incorporate it into ex-

isting blind SR methods for better kernel and image esti-

mation performance. FKP learns an invertible mapping be-

tween the complex kernel distribution and a tractable latent

variable distribution based on normalization flow blocks. Its

training is unsupervised and thus FKP is applicable for arbi-

trary kernel assumptions. When used as a kernel prior, FKP

freezes its parameters and optimizes the latent variable in

the network input space. Therefore, reasonable kernels are

guaranteed for initialization and along optimization. FKP

can be easily incorporated into existing kernel estimation

models, such as Double-DIP and KernelGAN, by replac-

ing their kernel modeling modules. Extensive experiments

on synthetic LR images and real-world images demonstrate

that FKP significantly improves the accuracy of kernel esti-

mation and thus leads to state-of-the-art blind SR results.

Acknowledgements This work was partially supported

by the ETH Zurich Fund (OK), a Huawei Technologies Oy

(Finland) project, the China Scholarship Council and a Mi-

crosoft Azure grant. Special thanks goes to Yijue Chen.

10608

References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In

IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 126–135, 2017. 5, 6, 7
[2] Isabelle Begin and FR Ferrie. Blind super-resolution using

a learning-based approach. In IEEE Conference on Inter-

national Conference on Pattern Recognition, pages 85–89,

2004. 2
[3] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind

super-resolution kernel estimation using an internal-gan. In

Advances in Neural Information Processing Systems, pages

284–293, 2019. 1, 2, 4, 5, 7, 8
[4] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie line Alberi Morel. Low-complexity single-image

super-resolution based on nonnegative neighbor embedding.

In British Machine Vision Conference, pages 135.1–135.10,

2012. 5, 6
[5] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd.

Enhancing sparsity by reweighted ℓ1 minimization. Jour-

nal of Fourier Analysis and Applications, 14(5-6):877–905,

2008. 2
[6] Tony F Chan and Chiu-Kwong Wong. Total variation blind

deconvolution. IEEE Transactions on Image Processing,

7(3):370–375, 1998. 2
[7] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and

Karen Egiazarian. Image denoising by sparse 3-d transform-

domain collaborative filtering. IEEE Transactions on Image

Processing, 16(8):2080–2095, 2007. 2
[8] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:

Non-linear independent components estimation. arXiv

preprint arXiv:1410.8516, 2014. 2, 3
[9] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-

gio. Density estimation using real nvp. arXiv preprint

arXiv:1605.08803, 2016. 2, 3
[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European Conference on Computer Vi-

sion, pages 184–199, 2014. 1
[11] Netalee Efrat, Daniel Glasner, Alexander Apartsin, Boaz

Nadler, and Anat Levin. Accurate blur models vs. image pri-

ors in single image super-resolution. In IEEE Conference on

International Conference on Computer Vision, pages 2832–

2839, 2013. 1, 2
[12] Michael Elad and Arie Feuer. Restoration of a single super-

resolution image from several blurred, noisy, and undersam-

pled measured images. IEEE Transactions on Image Pro-

cessing, 6(12):1646–1658, 1997. 2
[13] Sina Farsiu, Dirk Robinson, Michael Elad, and Peyman Mi-

lanfar. Advances and challenges in super-resolution. In-

ternational Journal of Imaging Systems and Technology,

14(2):47–57, 2004. 2
[14] Ruili Feng, Deli Zhao, and Zhengjun Zha. On noise in-

jection in generative adversarial networks. arXiv preprint

arXiv:2006.05891, 2020. 8
[15] Yossi Gandelsman, Assaf Shocher, and Michal Irani.

Double-dip”: Unsupervised image decomposition via cou-

pled deep-image-priors. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 11026–11035, 2019.

1, 2, 3, 5, 6, 7
[16] Daniel Glasner, Shai Bagon, and Michal Irani. Super-

resolution from a single image. In IEEE Conference on In-

ternational Conference on Computer Vision, pages 349–356,

2009. 1, 2, 4
[17] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong.

Blind super-resolution with iterative kernel correction. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1604–1613, 2019. 1, 2, 5
[18] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in Neural Information Pro-

cessing Systems, pages 5767–5777, 2017. 5
[19] Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang

Cao, Zeshuai Deng, Yanwu Xu, and Mingkui Tan. Closed-

loop matters: Dual regression networks for single image

super-resolution. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 5407–5416, 2020. 1
[20] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze

removal using dark channel prior. IEEE transactions on Pat-

tern Analysis and Machine Intelligence, 33(12):2341–2353,

2010. 2
[21] Yu He, Kim-Hui Yap, Li Chen, and Lap-Pui Chau. A soft

map framework for blind super-resolution image reconstruc-

tion. Image and Vision Computing, 27(4):364–373, 2009. 2,

5
[22] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and

Aaron Courville. Neural autoregressive flows. arXiv preprint

arXiv:1804.00779, 2018. 2
[23] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Sin-

gle image super-resolution from transformed self-exemplars.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 5197–5206, 2015. 5, 6
[24] Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-

squares polynomial flow. arXiv preprint arXiv:1905.02325,

2019. 2
[25] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1646–1654, 2016. 1
[26] Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaehyeon

Kim, and Sungroh Yoon. Flowavenet: A generative flow

for raw audio. arXiv preprint arXiv:1811.02155, 2018. 2
[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5
[28] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In Advances in Neural

Information Processing Systems, pages 10215–10224, 2018.

2
[29] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,

Ilya Sutskever, and Max Welling. Improved variational infer-

ence with inverse autoregressive flow. In Advances in Neural

Information Processing Systems, pages 4743–4751, 2016. 2
[30] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In IEEE Conference on Computer Vision

10609

and Pattern Recognition, pages 4681–4690, 2017. 1
[31] Ce Liu and Deqing Sun. On bayesian adaptive video super

resolution. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 36(2):346–360, 2013. 2
[32] Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and

Radu Timofte. Srflow: Learning the super-resolution space

with normalizing flow. In European Conference on Com-

puter Vision, pages 715–732, 2020. 2
[33] David Martin, Charless Fowlkes, Doron Tal, and Jitendra

Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and

measuring ecological statistics. In IEEE Conference on In-

ternational Conference on Computer Vision, pages 416–423,

2001. 5, 6, 7
[34] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,

and Cynthia Rudin. Pulse: Self-supervised photo upsam-

pling via latent space exploration of generative models. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2437–2445, 2020. 3
[35] Tomer Michaeli and Michal Irani. Nonparametric blind

super-resolution. In IEEE Conference on International Con-

ference on Computer Vision, pages 945–952, 2013. 1, 2, 4,

5
[36] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,

Chen Change Loy, and Ping Luo. Exploiting deep genera-

tive prior for versatile image restoration and manipulation.

arXiv preprint arXiv:2003.13659, 2020. 2
[37] George Papamakarios, Theo Pavlakou, and Iain Murray.

Masked autoregressive flow for density estimation. In Ad-

vances in Neural Information Processing Systems, pages

2338–2347, 2017. 2
[38] Yajun Qiu, Ruxin Wang, Dapeng Tao, and Jun Cheng.

Embedded block residual network: A recursive restoration

model for single-image super-resolution. In IEEE Confer-

ence on International Conference on Computer Vision, pages

4180–4189, 2019. 1
[39] Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and

Wangmeng Zuo. Neural blind deconvolution using deep pri-

ors. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3341–3350, 2020. 1, 2, 3, 5, 6, 7
[40] Gernot Riegler, Samuel Schulter, Matthias Ruther, and Horst

Bischof. Conditioned regression models for non-blind sin-

gle image super-resolution. In IEEE Conference on Inter-

national Conference on Computer Vision, pages 522–530,

2015. 1, 5
[41] Wen-Ze Shao and Michael Elad. Simple, accurate, and ro-

bust nonparametric blind super-resolution. In International

Conference on Image and Graphics, pages 333–348, 2015.

2, 5
[42] Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot”

super-resolution using deep internal learning. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3118–3126, 2018. 5
[43] Jae Woong Soh, Sunwoo Cho, and Nam Ik Cho. Meta-

transfer learning for zero-shot super-resolution. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3516–3525, 2020. 5
[44] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 9446–9454, 2018. 1, 2, 3, 5,

6, 7
[45] Roman Vershynin. Random Vectors in High Dimensions,

page 38–69. Cambridge Series in Statistical and Probabilis-

tic Mathematics. Cambridge University Press, 2018. 3
[46] Qiang Wang, Xiaoou Tang, and Harry Shum. Patch based

blind image super resolution. In IEEE Conference on In-

ternational Conference on Computer Vision, pages 709–716,

2005. 2
[47] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

European Conference on Computer Vision Workshops, pages

701–710, 2018. 1
[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE Transactions on Image Process-

ing, 13(4):600–612, 2004. 5
[49] Yu-Syuan Xu, Shou-Yao Roy Tseng, Yu Tseng, Hsien-Kai

Kuo, and Yi-Min Tsai. Unified dynamic convolutional net-

work for super-resolution with variational degradations. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 12496–12505, 2020. 5
[50] Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. Single-

image super-resolution: A benchmark. In European Confer-

ence on Computer Vision, pages 372–386, 2014. 1
[51] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge

Belongie, and Bharath Hariharan. Pointflow: 3d point cloud

generation with continuous normalizing flows. In IEEE Con-

ference on International Conference on Computer Vision,

pages 4541–4550, 2019. 2
[52] Roman Zeyde, Michael Elad, and Matan Protter. On sin-

gle image scale-up using sparse-representations. In Interna-

tional Conference on Curves and Surfaces, pages 711–730,

2010. 5, 6
[53] Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfold-

ing network for image super-resolution. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 3217–

3226, 2020. 4, 5, 6, 7, 8
[54] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-

fte. Designing a practical degradation model for deep blind

image super-resolution. arXiv preprint arXiv:2103.14006,

2021. 1, 5
[55] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a

single convolutional super-resolution network for multiple

degradations. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 3262–3271, 2018. 1, 2, 5
[56] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In European Confer-

ence on Computer Vision, pages 286–301, 2018. 1, 5, 6, 7,

8
[57] Maria Zontak and Michal Irani. Internal statistics of a single

natural image. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 977–984, 2011. 1, 2, 4

10610

