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Abstract

Existing image-to-image translation (I2IT) methods are

either constrained to low-resolution images or long infer-

ence time due to their heavy computational burden on the

convolution of high-resolution feature maps. In this pa-

per, we focus on speeding-up the high-resolution photore-

alistic I2IT tasks based on closed-form Laplacian pyramid

decomposition and reconstruction. Specifically, we reveal

that the attribute transformations, such as illumination and

color manipulation, relate more to the low-frequency com-

ponent, while the content details can be adaptively refined

on high-frequency components. We consequently propose

a Laplacian Pyramid Translation Network (LPTN) to si-

multaneously perform these two tasks, where we design a

lightweight network for translating the low-frequency com-

ponent with reduced resolution and a progressive masking

strategy to efficiently refine the high-frequency ones. Our

model avoids most of the heavy computation consumed by

processing high-resolution feature maps and faithfully pre-

serves the image details. Extensive experimental results on

various tasks demonstrate that the proposed method can

translate 4K images in real-time using one normal GPU

while achieving comparable transformation performance

against existing methods. Datasets and codes are available:

https://github.com/csjliang/LPTN.

1. Introduction

Image-to-image translation (I2IT, [11, 26, 31]), which

aims to translate images from a source domain to a target

one, has gained significant attention. Recently, photore-

alistic I2IT has been attracting increasing interest in vari-

ous practical tasks, e.g., transferring images among differ-

ent daytimes or seasons [11] or retouching the illumination

and color of images to improve their aesthetic quality [4].
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RIF grant (R5001-18).

(a) Original Images, MSE=7853.9

(b) High Frequencies, Level=1, MSE=97.5

(c) High Frequencies, Level=2, MSE=107.7

(d) Low Frequencies, Level=3, MSE=6969.4

Figure 1. (a) Images of a scene captured at different daytimes and

(b∼d) the Laplacian pyramids (figures in (c∼d) are resized for

better visualization). As shown by the MSE and the Histograms,

the differences between the day and night images are dominated

in the low-frequency components (d).

Different from the general I2IT problem, the key challenge

of the practical photorealistic I2IT task is to keep efficiency

and avoid content distortions when handling high-resolution

images.

To achieve faithful translations, most traditional meth-

ods [16, 29, 33] employ an encoding-decoding paradigm

which maps the input image into a low-dimensional latent

space, followed by reconstructing the output from a trans-

lated latent code. However, these methods are naturally lim-
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ited to low-resolution applications or time-consuming in-

ference models [16, 19, 21, 25, 29, 33], which is far from

practical. The main reason is that the model needs to ma-

nipulate the image globally using deep networks, yet di-

rectly convolving a high-resolution image with sufficient

channels and large kernels demands heavy computational

cost. There are some developments in pruning and boost-

ing the inference models [13,17,20], yet a shallow network

can hardly fulfill the requirements of reconstructing com-

plex content details from a low-dimensional latent space

to a high-resolution image. To generate a photorealistic

translation, recent researches [10,14,15] have also been fo-

cusing on disentangling the contents and attributes of both

domains in a data-driven manner. Nevertheless, the irre-

versible down- and up-sampling operations in these models

still involves heavy convolutions on high-resolution feature

maps, sacrificing the efficiency of the inference model.

Inspired by the reversible and closed-form frequency-

band decomposition framework of a Laplacian pyramid

(LP, [1]), we reveal that the domain-specific attributes, e.g.,

illuminations or colors, of a photorealistic I2IT task are

mainly exhibited on the low-frequency component. In con-

trast, the content details relate more to higher-frequency

components, which can be adaptively refined according to

the transformation of the visual attributes. As shown in Fig-

ure 1, for a pair of images with the same scene yet captured

at different daytimes, the mean squared errors (MSE) be-

tween the high-frequency components (b-c) of the two do-

mains are much smaller (about 1/71 and 1/65) than that be-

tween the low-frequency components (d). Similar findings

can be observed from the histograms and visual appearance.

Figure 1 (b-c) also demonstrate that the higher-frequency

subimages are with tapering resolutions, while different lev-

els show pixel-wise correlations and exhibit similar tex-

tures. Such properties allow an efficient masking strategy

for adjusting the content details accordingly.

Based on the above observations, in this paper, we pro-

pose a fast yet effective method termed the Laplacian Pyra-

mid Translation Network (LPTN) to improve efficiency

while keeping the transformation performance for photo-

realistic I2IT tasks. In specific, we build a lightweight

network with cascaded residual blocks on top of the low-

frequency component to translate the domain-specific at-

tributes. To fit the manipulation of the low-frequency com-

ponent and reconstruct the image from an LP faithfully, we

refine the high-frequency components adaptively yet avoid

heavy convolutions on high-resolution feature maps to im-

prove the efficiency. Therefore, we build another tiny net-

work to calculate a mask on the smallest high-frequency

component of the LP and then progressively upsample it to

fit the others. The framework is trained end-to-end in an

unsupervised manner via adversarial training strategy.

The proposed method offers multiple advantages.

Firstly, we are the first to enable photorealistic I2IT on

4K resolution images in real-time. Secondly, given the

lightweight and fast inference model, we still achieve com-

parable or superior performance on photorealistic I2IT ap-

plications in terms of transformation capacity and photore-

alism. Both qualitative and quantitative results demonstrate

that the proposed method performs favorably against state-

of-the-art methods.

2. Related Work

2.1. Photorealistic Image Translation

Most existing I2IT methods [10,16,19,23,33,34] include

three main steps as follows: 1) encoding the image into

a low-dimensional latent space; 2) translating the domain-

specific attributes in the latent space and 3) reconstructing

the image via a deep decoder. Recent researchers attempt

to alleviate the space burden and improve the time effi-

ciency of the I2IT models [3,8,13,17,20,29,32]. For exam-

ple, to allow translation on high-resolution images, Wang et

al. [29] proposed a coarse-to-fine generation pipeline where

a low-resolution translation is learned first and then ex-

panded progressively to higher-resolution. However, it is

computationally expensive due to the direct optimization

of high-resolution images. There are also some speeding-

up frameworks in the photorealistic style transfer commu-

nity. Specifically, instead of conducting iterative forward

and backward processes [7], researchers proposed to learn a

feed-forward network to approximate the optimization pro-

cess [3, 13, 17]. Nevertheless, the encoding and decoding

steps may introduce structural distortions due to the trade-

off between efficiency and effectiveness.

To enhance the faithfulness of a fast stylization, Li et

al. [20] took advantage of the spatial propagation net-

work [24], which however can hardly be extended to high-

resolution applications. Recent developments [6, 10, 15, 19,

22, 28, 30] also focus on disentangling the factors of data

variations based on second-order statistics. For example,

Huang et al. [14] proposed an adaptive instance normal-

ization which normalizes the content latent code using the

mean and standard deviation of the style. To allow a photo-

realistic translation according to a given reference, Luan et

al. [25] designed a novel loss on preserving the local struc-

ture of the given content image. In addition, Li et al. [21]

proposed a smoothing process based on per-pixel affinities

on top of the original transformation stage. Furthermore,

Yoo et al. [30] introduced a wavelet pooling strategy to ap-

proximate the average pooling yet with a mirroring unpool-

ing operation. Nevertheless, these methods are computa-

tionally expensive on high-resolution tasks, e.g., costing a

few seconds on an HD image. In addition, they need a ref-

erence image to manipulate the style of each input. In con-

trast, the I2IT methods including the proposed LPTN mod-
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Figure 2. Pipeline of the proposed LPTN algorithm. Given a high-resolution image I0 ∈ R
h×w×3, we first decompose it into a Laplacian

pyramid (e.g., L = 3). Red arrows: For the low-frequency component IL ∈ R
h

2L
×

w

2L
×c

, we translate it into ÎL ∈ R
h

2L
×

w

2L
×c

using

a lightweight network. Brown arrows: To adaptively refine the high-frequency component hL−1 ∈ R
h

2L−1
×

w

2L−1
×c

, we learn a mask

ML−1 ∈ R
h

2L−1
×

w

2L−1
×1

based on both high- and low-frequency components. Purple arrows: For the other components with higher

resolutions, we progressively upsample the learned mask and finetune it with lightweight convolution blocks to maintain the capacity of a

photorealistic reconstruction.

els the visual attributes based on the overall distribution of

the training data, which thus need only the input image in

the testing stage.

2.2. Laplacian Pyramid

Laplacian pyramid (LP) [1] is a long-standing technique

on image processing. The main idea of the LP method [1]

is to linearly decompose an image into a set of high- and

low-frequency bands, from which the original image can be

exactly reconstructed. In specific, given an arbitrary image

I0 of h×w pixels, it firstly calculates a low-pass prediction

I1 ∈ R
h

2
×

w

2 where each pixel is a weighted average of the

neighboring pixels based on a fixed kernel. To allow a re-

versible reconstruction, the LP records the high-frequency

residual h0 as h0 = I0 − Î0, where Î0 denotes the upsam-

pled image from I1. To further reduce the sample rate and

image resolution, LP iteratively conducts the above opera-

tions on I1 to get a sequence of low- and high-frequency

components.

The hierarchical structure of the LP paradigm inspires

several recent CNN-based image processing works such

as image generation [5], super-resolution [18] and seman-

tic segmentation [9]. For example, in order to generate

high-quality images, Denton et al. [5] trained multiple gen-

erators on the components of an LP. In addition, Lai et

al. [18] follows the Laplacian pyramid reconstruction pro-

cess to progressively reconstruct the high-frequency (also

high-resolution) components for image super-resolution. Its

computation and memory cost grows dramatically with the

increase of resolution due to the intensive convolutions on

high-resolution components. In contrast, we tackle the pho-

torealistic I2IT problem and reveal that the task can be done

by simultaneously translating the illuminations and colors

at low-freq and refining slightly the details at high-freq to

avoid computationally intensive convolutions. Accordingly,

an efficient refining module on high-freq components is de-

signed, allowing a real-time implementation on 4K images.

3. Laplacian Pyramid Translation Network

3.1. Framework Overview

We propose an end-to-end framework, namely the Lapla-

cian Pyramid Translation Network (LPTN), to reduce the

computational burden and simultaneously keep the trans-

formation performance for photorealistic I2IT tasks. The

pipeline of the proposed LPTN is shown in Figure 2.

As shown in the figure, given an image I0 ∈ R
h×w×3,

we first decompose it into an Laplacian pyramid, obtain-

ing a set of band-pass components denoted by H =
[h0, h1, · · · , hL−1] and a low-frequency residual image IL,

where L is the number of decomposed levels of the LP. The

components of H have tapering resolutions from h × w to
h

2L−1 × w
2L−1 , while IL has h

2L
× w

2L
pixels. Such a de-

composition is invertible where the original image can be

reconstructed by a sequence of mirror operations. Accord-

ing to Burt and Adelson [1], H is highly decorrelated where

9394



the light intensity of most pixels is close to 0 except for

the detailed textures of the image. At the same time, the

low-pass filtered IL is blurred where each pixel is averaged

by the neighboring pixels via an octave Gaussian filter. As

a result, IL reflects the global attributes of an image in a

content-independent manner.

Inspired by the above properties of LP, we propose

to translate mainly on IL to manipulate the illumina-

tions or colors, while refining H adaptively to avoid arti-

facts in reconstruction. In addition, we progressively re-

fine the higher-resolution component conditioned on the

lower-resolution one. The LPTN framework is there-

fore composed of three parts. First, we translate the

low-resolution IL into ÎL using deep convolutions. Sec-

ond, we learn a mask on top of the concatenation of

[hL−1, up(IL), up(ÎL)], where up(·) denotes a bilinear up-

sampling operation. The mask is then multiplied to hL−1 to

refine the high-frequency component of level L− 1. Third,

to further refine the other components with higher resolu-

tions, we propose an efficient and progressive upsampling

strategy. At each level from l = L − 2 to l = 0, we

first upsample the mask of the last level and then learn a

lightweight convolution to slightly finetune the mask. We

introduce these modules in detail in the following sections.

3.2. Translation on Low-Frequency Component

The inherent properties of LP, including the separation

of textures and visual attributes, and the capability of a re-

versible reconstruction, can benefit the photorealistic I2IT

task. For general I2IT tasks with texture manipulations,

the domain-specific attributes are represented in the latent

space powered by a deep encoding-decoding network. In

contrast, for the task of photorealistic I2IT, we observe that

the domain-specific attributes are mainly about illumina-

tions or colors, which can be extracted using fixed kernels

in an efficient way. As shown in Figure 1, for example, the

domain-specific visual attributes of the day-to-night transla-

tion task are mainly exhibited in the low-frequency compo-

nent, while the high-frequency ones relate more to the tex-

tures. Consequently, we can translate the domain-specific

attributes on the low-frequency component with a down-

scaled resolution, reducing largely the computational com-

plexity against the general I2I methods.

As shown in Figure 2, given IL with a reduced resolu-

tion, we first extend the feature map channel-wisely using

a 1 × 1 convolution. Then, we stack 5 residual blocks on

top of the extended feature map. For each residual block,

two convolutions with kernel size being 3 and stride being

1 are conducted, each is followed by a leaky ReLU. After

that, we reduce the channels of the feature maps back to c
to get the translated results ÎL, where c denotes the number

of channels of the given image. The output is finally added

to the original inputs followed by a Tanh activation layer.

Traditional I2IT algorithms also conduct transformation

at a low-dimensional space via a cascade of residual blocks.

However, the proposed model shows advantages against

these methods in the following ways. 1) On time and space

efficiency: The decomposition of high- and low-frequency

components in an LP is based on a fixed kernel and a sim-

ple convolution operation, it is therefore efficient and free

of learning from images. Such a strategy is based on a prior

knowledge that the photorealistic I2IT task requires to ma-

nipulate illuminations and colors while slightly refining the

textures accordingly. In contrast, traditional methods access

to the low-dimensional latent space via auto-encoders with

heavy convolutions on the whole image, which limits their

applications to high-resolution tasks. 2) On the disentan-

glement and reconstruction effectiveness: The separation of

different frequency bands in an LP is simple and effective

for disentangling and reconstructing an image, as shown in

Figure 1. In contrast, a learning-based auto-encoder in gen-

eral methods may suffer from a trade-off between the model

size and disentanglement/reconstruction effectiveness.

3.3. Refinement of High-Frequency Components

To allow a faithful reconstruction when manipulating

domain-specific attributes, the high-frequency components

H = [h0, h1, · · · , hL−1] should also be refined according

to the transformation from IL to ÎL. In this section, we

propose to learn a mask for hL−1 and progressively expand

the mask to refine the rest of high-frequency components

according to the intrinsic characteristic of LP.

According to the analysis in Section 3.1, we have

hL−1 ∈ R
h

2L−1
×

w

2L−1
×c

and IL, ÎL ∈ R
h

2L
×

w

2L
×c

. We first

upsample IL and ÎL with bilinear operations to match the

resolution of hL−1. Then, we concatenate [IL, ÎL, hL−1]
and feed it into a tiny network with the same architecture as

shown in Figure 2. The output channel of the last convolu-

tion layers is set to 1 in this network.

The output of the network ML−1 ∈ R
h

2L−1
×

w

2L−1
×1

is considered as a per-pixel mask of the hL−1. As shown

in Figure 1, for image pairs in two domains, the high-

frequency components on the same level only differ slightly

in terms of the global brightness. Therefore, the masks can

be interpreted as a global adjustment which is relatively eas-

ier to be optimized than the mixed-frequency images. Con-

sequently, we refine the hL−1 by:

ĥL−1 = hL−1 ⊗ML−1, (1)

where ⊗ denotes the pixel-wise multiplication.

We then progressively upsample the per-pixel mask

ML−1 to a set of masks [ML−2, · · · ,M1,M0] with reso-

lutions from h
2L−2 ×

w
2L−2 ×1 to h×w×1 to match the rest

high-frequency components. As shown in Figure 2, ML−1

is expanded with a scale factor of 2 using bilinear inter-

polation, followed by an optional lightweight convolution
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block for fine-tuning. The result of this stage, i.e., ML−2, is

then progressively upsampled until M0 is generated. Con-

sequently, we can refine all the high-frequency components

of the LP using the same operations as in Eq. (1) and get

the result set [ĥ0, ĥ1, · · · , ĥL−1]. The result image Î0 is

then reconstructed using the translated ÎL and the refined

[ĥ0, ĥ1, · · · , ĥL−1].
To demonstrate the effectiveness of the bilinear inter-

polation on upsampling the masks, let’s recap the con-

struction of an LP. As mentioned in Section 2.2, given the

low-frequency image of the l-th level, i.e., Il, we have

hl = Il − T (C(Il)) where C and T denote convolution

and transpose convolution with the same low-pass kernel.

On the next level, we have hl+1 = Il+1 − T (C(Il+1)) =
C(Il) − T (C(C(I0))) since Il+1 = C(Il). The closed-

form convolution operation C with the 2D low-pass kernel

derived from [1, 4, 6, 4, 1] approximates the average pool-

ing with a receptive field of 5. Figure 1 demonstrates that

the difference between the high-frequency components of

the two images is small and only the global tone has a

big difference. As a result, a bilinear upsampling and a

lightweight convolution are capable to simultaneously re-

verse the down-sampling process and manipulate the global

intensity of the mask. Compared with those directly convo-

lute the large-scale high-frequency components, the above

mentioned progressive masking strategy can save computa-

tional resources to a large extent.

3.4. Learning criteria

The proposed LPTN is trained in an unsupervised sce-

nario by optimizing a reconstruction loss Lrecons as well

as an adversarial loss Ladv on the image space. To encour-

age a faithful translation and refinement, we let Lrecons =
‖I0 − Î0‖

2
2 given the input image I0 and the translated re-

sult Î0. Besides, the Ladv is computed based on the LS-

GAN objective [27] and a multi-scale discriminator [29] to

match the target distribution. Specifically, we train the gen-

erator G (including both low- and high- frequency modules)

to minimize EI0∼pdata(I0)[D(G(I0)− 1)2], and train a dis-

criminator D to minimize E
Ĩ0∼pdata(Ĩ0)

[(D(Ĩ0) − 1)2] +

EI0∼pdata(I0)[D(G(I0))
2]. Like [27], the D has 3 compo-

nents with identical network structure on 3 image scales.

The total loss is calculated as follows: L = Lrecons +
λLadv , where λ balances the two losses.

4. Experiment

4.1. Setup

Datasets: To extend the I2IT task to a high-resolution

scenario, we collect two unpaired datasets from Flickr∗

with random resolutions from 1080p (1920 × 1080) to 4K

∗https://www.flickr.com/

(3840 × 2160). One of them is regarding the day→night

translation task (with 1035 day photos and 862 night pho-

tos) while the other is about the summer→winter translation

task (with 1173 summer photos and 1020 winter photos).

Examples of the training images are shown in the supple-

mentary material.

In addition, to quantitatively evaluate the proposed

method, we conduct experiments on the MIT-Adobe fiveK

dataset [2] which contains 5, 000 untouched images and the

corresponding manually-retouched targets given by photo-

graphic experts. We use the targets given by expert C fol-

lowing the existing works [4], while we employ 4, 500 im-

ages for training and the rest 500 pairs for evaluation. Note

we only use the paired samples to calculate the quantitative

metrics in the testing stage.

Hyper-Parameters: We use an Adam optimizer with the

learning rate being 1e−4. The weight of the losses is set to

be Lrecons : Ladv = 10 : 1.

Compared Methods: We compare our method with both

unpaired I2IT methods, i.e., CycleGAN [33], UNIT [23]

and MUNIT [15] and unpaired photo retouching methods,

i.e., the White-box [12] and DPE [4]. Qualitative and quan-

titative comparisons are reported in Section 4.3 and Sec-

tion 4.4, respectively.

4.2. Ablation Study

Effectiveness of Specific Modules: We visualize the ef-

fectiveness of different modules (the refinement of high-

frequency components and the instance normalization when

translating the low-frequency component) in Figure 3. On

one hand, as shown in the third column of the figure, the

progressive refinement of the high-frequency components is

effective in preserving the texture details. When we remove

these refinement modules, although the visual attributes (in

this task, illuminations and colors, etc.) are successfully

translated, many regions suffer from blurring effects and the

PSNR is thus reduced to 20.87. This is mainly caused by

the dis-match between the translated low-frequency com-

ponent and the nearly unchanged high-frequency ones. On

the other hand, as shown in the fourth column of the fig-

ure, the instance norm is required when translating the low-

frequency component. If we manipulate the attributes with

no normalization process, the translation will be excessive

and lead to over-sharpened results. As shown in the top

row, many undesired details on the face are produced. In

contrast, LPTN achieves a natural and photorealistic trans-

lation, which results in a comparable PSNR with the state-

of-the-art unpaired photo retouching methods.

Selection of the Number of Levels: We validate the in-

fluence of the number of levels L on the photo retouch-

ing task. As shown in the last three rows of Table 1, the

model achieves the best performance on all tested resolu-

tions when L = 3. At the same time, as shown in the Ta-
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Input Target w/o high-frequency

PSNR：20.87

w/o instance norm

PSNR：21.65

Final

PSNR：22.03

Figure 3. Ablation study toward the model structures on the photo retouching task. The images in the third column are generated without

the refinement modules of the high-frequency components, while the images in the fourth column are generated by removing the instance

norm layer when translating the low-frequency component. The PSNRs are the average of 500 test images under the specific setting.

ble 2, the LPTN consumes more time with L = 3 than that

with L = 4 or L = 5. Actually, there is a trade-off be-

tween the time consumption and the performance, which is

determined by the number of levels of the LP. However, the

proposed LPTN is robust when increasing the parameter L
to reduce the computational burden. Take the task on 1080p

images as an example, the PSNR of the LPTN is just re-

duced from 22.09 to 21.95 when the L is increased from 3
to 5, yet the model achieves a speed-up of more than ×2 and

takes about 1/16 of memory usage. This result validates

that domain-specific attributes are presented in a relatively

low-dimensional space.

4.3. Visual Comparisons

Photorealistic I2IT: We compare the visual performance

on various photorealistic I2IT tasks, i.e., (a) day→night, (b)

summer→winter and (c) photo retouching, in Figure 4. This

experiment is conducted on 1080p resolution considering

the memory limitation of the CycleGAN, UNIT, and MU-

NIT. As shown in the figure, the proposed LPTN performs

favorably against these three methods on both the photore-

alism and translation performance, while the LPTN is the

only one that can be extended to higher resolution tasks

(e.g., 4K).

In specific, for the day→night task as shown in Fig-

ure 4 (a), the LPTN translates the inputted day image into

a dark night and shows little texture distortion. The ge-

ometric structure of the zoomed-in regions, i.e., a part of

clouds and building, is well preserved in the translated re-

sults. Meanwhile, the global tone of the image is modi-

fied into a dark night style. The CycleGAN, which also

achieves a dark tone, shows the second-best performance

among these methods. However, it introduces many visi-

ble distortions, e.g., the cloud in the red box is transformed

into many light spots while the ambient sky is in pure black.

There are also some artifacts on top of the building as shown

in the yellow box. The structural distortions and artifacts in

the results of CycleGAN may be caused by the insufficient

reconstruction capability of the decoder given a relatively

high-resolution application. In contrast, LPTN achieves

the encoding-decoding process via a closed-form filtering,

which can be extended to higher resolutions, e.g., 4K, with

negligible performance reduction. Similar conclusions can

be made on the (b) summer→winter and the (c) photo re-

touching tasks.

We compare the proposed LPTN with traditional I2IT

methods, i.e., CycleGAN, UNIT, and MUNIT, to demon-

strate the advantages of our method. Generally, traditional

ones are based on auto-encoder frameworks with mainly

three steps: 1) disentangling the contents and attributes on

a low-dimensional latent space via an encoding process; 2)

translating the latent attribute code via residual blocks; 3)

reconstructing the image from the translated attribute code

via a decoder mirroring the encoding process. Actually, the

ability to reconstruct contents is modeled by the network pa-

rameters of the auto-encoder. As a result, these methods can

hardly be extended to high-resolution tasks or be applied to

photorealistic scenarios due to the expensive computational

cost.

Instead of a parameterized encoding and decoding

framework, the proposed LPTN decomposes the image into

different frequency bands with tapering resolutions via a

closed-form operation. The decomposed components are

validated to be effective to represent the domain-specific at-

tributes and content textures (as shown in Figure 1). Conse-

quently, the image can be easily reconstructed in a closed-

form (note that the decomposition and reconstruction cost

less than 2ms for a 4K image with L = 4). As shown in

Figure 2, most computation resources are allocated to trans-

late the low-frequency component at the smallest resolution

and to calculate the adaptive mask at the second-smallest

resolution. Therefore, the proposed LPTN can be easily ex-
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Figure 4. Visual comparisons among different I2IT methods, i.e., CycleGAN, UNIT, MUNIT and the proposed LPTN, on three different

I2I tasks. The red and yellow boxes in (a) and (b) zoom in the particular regions for a better observation.

tended to higher resolution applications with linear growth

of time consumption.

Considering the inherent property of the Laplacian pyra-

mid, the proposed LPTN cannot handle the problem gen-

erating novel content details, e.g., synthesizing Cityscapes

images from its semantic segmentation labels. Actually, ex-

isting methods such as pix2pix perform well on this task

by modeling the visual contents in a deep network, which

depends on pixel-wise supervision and have a drastic de-

mand for computational resources. A major limitation of

our method is about the processing of high frequency (HF)

components. Our progressive masking strategy saves much

computation but may introduce halo artifacts in the day to

night task. A feasible solution is to leverage the sparsity

property of HF components, and employ sparse convolu-

tion on HF components to achieve more flexible translation

while maintaining high efficiency.

4.4. Quantitative Examinations

In this section, we quantitatively compare the LPTN to

the state-of-the-art methods on photo retouching regarding

the PSNR/SSIM and time consumption.

Performance: To test the performance on matching the

manually retouched targets, we conduct three groups of ex-

periments with the resolution being 480p, 1080p and origi-

Table 1. Quantitative comparison on the MIT Adobe FiveK dataset

(the photo retouching task). The N.A. denotes that the result is not

applicable due to the limitation of computational resources.

Methods
480p 1080p original

PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN [33] 20.98 0.831 20.86 0.846 N.A. N.A.

UNIT [23] 19.63 0.811 19.32 0.802 N.A. N.A.

MUNIT [15] 20.32 0.829 20.28 0.815 N.A. N.A.

White-Box [12] 21.32 0.864 21.26 0.872 21.17 0.875

DPE [4] 21.99 0.875 21.94 0.885 N.A. N.A.

LPTN, L = 3 22.12 0.878 22.09 0.883 22.02 0.879

LPTN, L = 4 22.10 0.872 22.03 0.870 21.98 0.862

LPTN, L = 5 21.94 0.866 21.95 0.858 21.89 0.862

nal size (ranging from 3000×2000 to 6000×4000), respec-

tively. As shown in Table 1, the proposed LPTN performs

favorably against both the general I2IT and the photo re-

touching methods. For the photo retouching task defined

in the fiveK dataset, the main difference between the inputs

and targets lies in the global tone (regarding colors or il-

luminations, etc.) of the image. The general I2IT methods

translate the global tone satisfactorily yet perform badly on
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Table 2. Comparison about the time consumption (in seconds) of

different inference models. Each result is an average of 50 tests,

where the N.A. denotes that the method cannot handle the image

of specific resolution on a GPU with 11G RAM.

Methods 480p 1080p 2K 4K

CycleGAN [33] 0.325 0.562 N.A. N.A.

UNIT [23] 0.294 0.483 N.A. N.A.

MUNIT [15] 0.336 0.675 N.A. N.A.

White-Box [12] 2.846 5.123 6.542 9.785

DPE [4] 0.032 0.091 N.A. N.A.

LPTN, L = 3 0.003 0.012 0.043 0.082

LPTN, L = 4 0.002 0.007 0.015 0.033

LPTN, L = 5 0.0008 0.005 0.011 0.016

reconstructing the details as shown in Figure 4 (c). The

main reason is that the fiveK dataset is relatively small but

contains various scenes in the testing set so that the de-

coder can hardly learn a reverse mapping against the en-

coder on all visual scenes. For the photo retouching meth-

ods such as DPE [4], in contrast, a skip connection be-

tween the input and output is added to improve the re-

construction performance. However, the connection may

also bring the unaesthetic visual attributes of the input im-

ages to the outputs caused by an unsatisfactory disentan-

glement of domain-invariant contents and domain-specific

attributes. Thanks to the full decomposition and the preser-

vation of reconstruction capacity by adaptively refining the

high-frequency components, the proposed LPTN performs

well on the photo retouching task.

Running Time: As shown in Table 2, the proposed LPTN

outperforms other methods regarding the time consumption

performance by a large gap, e.g., achieves about ×80 speed-

up against the CycleGAN on 1080p images when L = 4,

and runs on 4K images in real-time when L = 5. Accord-

ing to Figure 2, the main optimization-based computations

of the proposed method are concentrated on translating the

low-frequency component IL and learning the mask for the

last high-frequency component hL−1, where both IL and

hL−1 are of low-resolution. For example, to translate an

1080p image (I0 ∈ R
1920×1080×3) with L = 4, we have

IL ∈ R
120×67×3 and hL−1 ∈ R

240×135×3. Besides, thanks

to the spatial correlations among the high-frequency com-

ponents, the generation of higher-resolution masks is effi-

cient since they only include a bilinear interpolation opera-

tion and two convolutional layers.

4.5. User Study

To evaluate the overall performance of the translation re-

garding both the photorealism and transformation effects,

we perform a user study based on human perception. In

specific, we randomly select 20 samples for the photore-

Table 3. User preference toward photorealistic day→night transla-

tion task. Participants are required to select out the most realistic

and aesthetically pleasing result among the four methods. The im-

ages are shown in random order in each test.

Visual Metrics CycleGAN UNIT MUNIT LPTN

Photorealism 16.4% 2.3% 3.0% 78.3%

Aesthetic 21.3% 12.7% 8.5% 57.5%

alistic day→night and summer→winter translation tasks,

respectively, and collect the translated results of the com-

pared methods. A group of 20 participants are required

to answer the following two questions after seeing the in-

putted images and all the compared results: 1) Photoreal-

ism: given the input image, which result is the most real-

istic one? 2) Transformation effectiveness: given the input

image, which result is translated to the target style mostly?

The results are summarized in Table 3. For example, the

proposed LPTN achieves a score of 78.3% and 50.2% for

the visual performance of photorealism and transformation

effect on the day→night translation task, respectively. The

results demonstrate that the proposed method performs bet-

ter in preserving the content details and translating the im-

ages into target styles. The other three methods do not

perform well on this subjective task since there are visible

structural distortions and artifacts of their results. Some par-

ticipants (22.5%) prefer the output of CycleGAN regarding

the transformation effect. Such preference mainly happens

in those scenes that do not contain abundant detail textures,

e.g., scenes consisting of a large area of sky or sea. Similar

performance can be found in the summer→winter transla-

tion task.

5. Conclusion

We proposed an highly-efficient framework for the pho-

torealistic I2IT problem, which significantly reduces the

computational burden when handling high-resolution im-

ages while simultaneously keeping the transformation per-

formance. By using the Laplacian pyramid to decompose

the input image, we disentangled the domain-specific vi-

sual attributes and the textures with tapering resolutions in

an invertible manner and learned the translation and refine-

ment networks on low-resolution components. A progres-

sive masking strategy was then developed to adaptively re-

fine the high-frequency components in order to generate

a photorealistic result. The so-called Laplacian pyramid

translation network (LPTN) was applied to a set of photo-

realistic I2IT tasks, exhibiting not only a much faster run-

ning speed but also comparable or superior translation per-

formance. In particular, LPTN can run at real-time on 4K

resolution images by using a desktop GPU.
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